Paleogenomics is a discipline in which the extraction and analysis of DNA from ancient biological remains are studied to understand the evolutionary history of past organisms.Research on this topic has revealed the ev...Paleogenomics is a discipline in which the extraction and analysis of DNA from ancient biological remains are studied to understand the evolutionary history of past organisms.Research on this topic has revealed the evolutionary history of humans and other species,traced human migrations and genetic changes,and investigated ancient diseases and environmental influences due to its uniqueness.This paper reviews the scientific and technological history of the development of paleogenomics,including the molecular cloning era,the polymerase chain reaction(PCR)technique era,the genomics era,and the bio-data analysis era.This field explores the key technological development processes and effects of significant scientific discoveries,ranging from gene cloning technology and sequencing technology to breakthroughs and applications in big data analysis,addressing challenges such as sample contamination and trace collection analysis in paleogenomics research.展开更多
The glacier of Mt.Kilimanjaro has been on retreat situation for over a century and no much attention has been paid on its persistence.Today glaciers cover a tiny fraction relative to their extent during 1880s when Kib...The glacier of Mt.Kilimanjaro has been on retreat situation for over a century and no much attention has been paid on its persistence.Today glaciers cover a tiny fraction relative to their extent during 1880s when Kibo alone had 50 times more ice than today.This might be due to poor linkage of its significance to science and human environmental conservation.This notion has been proved negative by most researchers who have been conducting research on tropical展开更多
In this paper, evolutions of ruled surfaces generated by the quasi normal and quasi binormal vector fields of space curve are presented. These evolutions of the ruled surfaces depend on the evolutions of their directr...In this paper, evolutions of ruled surfaces generated by the quasi normal and quasi binormal vector fields of space curve are presented. These evolutions of the ruled surfaces depend on the evolutions of their directrix using quasi frame along a space curve.展开更多
■The twentieth century saw more technological invention and creation than any other period in the proceeding two thousand years.As a result,human activity has flourished and our lives have become richer and more colo...■The twentieth century saw more technological invention and creation than any other period in the proceeding two thousand years.As a result,human activity has flourished and our lives have become richer and more colorful than ever.展开更多
The competition among modem enterprises has been converted from products to capability. As the basis of competition, production system can't win the market unless it takes advantage of its capability in competition. ...The competition among modem enterprises has been converted from products to capability. As the basis of competition, production system can't win the market unless it takes advantage of its capability in competition. Here in this article, the evolutionary rules of production system contributing to the establishment, renovation, reform, invention and promotion of the production of modem enterprises are observed.展开更多
As it developed to today, Volleyball evolved from a game for the purpose of entertainment initially to a competitive Olympic sport. Through various periods of Volleyball development, we can find that when some old rul...As it developed to today, Volleyball evolved from a game for the purpose of entertainment initially to a competitive Olympic sport. Through various periods of Volleyball development, we can find that when some old rules can not adapt to the volleyball development, it will lead to changes in the rules, it is this continuous improvement and change that inject vigor to volleyball and bring vitality, and promote the innovative development of volleyball skills and tactics, in turn the constant enrichment and development of volleyball skills and tactics required the game rules constantly revised and improved, as promoted and restricted each other, analysis of the mutual relationship between volleyball game rules and technology or tactics can not only in favor of volleyball skills, like evolving tactics, but also beneficial to volleyball competition rules maturity. Development of Volleyball Rules has been the inexhaustible power to development of sports project, researching of the competition rules has been recognized as a major breakthrough in the field of sports in various projects to promote sports development. Volleyball Rules - from the generated moment until today, has evolved many times. This evolution is not blind, random; it follows its inherent rule. A contest rule, which has a close relationship with the development of sports technology, are the basic norms and principles of sports game. They promote each other, while mutually restraint. Analysis of the relationship between volleyball competition rules and the technology or tactics, is not only conducive to the development of athletic skills, but also to the maturity of competition rules.展开更多
