期刊文献+
共找到5,356篇文章
< 1 2 250 >
每页显示 20 50 100
The Integration of Water and Fertilizer Regulated Soil Nutrients and Enzyme Activities of Greenhouse Tomato (Solanum lycopersicum) by Moistube Irrigation
1
作者 Haijian Yang Mingzhi Zhang +1 位作者 Na Xiao Yuan Li 《Phyton-International Journal of Experimental Botany》 SCIE 2024年第11期2813-2836,共24页
Moistube irrigation was driven by the gradient of water potential inside and outside the pipe wall,which has the advantages of continuous irrigation during the crop growth period.However,the response mechanism of soil... Moistube irrigation was driven by the gradient of water potential inside and outside the pipe wall,which has the advantages of continuous irrigation during the crop growth period.However,the response mechanism of soil nutrients and enzyme activities of greenhouse tomatoes under the integration of water and fertilizer by moistube irrigation is still unclear.In order to explore the changes in soil nutrients and enzyme activities of greenhouse tomatoes regulated by irrigation and fertilization in moistube irrigation greenhouse,a completely randomized experimental design was conducted to explore the effects of different irrigation amounts(I,controlling the work-ing pressure head of moistube to achieve different irrigation amount gradients,capillary working pressure was 1(I1),2(I2),3(I3)m)and fertilization amounts(F,single fertilization amount was 100(F1),200(F2),300(F3)kg/hm2)on soil nutrients,enzyme activities and yield of greenhouse tomato.It was found that with the increase of I,the total organic carbon content(TOC),soilβ-glucosidase(BG),leucine amino peptidase(LAP),N-acetylglucosaminidase(NAG),and alkaline phosphatase(AP)activities enzyme of greenhouse tomato soil increasedfirst and then decreased.When the I increased from I1 to I3,the soil total nitrogen(TN)decreased by 5.07%and 4.91%,respectively,and the soil total phosphorus(TP)by 4.37%and 4.22%,respectively.With the increase of fertilizer amounts,the TOC of tomato soil increasedfirst and then decreased,the activities of BG,LAP,NAG and AP in soil increasedfirst and then decreased,and the contents of TN and TP in soil decreased by 4.79%and 4.68%,12.32%and 10.47%,respectively.The yield of tomatoes treated with I2 was significantly higher than that of I1 and I3 by about 13.99%and 1.29%,respectively.The tomato yield of F2 treatment was significantly higher than that of F1 and F3 treatments by about 22.57%and 1.72%,respectively.Based on the analysis of stoichiometry,it was found that soil carbon was more scarcity than nitrogen in greenhouse tomatoes under the integration of water and fertilizer by moistube irrigation.Soil carbon,nitrogen,phosphorus,enzyme activity and their respective stoichiometry showed a quadratic curve relationship with yield.Therefore,I2F2 treat-ment of greenhouse tomatoes can not only reduce soil carbon and nitrogen limitations but also improve soil enzyme activity and achieve multiple goals of increasing greenhouse tomato yield,and saving water and fertilizer.This conclusion contributes to a more reasonable irrigation and fertilization of tomatoes in moistube irrigation greenhouse and soil nutrient management of facility agriculture through empirical proofs. 展开更多
关键词 soil nutrient material extracellular enzyme stoichiometric ratio YIELD
下载PDF
Spatio-temporal Evaluation of Multi-scale Cultivated Land System Resilience in Black Soil Region from 2000 to 2019:A Case Study of Liaoning Province,Northeast China
2
作者 WANG Yue JIANG Yuting ZHU Guoxu 《Chinese Geographical Science》 SCIE CSCD 2024年第1期168-180,共13页
It is of great significance to systematically analyze the cultivated land system resilience(CLSR) for the black soil protection and national food security.The CLSR is impacted by planting structure adjustment and cult... It is of great significance to systematically analyze the cultivated land system resilience(CLSR) for the black soil protection and national food security.The CLSR is impacted by planting structure adjustment and cultivated land quality decline,posing major hidden dangers to food security.It is urgent to evaluate the CLSR at multiple spatio-temporal scales.This study took Liaoning Province in the black soil region of Northeast China as an example.Based on the resilience theory,this study constructed the CLSR evaluation system from the input-feedback perspective at the provincial-scale and the city-scale,and used the rank-sum ratio comprehensive evaluation method(RSR) to analyze the key influencing factors of CLSR in Liaoning Province and its 14 cities from 2000 to 2019.The results showed that:1) the time series changes of CLSR at the provincial-scale and the city-scale in Liaoning Province were similar,both showing an increasing trend.2) The CLSR in Liaoning Province presented a spatial pattern of ‘high in the west and low in the east’ at the city-scale.3) There were seven and six main influencing factors of CLSR at the provincial-scale and the city-scale,respectively.In addition to the net income per capita of rural households,other influencing factors of CLSR were different at the provincial-scale and the city-scale.The feedback factors were dominant at the provincial-scale,and the input factors and feedback factors were dominant at the city-scale.The results could provide a reference for the utilization of black soil and draw on the experience of regional agricultural planning and adjustment. 展开更多
关键词 cultivated land system resilience(CLSR) rank-sum ratio comprehensive evaluation(RSR) multi-scales influencing factors black soil region Liaoning Province China
