The effects of feed gas flow rate and operating current on the electrical characteristics and dynamic behavior of a rotating gliding arc (RGA) plasma codriven by a magnetic field and tangential flow were investigate...The effects of feed gas flow rate and operating current on the electrical characteristics and dynamic behavior of a rotating gliding arc (RGA) plasma codriven by a magnetic field and tangential flow were investigated.The operating current has been shown to significantly affect the time-resolved voltage waveforms of the discharge,particularly at flow rate =21 min^-1.When the current was lower than 140 mA,sinusoidal waveforms with regular variation periods of 13.5-17.0 ms can be observed (flow rate =21 min^-1).The restrike mode characterized by serial sudden drops of voltage appeared under all studied conditions.Increasing the flow rate from 8 to 121 min^-1 (at the same current) led to a shift of arc rotation mode which would then result in a significant drop of discharge voltage (around 120-200 V).For a given flow rate,the reduction of current resulted in a nearly linear increase of voltage.展开更多
The experiments of preparation of Al Si alloys by electrothermal process were carried out respectively in 20 kW, 100 kW and 1 800 kW DC arc furnaces. The mechanism of furnace bottom rise was studied. It was found that...The experiments of preparation of Al Si alloys by electrothermal process were carried out respectively in 20 kW, 100 kW and 1 800 kW DC arc furnaces. The mechanism of furnace bottom rise was studied. It was found that the bottom rise can be divided into three types, including the low bottom temperature, abnormal reducing reaction and carbide deposition. The furnace bottom rise is related to the carbon ratio of the briquet, the heating speed of the briquet and the parameters and operation of furnace.展开更多
The effect of various process parameters like welding current, torch height, welding speed and plasma gas flow rate on front melting width, back melting width and weld reinforcement of plasma arc welding on aluminum a...The effect of various process parameters like welding current, torch height, welding speed and plasma gas flow rate on front melting width, back melting width and weld reinforcement of plasma arc welding on aluminum alloy is investigated by using factorial design approach. Variable polarity plasma arc welding is used for welding aluminum alloy. Trail experiments are conducted and the limits of the input process parameters are decided. Two levels and four input process parameters are chosen and experiments are conducted as per typical design matrix considering full factorial design. Total sixteen experiments are conducted and output responses are measured. The coefficients are calculated by using regression analysis and the mathematical models are constructed. By using the mathematical models the main and interaction effect of various process parameters on weld quality is studied.展开更多
综述了涉及工程应用的冷丝熔化极气体保护焊(Cold wire gas metal arc welding,CW-GMAW)熔滴过渡形态特征。结果表明,在大电流、强规范、富氩混合气体保护下,CW-GMAW工艺的熔滴过渡形态呈喷射过渡;当电流较小、电弧电压较低时,可能为滴...综述了涉及工程应用的冷丝熔化极气体保护焊(Cold wire gas metal arc welding,CW-GMAW)熔滴过渡形态特征。结果表明,在大电流、强规范、富氩混合气体保护下,CW-GMAW工艺的熔滴过渡形态呈喷射过渡;当电流较小、电弧电压较低时,可能为滴状过渡,甚至在弧压很低时,呈现短路过渡形态。该工艺电弧发生偏向冷丝的位移,弧长变短甚至发生短路,与冷丝送进速率比增高及冷丝在电弧中产生大量金属蒸气时弧柱电阻下降有关。在具有富氩混合保护气体的相同工艺参数下,CWGMAW转变电流比GMAW降低了4%~7%。焊接工艺参数对CW-GMAW和GMAW工艺熔滴过渡形态的影响规律大致相近,但前者因涉及冷丝送进速率比和电极焊丝送进速度,以及它们的匹配等,使焊接电流的影响更为复杂。展开更多
基金supported by National Natural Science Foundation of China(51576174)
文摘The effects of feed gas flow rate and operating current on the electrical characteristics and dynamic behavior of a rotating gliding arc (RGA) plasma codriven by a magnetic field and tangential flow were investigated.The operating current has been shown to significantly affect the time-resolved voltage waveforms of the discharge,particularly at flow rate =21 min^-1.When the current was lower than 140 mA,sinusoidal waveforms with regular variation periods of 13.5-17.0 ms can be observed (flow rate =21 min^-1).The restrike mode characterized by serial sudden drops of voltage appeared under all studied conditions.Increasing the flow rate from 8 to 121 min^-1 (at the same current) led to a shift of arc rotation mode which would then result in a significant drop of discharge voltage (around 120-200 V).For a given flow rate,the reduction of current resulted in a nearly linear increase of voltage.
文摘The experiments of preparation of Al Si alloys by electrothermal process were carried out respectively in 20 kW, 100 kW and 1 800 kW DC arc furnaces. The mechanism of furnace bottom rise was studied. It was found that the bottom rise can be divided into three types, including the low bottom temperature, abnormal reducing reaction and carbide deposition. The furnace bottom rise is related to the carbon ratio of the briquet, the heating speed of the briquet and the parameters and operation of furnace.
文摘The effect of various process parameters like welding current, torch height, welding speed and plasma gas flow rate on front melting width, back melting width and weld reinforcement of plasma arc welding on aluminum alloy is investigated by using factorial design approach. Variable polarity plasma arc welding is used for welding aluminum alloy. Trail experiments are conducted and the limits of the input process parameters are decided. Two levels and four input process parameters are chosen and experiments are conducted as per typical design matrix considering full factorial design. Total sixteen experiments are conducted and output responses are measured. The coefficients are calculated by using regression analysis and the mathematical models are constructed. By using the mathematical models the main and interaction effect of various process parameters on weld quality is studied.
文摘综述了涉及工程应用的冷丝熔化极气体保护焊(Cold wire gas metal arc welding,CW-GMAW)熔滴过渡形态特征。结果表明,在大电流、强规范、富氩混合气体保护下,CW-GMAW工艺的熔滴过渡形态呈喷射过渡;当电流较小、电弧电压较低时,可能为滴状过渡,甚至在弧压很低时,呈现短路过渡形态。该工艺电弧发生偏向冷丝的位移,弧长变短甚至发生短路,与冷丝送进速率比增高及冷丝在电弧中产生大量金属蒸气时弧柱电阻下降有关。在具有富氩混合保护气体的相同工艺参数下,CWGMAW转变电流比GMAW降低了4%~7%。焊接工艺参数对CW-GMAW和GMAW工艺熔滴过渡形态的影响规律大致相近,但前者因涉及冷丝送进速率比和电极焊丝送进速度,以及它们的匹配等,使焊接电流的影响更为复杂。