Purpose:The goal of this study is to analyze the relationship between funded and unfunded papers and their citations in both basic and applied sciences.Design/methodology/approach:A power law model analyzes the relati...Purpose:The goal of this study is to analyze the relationship between funded and unfunded papers and their citations in both basic and applied sciences.Design/methodology/approach:A power law model analyzes the relationship between research funding and citations of papers using 831,337 documents recorded in the Web of Science database.Findings:The original results reveal general characteristics of the diffusion of science in research fields:a)Funded articles receive higher citations compared to unfunded papers in journals;b)Funded articles exhibit a super-linear growth in citations,surpassing the increase seen in unfunded articles.This finding reveals a higher diffusion of scientific knowledge in funded articles.Moreover,c)funded articles in both basic and applied sciences demonstrate a similar expected change in citations,equivalent to about 1.23%,when the number of funded papers increases by 1%in journals.This result suggests,for the first time,that funding effect of scientific research is an invariant driver,irrespective of the nature of the basic or applied sciences.Originality/value:This evidence suggests empirical laws of funding for scientific citations that explain the importance of robust funding mechanisms for achieving impactful research outcomes in science and society.These findings here also highlight that funding for scientific research is a critical driving force in supporting citations and the dissemination of scientific knowledge in recorded documents in both basic and applied sciences.Practical implications:This comprehensive result provides a holistic view of the relationship between funding and citation performance in science to guide policymakers and R&D managers with science policies by directing funding to research in promoting the scientific development and higher diffusion of results for the progress of human society.展开更多
A series of plane-strain physical model experiments are carried out to study the spatiotemporal evolution rule of rocks fracture surrounding gob-side roadway, which is subjected to the pressure induced by the mining p...A series of plane-strain physical model experiments are carried out to study the spatiotemporal evolution rule of rocks fracture surrounding gob-side roadway, which is subjected to the pressure induced by the mining process. The digital photogrammetry technology and large deformation analysis method are applied to measure the deformation and fracture of surrounding rocks. The experimental results indicate that the deformation and fracture of coal pillars are the cause to the instability and failure of the surrounding rocks. The spatiotemporal evolution rule of the rock deformation and fracture surrounding gob-side roadway is obtained. The coal pillar and the roof near coal pillar should be strengthened in support design. The engineering application results also can provide a useful guide that the combined support with wire meshes, beam, anchor bolt and cable is an effective method.展开更多
In this paper, an improved hybrid differential evolution-estimation of distribution algorithm (IHDE-EDA) is proposed for nonlinear programming (NLP) and mixed integer nonlinear programming (MINLP) models in engineerin...In this paper, an improved hybrid differential evolution-estimation of distribution algorithm (IHDE-EDA) is proposed for nonlinear programming (NLP) and mixed integer nonlinear programming (MINLP) models in engineering optimization fields. In order to improve the global searching ability and convergence speed, IHDE-EDA takes full advantage of differential information and global statistical information extracted respectively from differential evolution algorithm and annealing mechanism-embedded estimation of distribution algorithm. Moreover, the feasibility rules are used to handle constraints, which do not require additional parameters and can guide the population to the feasible region quickly. The effectiveness of hybridization mechanism of IHDE-EDA is first discussed, and then simulation and comparison based on three benchmark problems demonstrate the efficiency, accuracy and robustness of IHDE-EDA. Finally, optimization on an industrial-size scheduling of two-pipeline crude oil blending problem shows the practical applicability of IHDE-EDA.展开更多
As one of the eight Taihang passes,Fukou Xing is located in the south of the Taihang Mountains and has been an important passage for Shanxi and Hebei in history.Taking traditional settlements in Fukou Xing Region as r...As one of the eight Taihang passes,Fukou Xing is located in the south of the Taihang Mountains and has been an important passage for Shanxi and Hebei in history.Taking traditional settlements in Fukou Xing Region as research object,using the Advanced Spaceborne Thermal Emission and Reflection Radiometer(ASTER) Global Digital Elevation Model(GDEM)(remote sensing measurement of elevation data) and GIS platform,this paper made a quantitative study on traditional settlement space in mountain environment of this region,and studied space parameters including elevation,terrain,aspect,and boundary,observed and summarized the spatial features.In addition,based on the local chronicles of Ming and Qing dynasties,it mutually verified the quantitative conclusions and qualitative cognition,analyzed the evolution rules of traditional settlements in Fukou Xing region,and finally obtained new understandings of spatial features of traditional settlements in Fukou Xing region.展开更多