下载PDF
Maize straw application as an interlayer improves organic carbon and total nitrogen concentrations in the soil profile: A four-year experiment in a saline soil 被引量:2
3
作者 CHANG Fang-di WANG Xi-quan +7 位作者 SONG Jia-shen ZHANG Hong-yuan YU Ru WANG Jing LIU Jian WANG Shang JI Hong-jie LI Yu-yi 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2023年第6期1870-1882,共13页
Soil salinization is a critical environmental issue restricting agricultural production.Deep return of straw to the soil as an interlayer (at 40 cm depth) has been a popular practice to alleviate salt stress.However,t... Soil salinization is a critical environmental issue restricting agricultural production.Deep return of straw to the soil as an interlayer (at 40 cm depth) has been a popular practice to alleviate salt stress.However,the legacy effects of straw added as an interlayer at different rates on soil organic carbon (SOC) and total nitrogen (TN) in saline soils still remain inconclusive.Therefore,a four-year (2015–2018) field experiment was conducted with four levels (i.e.,0,6,12and 18 Mg ha~(–1)) of straw returned as an interlayer.Compared with no straw interlayer (CK),straw addition increased SOC concentration by 14–32 and 11–57%in the 20–40 and 40–60 cm soil layers,respectively.The increases in soil TN concentration (8–22 and 6–34%in the 20–40 and 40–60 cm soil layers,respectively) were lower than that for SOC concentration,which led to increased soil C:N ratio in the 20–60 cm soil depth.Increases in SOC and TN concentrations in the 20–60 cm soil layer with straw addition led to a decrease in stratification ratios (0–20 cm:20–60 cm),which promoted uniform distributions of SOC and TN in the soil profile.Increases in SOC and TN concentrations were associated with soil salinity and moisture regulation and improved sunflower yield.Generally,compared with other treatments,the application of 12 Mg ha~(–1) straw had higher SOC,TN and C:N ratio,and lower soil stratification ratio in the2015–2017 period.The results highlighted that legacy effects of straw application as an interlayer were maintained for at least four years,and demonstrated that deep soil straw application had a great potential for improving subsoil fertility in salt-affected soils. 展开更多
关键词 straw addition INTERLAYER soil organic carbon soil nitrogen C:N ratio saline soil
下载PDF
GENERAL SOLUTION OF THE OVERALL BENDING OF FLEXIBLE CIRCULAR RING SHELLS WITH MODERATELY SLENDER RATIO AND APPLICATIONS TO THE BELLOWS (Ⅰ)-GOVERNING EQUATION AND GENERAL SOLUTION
4
作者 ZHU Wei-ping(朱卫平) +1 位作者 HUANG Qian(黄黔) 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2002年第8期889-897,共9页
The overall bending of circular ring shells subjected to bending moments and lateral forces is discussed. The derivation of the equations was based upon the theory of flexible shells generalized by E.L. Axelrad and th... The overall bending of circular ring shells subjected to bending moments and lateral forces is discussed. The derivation of the equations was based upon the theory of flexible shells generalized by E.L. Axelrad and the assumption of the moderately slender ratio less than 1/3 (i.e., ratio between curvature radius of the meridian and distance from the meridional curvature center to the axis of revolution). The present general solution is an analytical one convergent in the whole domain of the shell and with the necessary integral constants for the boundary value problems. It can be used to calculate the stresses and displacements of the related bellows. The whole work is arranged into four parts: (Ⅰ) Governing equation and general solution; (Ⅱ) Calculation for Omega_shaped bellows; (Ⅲ) Calculation for C_shaped bellows; (Ⅳ) Calculation for U_shaped bellows. This paper is the first part. 展开更多
关键词 theory of flexible shell circular ring shell bellows lateral bending load moderately slender ratio general solution
下载PDF
Dynamic response of chlorsulfuron herbicide to nitrogen mineralization and the ratio of microbial biomass nitrogen to nitrogen mineralization in the soil
5
作者 El-Ghamry, A.M. Huang, Chang-Yong Xu, Jian-Ming 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2000年第2期127-131,共5页
A laboratory incubation experiment was conducted to elucidate the effect of chlorsulfuron herbicide on nitrogen mineralization and the ratio of microbial biomass nitrogen to nitrogen mineralization (N mic /N mi... A laboratory incubation experiment was conducted to elucidate the effect of chlorsulfuron herbicide on nitrogen mineralization and the ratio of microbial biomass nitrogen to nitrogen mineralization (N mic /N min ratio) in loamy sand soil.The herbicide was applied at four levels that were control, field rate 0\^01 (FR), 10 times of field rate 0\^1(10FR),and 100 times of field rate 1\^0 (100FR) μg/g soil. Determinations of N\|mineralization and microbial biomass\|N content were carried out 1,3,5,7,10,15,25 and 45 days after herbicide application. In comparison to untreated soil, the N\|mineralization decreased significantly in soil treated with herbicide at levels 10FR and 100FR within the first 5 days incubation. A more considerable reduction in the N mic /N min ratio was observed in the herbicide treated soil than the non\|treated control.Among the different treatment of chlorsulfuron, 100FR displayed the greatest biocidal effect followed by 10FR and FR,showing their relative toxicity in the order of 100FR>100FR>FR.The results indicated that the side effect of this herbicide on N\|mineralization is probably of little ecological significance. 展开更多
关键词 CHLORSULFURON N\|mineralization N mic /N min ratio loamy sand soil CLC number: X592 Document code: A
下载PDF
Phosphate Desorption Characteristics of Some Representative Soils of Bangladesh: Effect of Exchangeable Anions, Water Molecules and Solution to Soil Ratios
6
作者 Mohammad Z. Afsar Sirajul Hoque K. T. Osman 《Open Journal of Soil Science》 2012年第3期234-241,共8页
Establishment of phosphate (P) retention and release capacity of soils is essential for effective nutrient management and environmental protection. In this experiment, we studied the influence of soil properties on P ... Establishment of phosphate (P) retention and release capacity of soils is essential for effective nutrient management and environmental protection. In this experiment, we studied the influence of soil properties on P desorption and the relationship between phosphate sorption and desorption. Among the soil series, the Ghior soil had the highest percent clay (59.32%) and free iron oxide (15241 mg·kg–1) content. Along the catena of the calcareous soils, percent clay contents increased. For sorption study, the soils were equilibrated with 0.01 M CaCl2 solution containing 0, 1, 2, 4, 8, 16, 25, 50, 100 and 150 mg·P·L–1 solution. For desorption, three extractants namely, SO42- (0.005 M) as Na2SO4, HCO3- (0.01 M) as NaHCO3 and distilled water were used at extractant to soil ratios of 30:1, 60:1 and 100:1 (v/w). Among the sorption equations, the Langmuir equation showed better fit to the sorption data at higher P concentrations. The amount of phosphate desorbed by all the three extractants increased significantly with the increasing extractant to soil ratios. Phosphate desorption by and water molecules was highly correlated with pH, percent clay and free iron oxide content of the soil. Significant positive correlation (r > 0.64, P L). Phosphate desorption by SO42- and water molecules was also positively correlated with Freundlich constant, N (r > 0.67, P 0 (r > 0.72, P –0.77, P L). The results suggest that freshly sorbed phosphate ions (inner-sphere complex forming species) can be readily desobed by outer-sphere complex forming species like sulphate and bicarbonate ions. Water molecules also desorbed significant amount of freshly sorbed phosphate from the soil colloids. 展开更多
关键词 PHOSPHATE Sorption EXTRACTANT to soil ratio Surface COMPLEXATION of ANIONS Labile Forms of P PHOSPHATE Desorption
下载PDF
Effect of Salt Solution on Characteristics of Soil Infiltration
7
作者 陈曦 潘英华 +1 位作者 郝春红 谭妍青 《Agricultural Science & Technology》 CAS 2012年第2期357-360,438,共5页
[Objective] The aim was to study the effect of salt solution on characteristics of soil infiltration, and to provide references for the further studies on the effect of water quality on soil infiltration characteristi... [Objective] The aim was to study the effect of salt solution on characteristics of soil infiltration, and to provide references for the further studies on the effect of water quality on soil infiltration characteristics and its mechanism. [Method] With the NaCl, CaCl2 solutions as the main test materials, the effect of different water quality and salt solution concentration on soil infiltration was studied under one-dimensional vertical ponded water infiltration at laboratory. [Result] The solution concentration could affect the infiltration performance. The trends of the infiltration rates, cumulative infiltrations and wetting front migration distances were all 50 mg/L 100 mg/L 10 mg/L. At the same concentration, the effect of NaCl solution on soil infiltration characteristics was more significant than CaCl2 solution: in the same time, cumulative infiltration and wetting front migration distance of NaCl solution were greater than CaCl2 solution; compared with NaCl solution, CaCl2 solution took longer time to infiltrate the same amount of water. The dynamic changes of infiltration rate, wetting front and cumulative infiltration were well fitted to the Philip model. [Conclusion] This study only conducted indoor experiment to the infiltration of salt solutions, involving in low concentration and small range. Although it provided some references for the study on the effect of water quality on soil infiltration characteristics and its mechanism, studies in larger areas and with bigger concentrations are demanding. 展开更多
关键词 Salt solution soil moisture Infiltration characteristics
下载PDF
Effect of Different K^+/Mg^(2+) Ration Nutrient Solutions on Soil Salinity
8
作者 张敬敏 隋申利 魏珉 《Agricultural Science & Technology》 CAS 2017年第2期262-265,共4页
Using simulated soil column experiments, the effects of different dosages and ratios of KCI and MgCI2 mixture on salinization nutrient ions in the secondary salinization soil which had 3 years of planting were studied... Using simulated soil column experiments, the effects of different dosages and ratios of KCI and MgCI2 mixture on salinization nutrient ions in the secondary salinization soil which had 3 years of planting were studied, with the aim to provide the theory basis for the remediation of secondary salinization soil. Results showed that the content of soil K-, Mg2+, CI- and the total salinity were increased, with the increasing concentrations of nutrient solution, while Na+, Ca2+ and HCO3- contents were reduced. Compared with originals oil, soil K+, Na+, Ca2+, Mg2+, CI- and total soil salinity were decreased, and HCO3- and SO42 were increased. In terms of the variation of soil total charge, the change ranges in 1:1 treatment varied small, but the residual of soil cationic decreased with increasing application of K+ in the 2:1 treatment. It could be concluded that balanced and low application fertilizer could alleviate the soil saline, decrease the soil nutrition leaching and improve the balance among ions, while excess fertilization could accelerate the imbalance of zwitterions. 展开更多