The paper posits that kin sociality and eusociality are derived from the handicap-care principles based on the need-based care to the handicappers from the caregivers for the self-interest of the caregivers. In this p...The paper posits that kin sociality and eusociality are derived from the handicap-care principles based on the need-based care to the handicappers from the caregivers for the self-interest of the caregivers. In this paper, handicap is defined as the difficulty to survive and reproduce independently. Kin sociality is derived from the childhood handicap-care principle where the children are the handicapped children who receive the care from the kin caregivers in the inclusive kin group to survive. The caregiver gives care for its self-interest to reproduce its gene. The individual’s gene of kin sociality contains the handicapped childhood and the caregiving adulthood. Eusociality is derived from the adulthood handicap-care principle where responsible adults are the handicapped adults who give care and receive care at the same time in the interdependent eusocial group to survive and reproduce its gene. Queen bees reproduce, but must receive care from worker bees that work but must rely on queen bees to reproduce. A caregiver gives care for its self-interest to survive and reproduce its gene. The individual’s gene of eusociality contains the handicapped childhood-adulthood and the caregiving adulthood. The chronological sequence of the sociality evolution is individual sociality without handicap, kin sociality with handicapped childhood, and eusociality with handicapped adulthood. Eusociality in humans is derived from bipedalism and the mixed habitat. The chronological sequence of the eusocial human evolution is 1) the eusocial early hominins with bipedalism and the mixed habitat, 2) the eusocial early Homo species with bipedalism, the larger brain, and the open habitat, 3) the eusocial late Homo species with bipedalism, the largest brain, and the unstable habitat, and 4) extended eusocial Homo sapiens with bipedalism, the shrinking brain, omnipresent imagination, and the harsh habitat. The omnipresence of imagination in human culture converts eusociality into extended eusociality with both perception and omnipresent imagination.展开更多
The rock mass engineering system (RMES) basically consists ofrock mass engineering (RME), water system and surroundingecological environments, etc. The RMES is characterized by nonlinearity,occurrence of chaos and...The rock mass engineering system (RMES) basically consists ofrock mass engineering (RME), water system and surroundingecological environments, etc. The RMES is characterized by nonlinearity,occurrence of chaos and self-organization (Tazaka, 1998;Tsuda, 1998; Kishida, 2000). From construction to abandonmentof RME, the RMES will experience four stages, i.e. initial phase,development phase, declining phase and failure phase. In thiscircumstance, the RMES boundary conditions, structural safetyand surrounding environments are varied at each phase, so arethe evolution characteristics and disasters (Wang et al., 2014).展开更多
In a famous book,Johann Huizinga referred to Homo sapiens(“thinkers”)as Homo ludens(“play? ers”). Here I try to foster an appreciation of the importance of play in the learning process,not only during childhood bu...In a famous book,Johann Huizinga referred to Homo sapiens(“thinkers”)as Homo ludens(“play? ers”). Here I try to foster an appreciation of the importance of play in the learning process,not only during childhood but continuously afterwards. Play is a major biological incentive for generating pleasure during learn? ing and helps to accept the challenges and to overcome the difficulties attached to any intellectual effort or work. Play is rooted in the randomness of interactions between participants,with chance channeled by the rules of the game. Parallels with Darwinian evolution based on chance(randomness of mutations and changes in condi? tions)and necessity(the physico-chemical rules)are made. The development of science-based challenges or computer games and their roles in citizen-oriented science are also described. Some basic concepts of RNA structural biology illustrating the text are explained. “Play is the work of childhood”,Jean Piaget. “Every game has its rules”,Johann Huizinga.展开更多
This paper analyzes the effect of subgroup size on the x-bar chart characteristics using sample influx (SIF) into forensic science laboratory (FSL). The characteristics studied include changes in out-or-control points...This paper analyzes the effect of subgroup size on the x-bar chart characteristics using sample influx (SIF) into forensic science laboratory (FSL). The characteristics studied include changes in out-or-control points (OCP), upper control limit UCLx, and zonal demarcations. Multi-rules were used to identify the number of out-of-control-points, Nocp as violations using five control chart rules applied separately. A sensitivity analysis on the Nocp was applied for subgroup size, k, and number of sigma above the mean value to determine the upper control limit, UCLx. A computer code was implemented using a FORTRAN code to create x-bar control-charts and capture OCP and other control-chart characteristics with increasing k from 2 to 25. For each value of k, a complete series of average values, Q(p), of specific length, Nsg, was created from which statistical analysis was conducted and compared to the original SIF data, S(t). The variation of number of out-of-control points or violations, Nocp, for different control-charts rules with increasing k was determined to follow a decaying exponential function, Nocp = Ae–α, for which, the goodness of fit was established, and the R2 value approached unity for Rule #4 and #5 only. The goodness of fit was established to be the new criteria for rational subgroup-size range, for Rules #5 and #4 only, which involve a count of 6 consecutive points decreasing and 8 consecutive points above the selected control limit (σ/3 above the grand mean), respectively. Using this criterion, the rational subgroup range was established to be 4 ≤ k ≤ 20 for the two x-bar control chart rules.展开更多