关键词 Nutrient solution soil in greenhouse soil secondary salinization
下载PDF
Evaluating soil acidification risk and its effects on biodiversity–ecosystem multifunctionality relationships in the drylands of China
9
作者 Lan Du Shengchuan Tian +5 位作者 Nan Zhao Bin Zhang Xiaohan Mu Lisong Tang Xinjun Zheng Yan Li 《Forest Ecosystems》 SCIE CSCD 2024年第2期162-171,共10页
Background:Soil acidifcationn caused by anthropogenic activities may aft soil biochemical cydling,bidiversity,productivity,and multiple eosystem-related functions in drylands.However,to date,such information is lackin... Background:Soil acidifcationn caused by anthropogenic activities may aft soil biochemical cydling,bidiversity,productivity,and multiple eosystem-related functions in drylands.However,to date,such information is lacking to support this hypothesis.Methods Based on a transect survey of 78 naturally assembled shrub communities,we caloulated acid deposition flux in Northwest China and evaluated its likely ecological ffets by testing three altemnative hypotheses,namely:.nidche complementarity,mass ratio,and vegetation quantity hypotheses Rao's quadratic entopy and community-weighted mean traits were employed to represent the complementary aspect of niche complementarity and mass ratio effects,respectively.Resulbs:We observed that in the past four decades,the concentrations of exchangeable base cations in soil in Northwest China have decreased significantly to the extent of having faced the risk of depletion,whereas changes in the calium carbonate content and pH of soil were not significant.Adid deposition primani ly increased the aboweground biomass and shrub density in shrublands but had no sigmificant effect on shrub richness and ecasystem multifunctionality(EMF),indicating that acid deposition had positive but weak ecological effects on dryland ecosystems.Community wd ghted mean of functional traits(representing the mass ratio hypothesis)correlated negatively with EMF,whereas both Rao's quadratic entropy(representing the niche complementarity hypothesis)and aboveground biomass(representing the vegetation quantity hypothesis)correlated positively but insignifcantly with EMF.These biodiversity-EMF relationships highlight the fragility and instability of drylands relative to forest ecasystems.Concuions:The findings from this study serve as important reference points to understand the ris of soil acidification in arid regions and its impacts on biodiversity-EMF relationships. 展开更多
关键词 soil acidification risk BIODIVERSITY Ecosystem multifunctionality Niche complementarity hypothesis Mass ratio hypothesis Vegetation quantity hypothesis
下载PDF
Effect of NaCl Concentration on the Cumulative Strain and Pore Distribution of Clay under Cyclic Loading
10
作者 Xinshan Zhuang Shunlei Xia Ruijie Pan 《Fluid Dynamics & Materials Processing》 EI 2024年第2期447-461,共15页
Clay,as the most common soil used for foundationfill,is widely used in various infrastructure projects.The phy-sical and mechanical properties of clay are influenced by the pore solution environment.This study uses a GD... Clay,as the most common soil used for foundationfill,is widely used in various infrastructure projects.The phy-sical and mechanical properties of clay are influenced by the pore solution environment.This study uses a GDS static/dynamic triaxial apparatus and nuclear magnetic resonance experiments to investigate the effects of cyclic loading on clay foundations.Moreover,the development of cumulative strain in clay is analyzed,and afitting model for cumulative plastic strain is introduced by considering factors such as NaCl solution concentration,con-solidation stress ratio,and cycle number.In particular,the effects of the NaCl solution concentration and con-solidation stress ratio on the pore distribution of the test samples before and after cyclic loading are examined,and the relationship between microscopic pore size and macroscopic cumulative strain is obtained accordingly.Our results show that as the consolidation stress ratio grows,an increasing number of large pores in the soil samples are transformed into small pores.As the NaCl solution concentration becomes higher,the number of small pores gradually decreases,while the number of large pores remains unchanged.Cyclic loading causes the disappearance of the large pores in the samples,and the average pore size before cyclic loading is posi-tively correlated with the axial cumulative strain after cyclic loading.The cumulative strain produced by the soil under cyclic loading is inversely proportional to the NaCl solution concentration and consolidation stress ratio. 展开更多
关键词 Geotechnical engineering CLAY cyclic loading nuclear magnetic resonance NaCl solution consolidation ratio accumulative strain
下载PDF
Efficient removal of Al(Ⅲ)and P507 from high concentration MgCl_(2)solution based on in-situ reaction strategy
11
作者 Qiang WANG Meng WANG +3 位作者 Zong-yu FENG Yong-qi ZHANG Xiao-wei HUANG Xiang-xin XUE 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第9期3042-3053,共12页
For a highly efficient recycling of a wastewater containing a high concentration of MgCl_(2),Al(Ⅲ)and P507 were scheduled to be removed in advance.In this study,the in-situ removal of Al(Ⅲ)and P507 from a high conce... For a highly efficient recycling of a wastewater containing a high concentration of MgCl_(2),Al(Ⅲ)and P507 were scheduled to be removed in advance.In this study,the in-situ removal of Al(Ⅲ)and P507 from a high concentration MgCl_(2)solution at different pH values and Al/P molar ratios was investigated.The results showed that P507 formed organic complexes of Al_(x)(OH)_y^(Z+)-P507 at pH of 2.0-4.0.At pH of 4.0-5.0,Al(Ⅲ)precipitated and transferred into Al(OH)_(3)with a flocculent amorphous morphology.Active sites on the Al(OH)_(3)surface enhanced the removal efficiency of P507.At pH of 6.0-6.5,Al(Ⅲ)and Mg(Ⅱ)formed layered crystalline Al(OH)_(3)and MgAl_(2)(OH)_(8with)small pore channels and fewer active sites,resulting in a reduced removal efficiency of P507.When the Al/P molar ratio exceeded 13 and the pH was between 4.0 and 5.0,the removal rates of both Al(Ⅲ)and P507 were higher than98%,while the concentration loss of Mg(Ⅱ)was only 0.2%-0.9%. 展开更多
关键词 in-situ removal AL(III) P507 MgCl_(2)solution pH Al/P molar ratio
下载PDF
Calcium-Magnesium Ca/Mg Ratios and Their Agronomic Implications for the Optimization of Phosphate Fertilization in Rainfed Rice Farming on Acidic Ferralsol in the Forest Zone of Ivory Coast
12
作者 Fernand G. Yao Brahima Kone +7 位作者 Franck M. L. Bahan Kouadio Amani Jean L. Essehi Mamadou B. Ouattara Konan E. B. Dibi Brou Kouame François Lompo Albert Yao-Kouame 《Open Journal of Soil Science》 2024年第1期81-96,共16页
This study is a contribution to improving rice productivity on acidic plateau soils of the tropical rainforest zone. It is based on taking into account the cationic balances of the soil in order to optimize the phosph... This study is a contribution to improving rice productivity on acidic plateau soils of the tropical rainforest zone. It is based on taking into account the cationic balances of the soil in order to optimize the phosphorus (P) nutrition of rice on these acidic soils, where this nutrient constitutes a limiting factor for agricultural production. Three (3) pot trials were conducted in Adiopodoumé in the forested south of Côte d’Ivoire. The interactive effects of calcium carbonate (0, 25, 50 and 75 kg Ca ha<sup>−1</sup>) and magnesium sulfate (0, 25, 50 and 75 kg Mg ha<sup>−1</sup>) were evaluated on the response of NERICA 5 rice at doses 0, 25, 50 and 75 kg P ha<sup>−1</sup> of natural phosphate from Togo, applied only once at the start of the experiment. Additional fertilizers of nitrogen (N) (100 kg N ha<sup>−1</sup>) and potassium (K) (50 kg KCl ha<sup>−1</sup>) were added to each of the tests in a split-plot device. The test results revealed a paddy production potential of approximately 3 to 5 t⋅ha<sup>−1</sup> for NERICA 5 on an acidic soil, under the effect of the interaction of P, Ca and Mg. The quadratic response of rice yield to the doses of these fertilizers would be more dependent on their balance, itself influenced by Ca nutrition. For the sustainability and maintenance of rice production in agro-ecology studied, it was recommended doses of 38 kg Ca ha<sup>−1</sup>, 34 kg Mg ha<sup>−1</sup> in a Ca/Mg ratio (1/1) with intakes of 41 kg P ha<sup>−1</sup>, overall in a ratio 1/1/1 (P/Ca/Mg) more favorable to the availability of free iron considered a guiding element of mineral nutrition. Thus, these promising results should be confirmed in a real environment for better management of the fertilization of rice cultivated on acidic plateau soils in Côte d’Ivoire. 展开更多
关键词 soil Acidity Ca/Mg ratios Phosphate Fertilization Rice Growing Ivory Coast
下载PDF
Dynamics of soil inorganic nitrogen and their responses to nitrogen additions in three subtropical forests, south China 被引量:12
13
作者 FANG Yun-ting ZHU Wei-xing +2 位作者 MO Jiang-ming ZHOU Guo-yi GUNDERSEN Per 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2006年第4期752-759,共8页
Three forests with different historical land-use, forest age, and species assemblages in subtropical China were selected to evaluate current soil N status and investigate the responses of soil inorganic N dynamics to ... Three forests with different historical land-use, forest age, and species assemblages in subtropical China were selected to evaluate current soil N status and investigate the responses of soil inorganic N dynamics to monthly ammonium nitrate additions. Results showed that the mature monsoon evergreen broadleaved forest that has been protected for more than 400 years exhibited an advanced soil N status than the pine (Pinus massoniana) and pine-broadleaf mixed forests, both originated from the 1930's clear-cut and pine plantation. Mature forests had greater extractable inorganic N pool, lower N retention capacity, higher inorganic N leaching, and higher soil C/N ratios. Mineral soil extractable NH4^+-N and NO3-N concentrations were significantly increased by experimental N additions on several sampling dates, but repeated ANOVA showed that the effect was not significant over the whole year except NH4^+-N in the mature forest. In contrast, inorganic N (both NH4^+-N and NO3^--N) in soil 20-cm below the surface was significantly elevated by the N additions. From 42% to 74% of N added was retained by the upper 20 cm soils in the pine and mixed forests, while 0%-70% was retained in the mature forest. Our results suggest that land-use history, forest age and species composition were likely to be some of the important factors that determine differing forest N retention responses to elevated N deposition in the study region. 展开更多