It is not too much to say that molecular biology, including genome research, has progressed based on the determination of nucleotide or amino acid sequences. However, these ap-proaches are limited to the analysis of r...It is not too much to say that molecular biology, including genome research, has progressed based on the determination of nucleotide or amino acid sequences. However, these ap-proaches are limited to the analysis of relatively small numbers of the same genes among spe-cies. On the other hand, by graphical presenta-tion of the ratios of the numbers of amino acids present to the total numbers of amino acids presumed from the target gene(s) or genome or those of the numbers of nucleotides present to the total numbers of nucleotides calculated from the target gene(s) or genome, we can readily draw conclusions from extraordinarily huge data sets integrated by human intelli-gence. 1) Assuming polymerization of amino acids or nucleotides in a simulation analysis based on a random choice, proteins were formed by simple amino acid polymerization, while nucleotide polymerization to form nucleic acids encoding specific proteins needed certain specific control. These results proposed that protein formation chronologically preceded codon formation during the establishment of primitive life forms. In the prebiotic phase, amino acid composition was a dominant factor that determined protein characteristics;the “Amino Acid World”. 2) The genome is constructed homogeneou- sly from putative small units displaying similar codon usages and coding for similar amino acid compositions;the unit is a gene assembly en-coding 3,000 - 7,000 amino acid residues and this unit size is independent not only of genome size, but also of species. 3) In codon evolution, all nucleotide alterna-tions are correlated, not only in coding regions, but also in non-coding regions;the correlations can be expressed by linear formulas;y = ax + b, where “y” and “x” represent nucleotide con-tents, and “a” and “b” are constant. 4) The basic pattern of cellular amino acid compositions obtained from whole cell lysates is conserved from bacteria to Homo sapiens, and resembles that calculated from complete genomes. This basic pattern is characterized by a “star-shape” that changes slightly among species, and changes in amino acid composi-tion seem to reflect biological evolution. 5) Organisms can essentially be classified according to two codon patterns. Biological evolution due to nucleotide sub-stitutions can be expressed by simple linear formulas based on mathematical principles, while natural selection must affect species pre- servation after nucleotide alternations. There-fore, although Darwin’s natural selection is not directly involved in nucleotide alternations, it contributes obviously to the selection of nu-cleotide alternations. Thus, Darwin’s natural selection is doubtless an important factor in biological evolution.展开更多
The ratios of amino acid to the total amino acids and those of nucleotides to the total nucleotides in genes or genomes are suitable indexes to compare whole gene or genome characteristics based on the large number of...The ratios of amino acid to the total amino acids and those of nucleotides to the total nucleotides in genes or genomes are suitable indexes to compare whole gene or genome characteristics based on the large number of nucleotides rather than their sequences. As these ratios are strictly calculated from nucleotide sequences, the values are independent of experimental errors. In the present mini-review, the following themes are approached according to the ratios of amino acids and nucleotides to their total numbers in the genome: prebiotic evolution, the chronological precedence of protein and codon formations, genome evolution, Chargaff’s second pa- rity rule, and the origins of life. Amino acid formation might have initially occurred during pre- biotic evolution, the “amino acid world”, and amino acid polymerization might chronologically precede codon formation at the end of prebiotic evolution. All nucleotide alterations occurred synchronously over the genome during biolo- gical evolution. After establishing primitive lives, all nucleotide alterations have been governed by linear formulae in nuclear and organelle genomes consisting of the double-stranded DNA. When the four nucleotide contents against each individual nucleotide content in organelles are expressed by four linear regression lines representing the diagonal lines of a 0.5 square – the “Diagonal Genome Universe”, evolution obeys Chargaff’s second parity rule. The fact that linear regression lines intersect at a single point su- ggests that all species originated from a single life source.展开更多
Prime numbers are the integers that cannot be divided exactly by another integer other than one and itself. Prime numbers are notoriously disobedient to rules: they seem to be randomly distributed among natural number...Prime numbers are the integers that cannot be divided exactly by another integer other than one and itself. Prime numbers are notoriously disobedient to rules: they seem to be randomly distributed among natural numbers with no laws except that of chance. Questions about prime numbers have been perplexing mathematicians over centuries. How to efficiently predict greater prime numbers has been a great challenge for many. Most of the previous studies focus on how many prime numbers there are in certain ranges or patterns of the first or last digits of prime numbers. Honestly, although these patterns are true, they help little with accurately predicting new prime numbers, as a deviation at any digit is enough to annihilate the primality of a number. The author demonstrates the periodicity and inter-relationship underlying all prime numbers that makes the occurrence of all prime numbers predictable. This knowledge helps to fish all prime numbers within one net and will help to speed up the related research.展开更多
Since the 5-steps rule was proposed in 2011, it has been widely used in many areas of molecular biology, both theoretical and experimental. It can be even used to deal with the commercial problems and bank systems, as...Since the 5-steps rule was proposed in 2011, it has been widely used in many areas of molecular biology, both theoretical and experimental. It can be even used to deal with the commercial problems and bank systems, as well as material science systems. Just like the machine-learning algorithms, it is the jade for nearly all the statistical systems.展开更多
The fundamental theoretical framework of the Multisphere Tectonics of the Earth System is as follows:(1)It intends to extend the geotectonic studies from the crustal and lithospheric tectonics to the multisphere tecto...The fundamental theoretical framework of the Multisphere Tectonics of the Earth System is as follows:(1)It intends to extend the geotectonic studies from the crustal and lithospheric tectonics to the multisphere tectonics of the Ear th system as a whole.(2)The global dynamics driven by both the Earth system and the cosmic celestial system:solar energy,multispheric interactions of the Earth system and the combined effects of the motions of celestial bodies in the cosmos syste m are the driving forces of various geological processes.(3)The Continent-Ocean transformation theory:the continent and ocean are two opposite yet unified geological units,which can be transformed into each other;neither continent nor ocean wi ll survive forever;there is no one-way development of continental accretion or ocean extinction;the simple theory of one-way continental accretion is regarded as invalid.(4)The continental crust and mantle are characterized by multiple layers,with different layers liable to slide along the interfaces between them,but corroboration is needed that continents move as a who le or even drift freely.(5)The cyclic evolution theory:the development of Earth’s tectonics is not a uniform change,but a spiral forward evolution,characterized by a combination of non-uniform,non-linear,gradual and catastrophic changes;different evolutionary stages(tectonic cycles)of Earth have distinctive global tectonic patterns and characteristics,one tectonic mo del should not be applied to different tectonic cycles or evolutionary stages.(6)The structure and evolution of Earth are asymmetric and heterogeneous,thus one tectonic model cannot be applied to different areas of the world.(7)The polycyclic evolution of the continental crust:the continental crust is formed by polycyclic tectonics and magmatism,rather than simply lateral or vertical accretion.(8)The role of deep faults:the deep fault zones cutting through different layers of the crus t a nd mantle usually play important roles in tectonic evolution.For example,the present-day mid-ocean ridge fault zones,transform fault zones and Benioff zones outline the global tectonic framework.Different tectonic cycles and stages of Earth’s evolutio n must have their own distinctive deep fault systems which control the global tectonic framework and evolutionary processes during different tectonic cycles and stages.Starting from the two mantle superplumes Jason(Pacific)and Tuzo(Africa),the study of the evolutionary process of the composition and structure of the crust and mantle during the great transformation an d reorganization of the Meso-Cenozoic tectonic framework in China and the other regions of Asia is a good demonstration of theory of Multisphere Tectonics of the Earth System.展开更多
To address the problem of network security situation assessment in the Industrial Internet,this paper adopts the evidential reasoning(ER)algorithm and belief rule base(BRB)method to establish an assessment model.First...To address the problem of network security situation assessment in the Industrial Internet,this paper adopts the evidential reasoning(ER)algorithm and belief rule base(BRB)method to establish an assessment model.First,this paper analyzes the influencing factors of the Industrial Internet and selects evaluation indicators that contain not only quantitative data but also qualitative knowledge.Second,the evaluation indicators are fused with expert knowledge and the ER algorithm.According to the fusion results,a network security situation assessment model of the Industrial Internet based on the ER and BRB method is established,and the projection covariance matrix adaptive evolution strategy(P-CMA-ES)is used to optimize the model parameters.This method can not only utilize semiquantitative information effectively but also use more uncertain information and prevent the problem of combinatorial explosion.Moreover,it solves the problem of the uncertainty of expert knowledge and overcomes the problem of low modeling accuracy caused by insufficient data.Finally,a network security situation assessment case of the Industrial Internet is analyzed to verify the effectiveness and superiority of the method.The research results showthat this method has strong applicability to the network security situation assessment of complex Industrial Internet systems.It can accurately reflect the actual network security situation of Industrial Internet systems and provide safe and reliable suggestions for network administrators to take timely countermeasures,thereby improving the risk monitoring and emergency response capabilities of the Industrial Internet.展开更多
基金National Key Research and Development Program of Synthetic Biology(2018YFA0902400)Construction of a High-quality Data Pool and Data Product Service System of the Chinese Academy of Sciences(2019WQZX012)University of Science and Technology of China Quality Project History of Medicine(2023YCZX02).