关键词 N deposition N saturation extractable inorganic N soil solution inorganic N subtropical China
下载PDF
Responses of plant community to the linkages in plant-soil C:N:P stoichiometry during secondary succession of abandoned farmlands,China 被引量:6
14
作者 LIU Weichao FU Shuyue +6 位作者 YAN Shengji REN Chengjie WU Shaojun DENG Jian LI Boyong HAN Xinhui YANG Gaihe 《Journal of Arid Land》 SCIE CSCD 2020年第2期215-226,共12页
Succession is one of the central themes of ecology;however,the relationship between aboveground plant communities and underground soils during secondary succession remains unclear.In this study,we investigated the com... Succession is one of the central themes of ecology;however,the relationship between aboveground plant communities and underground soils during secondary succession remains unclear.In this study,we investigated the composition of plant community,plant-soil C:N:P stoichiometry and their relationships during secondary succession after the abandonment of farmlands for 0,10,20,30,40 and 50 a in China,2016.Results showed that the composition of plant communities was most diverse in the farmlands after secondary succession for 20 and 50 a.Soil organic carbon and total nitrogen contents slightly decreased after secondary succession for 30 a,but both were significantly higher than those of control farmland(31.21%-139.10%and 24.24%-121.21%,respectively).Moreover,C:N ratios of soil and microbe greatly contributed to the changes in plant community composition during secondary succession of abandoned farmlands,explaining 35.70%of the total variation.Particularly,soil C:N ratio was significantly and positively related with the Shannon-Wiener index.This study provides the evidence of synchronous evolution between plant community and soil during secondary succession and C:N ratio is an important linkage between them. 展开更多
关键词 C:N ratio soil NUTRIENT PLANT community restoration LOESS HILLY region
下载PDF
Characteristics of Soil Organic Carbon, Total Nitrogen, and C/N Ratio in Chinese Apple Orchards 被引量:7
15
作者 Shunfeng Ge Haigang Xu +1 位作者 Mengmeng Ji Yuanmao Jiang 《Open Journal of Soil Science》 2013年第5期213-217,共5页
Soil organic carbon and nitrogen are used as indexes of soil quality assessment and sustainable land use management. At the same time, soil C/N ratio is a sensitive indicator of soil quality and for assessing the carb... Soil organic carbon and nitrogen are used as indexes of soil quality assessment and sustainable land use management. At the same time, soil C/N ratio is a sensitive indicator of soil quality and for assessing the carbon and nitrogen nutrition balance of soils. We studied the characteristics of soil organic carbon and total nitrogen by investigating a large number of apple orchards in major apple production areas in China. High apple orchard soil organic carbon content was observed in the provinces of Heilongjiang, Xinjiang, and Yunnan, whereas low content was found in the provinces of Shandong, Henan, Hebei, and Shaanxi, with the values ranging between 6.44 and 7.76 g·kg-1. Similar to soil organic carbon, soil total nitrogen content also exhibited obvious differences in the 12 major apple producing provinces. Shandong apple orchard soil had the highest total nitrogen content (1.26 g·kg-1), followed by Beijing (1.23 g·kg-1). No significant difference was noted between these two regions, but their total nitrogen content was significantly higher than the other nine provinces, excluding Yunnan. The soil total nitrogen content for Xinjiang, Heilongjiang, Hebei, Henan, and Gansu was between 0.87 and 1.03 g·kg-1, which was significantly lower than that in Shandong and Beijing, but significantly higher than that in Liaoning, Shanxi, and Shaanxi. Six provinces exhibited apple orchard soil C/N ratio higher than 10, including Heilongjiang (15.42), Xinjiang (13.38), Ningxia (14.45), Liaoning (12.24), Yunnan (11.03), and Gansu (10.63). The soil C/N ratio was below 10 in the remaining six provinces, in which the highest was found in Shaanxi (9.47), followed by Beijing (8.98), Henan (7.99), and Shanxi (7.62), and the lowest was found in Hebei (6.80) and Shandong (6.05). Therefore, the improvement of soil organic carbon should be given more attention to increase the steady growth of soil C/N ratio. 展开更多
关键词 CHINESE APPLE ORCHARD soil ORGANIC Carbon total Nitrogen C/N ratio
下载PDF
Solid-solution partitioning of arsenic(As) in the paddy soil profiles in Chengdu Plain,Southwest China 被引量:2
16
作者 Xiaoyan Yang Qingye Hou +2 位作者 Zhongfang Yang Xin Zhang Yijun Hou 《Geoscience Frontiers》 CAS 2012年第6期901-909,共9页
To predict the long-term behavior of arsenic (As) in soil profiles, the solid-solution partitioning of As was studied in four paddy soil profiles obtained from agricultural areas in Chengdu Plain, Southwest China. P... To predict the long-term behavior of arsenic (As) in soil profiles, the solid-solution partitioning of As was studied in four paddy soil profiles obtained from agricultural areas in Chengdu Plain, Southwest China. Paddy soil profile samples were collected and soil solution samples were extracted. Total As contents in soil solution and soil solid were analyzed, along with the soil solid phase properties. The As in soil solu- tion was significantly higher in the upper layer (0--20 cm) and had a definite tendency to decrease towards 40 cm regardless of the sampling locations. When the concentration of arsenic in soil solution decreased, its content in solid phase increased. Field-based partition coefficient (Kd) for As was determined by calculating the ratio of the amount of As in the soil solid phase to the As concentration in the soil solution. Kj values varied widely in vertical samples and correlated well with soil pH, total organic carbon (TOC) and total As. The results of this study would be useful for evaluating the accumulation trends of hrsenic in soil profiles and in improving the management of the agricultural soils. 展开更多