文摘Paleogenomics is a discipline in which the extraction and analysis of DNA from ancient biological remains are studied to understand the evolutionary history of past organisms.Research on this topic has revealed the evolutionary history of humans and other species,traced human migrations and genetic changes,and investigated ancient diseases and environmental influences due to its uniqueness.This paper reviews the scientific and technological history of the development of paleogenomics,including the molecular cloning era,the polymerase chain reaction(PCR)technique era,the genomics era,and the bio-data analysis era.This field explores the key technological development processes and effects of significant scientific discoveries,ranging from gene cloning technology and sequencing technology to breakthroughs and applications in big data analysis,addressing challenges such as sample contamination and trace collection analysis in paleogenomics research.
文摘The glacier of Mt.Kilimanjaro has been on retreat situation for over a century and no much attention has been paid on its persistence.Today glaciers cover a tiny fraction relative to their extent during 1880s when Kibo alone had 50 times more ice than today.This might be due to poor linkage of its significance to science and human environmental conservation.This notion has been proved negative by most researchers who have been conducting research on tropical
文摘In this paper, evolutions of ruled surfaces generated by the quasi normal and quasi binormal vector fields of space curve are presented. These evolutions of the ruled surfaces depend on the evolutions of their directrix using quasi frame along a space curve.
文摘■The twentieth century saw more technological invention and creation than any other period in the proceeding two thousand years.As a result,human activity has flourished and our lives have become richer and more colorful than ever.
文摘The competition among modem enterprises has been converted from products to capability. As the basis of competition, production system can't win the market unless it takes advantage of its capability in competition. Here in this article, the evolutionary rules of production system contributing to the establishment, renovation, reform, invention and promotion of the production of modem enterprises are observed.
文摘As it developed to today, Volleyball evolved from a game for the purpose of entertainment initially to a competitive Olympic sport. Through various periods of Volleyball development, we can find that when some old rules can not adapt to the volleyball development, it will lead to changes in the rules, it is this continuous improvement and change that inject vigor to volleyball and bring vitality, and promote the innovative development of volleyball skills and tactics, in turn the constant enrichment and development of volleyball skills and tactics required the game rules constantly revised and improved, as promoted and restricted each other, analysis of the mutual relationship between volleyball game rules and technology or tactics can not only in favor of volleyball skills, like evolving tactics, but also beneficial to volleyball competition rules maturity. Development of Volleyball Rules has been the inexhaustible power to development of sports project, researching of the competition rules has been recognized as a major breakthrough in the field of sports in various projects to promote sports development. Volleyball Rules - from the generated moment until today, has evolved many times. This evolution is not blind, random; it follows its inherent rule. A contest rule, which has a close relationship with the development of sports technology, are the basic norms and principles of sports game. They promote each other, while mutually restraint. Analysis of the relationship between volleyball competition rules and the technology or tactics, is not only conducive to the development of athletic skills, but also to the maturity of competition rules.
文摘Purpose:The goal of this study is to analyze the relationship between funded and unfunded papers and their citations in both basic and applied sciences.Design/methodology/approach:A power law model analyzes the relationship between research funding and citations of papers using 831,337 documents recorded in the Web of Science database.Findings:The original results reveal general characteristics of the diffusion of science in research fields:a)Funded articles receive higher citations compared to unfunded papers in journals;b)Funded articles exhibit a super-linear growth in citations,surpassing the increase seen in unfunded articles.This finding reveals a higher diffusion of scientific knowledge in funded articles.Moreover,c)funded articles in both basic and applied sciences demonstrate a similar expected change in citations,equivalent to about 1.23%,when the number of funded papers increases by 1%in journals.This result suggests,for the first time,that funding effect of scientific research is an invariant driver,irrespective of the nature of the basic or applied sciences.Originality/value:This evidence suggests empirical laws of funding for scientific citations that explain the importance of robust funding mechanisms for achieving impactful research outcomes in science and society.These findings here also highlight that funding for scientific research is a critical driving force in supporting citations and the dissemination of scientific knowledge in recorded documents in both basic and applied sciences.Practical implications:This comprehensive result provides a holistic view of the relationship between funding and citation performance in science to guide policymakers and R&D managers with science policies by directing funding to research in promoting the scientific development and higher diffusion of results for the progress of human society.
基金supported by the National Natural Science Foundation of China (No. 51174197)the Major State Basic Research Development Program of China (No. 2014CB046905)+1 种基金State Key Laboratory for Geo Mechanics and Deep Underground Engineering (CUMT) (No. SKLGDUEK1503)the ‘Qing Lan’ Project of Jiangsu Province
文摘A series of plane-strain physical model experiments are carried out to study the spatiotemporal evolution rule of rocks fracture surrounding gob-side roadway, which is subjected to the pressure induced by the mining process. The digital photogrammetry technology and large deformation analysis method are applied to measure the deformation and fracture of surrounding rocks. The experimental results indicate that the deformation and fracture of coal pillars are the cause to the instability and failure of the surrounding rocks. The spatiotemporal evolution rule of the rock deformation and fracture surrounding gob-side roadway is obtained. The coal pillar and the roof near coal pillar should be strengthened in support design. The engineering application results also can provide a useful guide that the combined support with wire meshes, beam, anchor bolt and cable is an effective method.
基金Supported by the National Basic Research Program of China (2012CB720500)the National Natural Science Foundation of China (60974008)
文摘In this paper, an improved hybrid differential evolution-estimation of distribution algorithm (IHDE-EDA) is proposed for nonlinear programming (NLP) and mixed integer nonlinear programming (MINLP) models in engineering optimization fields. In order to improve the global searching ability and convergence speed, IHDE-EDA takes full advantage of differential information and global statistical information extracted respectively from differential evolution algorithm and annealing mechanism-embedded estimation of distribution algorithm. Moreover, the feasibility rules are used to handle constraints, which do not require additional parameters and can guide the population to the feasible region quickly. The effectiveness of hybridization mechanism of IHDE-EDA is first discussed, and then simulation and comparison based on three benchmark problems demonstrate the efficiency, accuracy and robustness of IHDE-EDA. Finally, optimization on an industrial-size scheduling of two-pipeline crude oil blending problem shows the practical applicability of IHDE-EDA.
基金Sponsored by Project of National Natural Science Foundation(51608007)"Young Top-notch Talent Support Plan" of North China University of Technology
文摘As one of the eight Taihang passes,Fukou Xing is located in the south of the Taihang Mountains and has been an important passage for Shanxi and Hebei in history.Taking traditional settlements in Fukou Xing Region as research object,using the Advanced Spaceborne Thermal Emission and Reflection Radiometer(ASTER) Global Digital Elevation Model(GDEM)(remote sensing measurement of elevation data) and GIS platform,this paper made a quantitative study on traditional settlement space in mountain environment of this region,and studied space parameters including elevation,terrain,aspect,and boundary,observed and summarized the spatial features.In addition,based on the local chronicles of Ming and Qing dynasties,it mutually verified the quantitative conclusions and qualitative cognition,analyzed the evolution rules of traditional settlements in Fukou Xing region,and finally obtained new understandings of spatial features of traditional settlements in Fukou Xing region.