关键词 soil profiles Arsenic (As) soil solution Partition coefficient (Kd)Geochemistry
下载PDF
Factors influencing accuracy of free swelling ratio of expansive soil 被引量:2
17
作者 WANG Liang-liang WANG Zhao-teng +3 位作者 DING Zhi-ping LIN Yu-liang LEI Xiao-qin LIU Zhi-jun 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第5期1653-1662,共10页
Many geotechnical structures,such as the subgrade of high-speed railway,are extremely sensitive to micro deformations.As one of the most commonly used indexes in China to evaluate the potential swelling level of expan... Many geotechnical structures,such as the subgrade of high-speed railway,are extremely sensitive to micro deformations.As one of the most commonly used indexes in China to evaluate the potential swelling level of expansive soils,the effectiveness and accuracy of free swelling ratio should be highly required.However,due to the deficiency of geotechnical test regulations for the free swelling ratio test,non-negligible variation difference is often observed among the test results of the same type of soil samples.Thus,a series of laboratory tests are conducted to figure out the influences of soil particle size,initial soil temperature,and wet-dry circulation on the free swelling ratio of expansive soils.The results show that the initial soil temperature exerts an obvious influence on free swelling ratio and a relative weak influence on soil mass of expansive soil with the micro soil particle size(d<0.075 mm),and the correlation becomes unclear when soil particle size is within the range of 0.075 mm≤d<0.500 mm.A larger particle size of expansive soils induces a larger free swelling ratio and soil mass in the soil measuring cup regardless of initial soil temperature.However,the enlarging amplitude decreases as the particle size of expansive soils increases.There is a progressive enlargement of free swelling ratio at the first two wet-dry cycles and then it attenuates gradually when the number of wetdry cycles further increases. 展开更多
关键词 free swelling ratio particle size soil temperature wet-dry circulation expansive soil
下载PDF
Seasonal Evolution of the Rhizosphere Effect on Major and Trace Elements in Soil Solutions of Norway Spruce (<i>Picea abies Karst</i>) and Beech (<i>Fagus sylvatica</i>) in an Acidic Forest Soil 被引量:2
18
作者 Christophe Calvaruso Christelle Collignon +1 位作者 Antoine Kies Marie-Pierre Turpault 《Open Journal of Soil Science》 2014年第9期323-336,共14页
In low-nutrient ecosystems such as forests developed on acidic soil, the main limiting factor for plant growth is the availability of soil nutrients. The aim of this study was to investigate in a temperate forest: 1) ... In low-nutrient ecosystems such as forests developed on acidic soil, the main limiting factor for plant growth is the availability of soil nutrients. The aim of this study was to investigate in a temperate forest: 1) the influence of the rhizosphere processes on the availability of nutrients and trace elements during one year period and 2) the seasonal evolution of this rhizosphere effect. Bulk soil and rhizosphere were collected in organo-mineral and mineral horizons of an acidic soil during autumn, winter, and spring under Norway spruce (Picea abies Karst) and beech (Fagus sylvatica). Soil solutions were extracted by soil centrifugation. Rhizosphere solutions were enriched in K, and in Ca, Mg, and Na (principally in spring) compared to those of the bulk soil. Our study reveals seasonal variations of the rhizosphere effect for Ca, Mg, and Na under both species, i.e., higher enrichment of the rhizosphere solution in spring as compared with that in autumn and winter. An enrichment of the rhizosphere solutions was also observed for trace elements regardless of the season under both species in the mineral horizon, only. In contrast, seasonal variations of the rhizosphere effect for the trace elements were observed in the solutions of the organomineral horizon under beech, i.e., enrichment in autumn and depletion in winter. This study demonstrates that rhizosphere biological activities significantly increase nutrient bioavailability during the growth period. These complex interactions between roots, microbial communities and soils are a key-process that supports tree nutrition in nutrient-poor forest soils. This research also reveals that rhizosphere processes a) occur throughout the year, even in winter, and b) influence differently the dynamics of nutrients and trace elements in the root vicinity of the organo-mineral horizon. 展开更多
关键词 Major and Trace Elements RHIZOSPHERE Processes soil solution Seasonal Variations Tree Nutrition
下载PDF
Influence of variables related to soil weathering on the geomechanical performance of tropical soils 被引量:1
19
作者 Rodrigo Cesar Pierozan Gregorio Luís Silva Araújo +1 位作者 Ennio Marques Palmeira Celso Romanel 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第9期2423-2440,共18页
This paper presents an experimental and analytical investigation of the influence of variables related to soil weathering on the geomechanical performance of sand-silt mixtures containing lateritic soils,i.e.intensely... This paper presents an experimental and analytical investigation of the influence of variables related to soil weathering on the geomechanical performance of sand-silt mixtures containing lateritic soils,i.e.intensely weathered tropical soils with the influence of interparticle bonding.The sand-silt mixtures containing different relative proportions between uniform sand and lateritic soil were produced,and geomechanical soil characterization tests were performed.Based on the results,a transition from a primarily coarse-to a fine-grained prevailing soil structure was found to cause considerable impact on the geomechanical performance of these soils,as evidenced by design variables related to soil mineralogy and size distribution characteristics.Specifically,fines contents of both individual soil particles and soil aggregations were found to correlate with experimental results,while the relative proportion between sesquioxides(aluminum,and iron oxides),and silica,i.e.sesquioxide-silica ratios(SSR^(-1)),facilitated estimates concerning changes in geomechanical performance.Finally,the application of the sandsilt mixtures containing lateritic soil on soil walls reinforced with polymeric strips was also evaluated,further emphasizing the potential advantages of adopting variables related to soil weathering on design guidelines concerning tropical soils. 展开更多
关键词 Sesquioxides-silica ratio Tropical soils Sand-silt mixtures Lateritic soil Reinforced soil walls
下载PDF
Long-term light grazing does not change soil organic carbon stability and stock in biocrust layer in the hilly regions of drylands 被引量:1
20
作者 MA Xinxin ZHAO Yunge +4 位作者 YANG Kai MING Jiao QIAO Yu XU Mingxiang PAN Xinghui 《Journal of Arid Land》 SCIE CSCD 2023年第8期940-959,共20页
Livestock grazing is the most extensive land use in global drylands and one of the most extensive stressors of biological soil crusts(biocrusts).Despite widespread concern about the importance of biocrusts for global ... Livestock grazing is the most extensive land use in global drylands and one of the most extensive stressors of biological soil crusts(biocrusts).Despite widespread concern about the importance of biocrusts for global carbon(C)cycling,little is known about whether and how long-term grazing alters soil organic carbon(SOC)stability and stock in the biocrust layer.To assess the responses of SOC stability and stock in the biocrust layer to grazing,from June to September 2020,we carried out a large scale field survey in the restored grasslands under long-term grazing with different grazing intensities(represented by the number of goat dung per square meter)and in the grasslands strictly excluded from grazing in four regions(Dingbian County,Shenmu City,Guyuan City and Ansai District)along precipitation gradient in the hilly Loess Plateau,China.In total,51 representative grassland sites were identified as the study sampling sites in this study,including 11 sites in Guyuan City,16 sites in Dingbian County,15 sites in Shenmu City and 9 sites in Ansai District.Combined with extensive laboratory analysis and statistical analysis,at each sampling site,we obtained data on biocrust attributes(cover,community structure,biomass and thickness),soil physical-chemical properties(soil porosity and soil carbon-to-nitrogen ratio(C/N ratio)),and environmental factors(mean annual precipitation,mean annual temperature,altitude,plant cover,litter cover,soil particle-size distribution(the ratio of soil clay and silt content to sand content)),SOC stability index(SI)and SOC stock(SOCS)in the biocrust layer,to conduct this study.Our results revealed that grazing did not change total biocrust cover but markedly altered biocrust community structure by reducing plant cover,with a considerable increase in the relative cover of cyanobacteria(23.1%)while a decrease in the relative cover of mosses(42.2%).Soil porosity and soil C/N ratio in the biocrust layer under grazing decreased significantly by 4.1%–7.2%and 7.2%–13.3%,respectively,compared with those under grazing exclusion.The shifted biocrust community structure ultimately resulted in an average reduction of 15.5%in SOCS in the biocrust layer under grazing.However,compared with higher grazing(intensity of more than 10.00 goat dung/m2),light grazing(intensity of 0.00–10.00 goat dung/m2 or approximately 1.20–2.60 goat/(hm2•a))had no adverse effect on SOCS.SOC stability in the biocrust layer remained unchanged under long-term grazing due to the offset between the positive effect of the decreased soil porosity and the negative effect of the decreased soil C/N ratio on the SOC resistance to decomposition.Mean annual precipitation and soil particle-size distribution also regulated SOC stability indirectly by influencing soil porosity through plant cover and biocrust community structure.These findings suggest that proper grazing might not increase the CO_(2) release potential or adversely affect SOCS in the biocrust layer.This research provides some guidance for proper grazing management in the sustainable utilization of grassland resources and C sequestration in biocrusts in the hilly regions of drylands. 展开更多
关键词 biological soil crusts livestock grazing soil organic carbon biocrust community structure soil carbon-to-nitrogen ratio dryland ecosystems Loess Plateau
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部