文摘The paper posits that kin sociality and eusociality are derived from the handicap-care principles based on the need-based care to the handicappers from the caregivers for the self-interest of the caregivers. In this paper, handicap is defined as the difficulty to survive and reproduce independently. Kin sociality is derived from the childhood handicap-care principle where the children are the handicapped children who receive the care from the kin caregivers in the inclusive kin group to survive. The caregiver gives care for its self-interest to reproduce its gene. The individual’s gene of kin sociality contains the handicapped childhood and the caregiving adulthood. Eusociality is derived from the adulthood handicap-care principle where responsible adults are the handicapped adults who give care and receive care at the same time in the interdependent eusocial group to survive and reproduce its gene. Queen bees reproduce, but must receive care from worker bees that work but must rely on queen bees to reproduce. A caregiver gives care for its self-interest to survive and reproduce its gene. The individual’s gene of eusociality contains the handicapped childhood-adulthood and the caregiving adulthood. The chronological sequence of the sociality evolution is individual sociality without handicap, kin sociality with handicapped childhood, and eusociality with handicapped adulthood. Eusociality in humans is derived from bipedalism and the mixed habitat. The chronological sequence of the eusocial human evolution is 1) the eusocial early hominins with bipedalism and the mixed habitat, 2) the eusocial early Homo species with bipedalism, the larger brain, and the open habitat, 3) the eusocial late Homo species with bipedalism, the largest brain, and the unstable habitat, and 4) extended eusocial Homo sapiens with bipedalism, the shrinking brain, omnipresent imagination, and the harsh habitat. The omnipresence of imagination in human culture converts eusociality into extended eusociality with both perception and omnipresent imagination.
基金funded by the National Natural Science Foundation of China(Grant Nos.51274110,51304108,U1361211)
文摘The rock mass engineering system (RMES) basically consists ofrock mass engineering (RME), water system and surroundingecological environments, etc. The RMES is characterized by nonlinearity,occurrence of chaos and self-organization (Tazaka, 1998;Tsuda, 1998; Kishida, 2000). From construction to abandonmentof RME, the RMES will experience four stages, i.e. initial phase,development phase, declining phase and failure phase. In thiscircumstance, the RMES boundary conditions, structural safetyand surrounding environments are varied at each phase, so arethe evolution characteristics and disasters (Wang et al., 2014).
文摘In a famous book,Johann Huizinga referred to Homo sapiens(“thinkers”)as Homo ludens(“play? ers”). Here I try to foster an appreciation of the importance of play in the learning process,not only during childhood but continuously afterwards. Play is a major biological incentive for generating pleasure during learn? ing and helps to accept the challenges and to overcome the difficulties attached to any intellectual effort or work. Play is rooted in the randomness of interactions between participants,with chance channeled by the rules of the game. Parallels with Darwinian evolution based on chance(randomness of mutations and changes in condi? tions)and necessity(the physico-chemical rules)are made. The development of science-based challenges or computer games and their roles in citizen-oriented science are also described. Some basic concepts of RNA structural biology illustrating the text are explained. “Play is the work of childhood”,Jean Piaget. “Every game has its rules”,Johann Huizinga.
文摘This paper analyzes the effect of subgroup size on the x-bar chart characteristics using sample influx (SIF) into forensic science laboratory (FSL). The characteristics studied include changes in out-or-control points (OCP), upper control limit UCLx, and zonal demarcations. Multi-rules were used to identify the number of out-of-control-points, Nocp as violations using five control chart rules applied separately. A sensitivity analysis on the Nocp was applied for subgroup size, k, and number of sigma above the mean value to determine the upper control limit, UCLx. A computer code was implemented using a FORTRAN code to create x-bar control-charts and capture OCP and other control-chart characteristics with increasing k from 2 to 25. For each value of k, a complete series of average values, Q(p), of specific length, Nsg, was created from which statistical analysis was conducted and compared to the original SIF data, S(t). The variation of number of out-of-control points or violations, Nocp, for different control-charts rules with increasing k was determined to follow a decaying exponential function, Nocp = Ae–α, for which, the goodness of fit was established, and the R2 value approached unity for Rule #4 and #5 only. The goodness of fit was established to be the new criteria for rational subgroup-size range, for Rules #5 and #4 only, which involve a count of 6 consecutive points decreasing and 8 consecutive points above the selected control limit (σ/3 above the grand mean), respectively. Using this criterion, the rational subgroup range was established to be 4 ≤ k ≤ 20 for the two x-bar control chart rules.
文摘It is not too much to say that molecular biology, including genome research, has progressed based on the determination of nucleotide or amino acid sequences. However, these ap-proaches are limited to the analysis of relatively small numbers of the same genes among spe-cies. On the other hand, by graphical presenta-tion of the ratios of the numbers of amino acids present to the total numbers of amino acids presumed from the target gene(s) or genome or those of the numbers of nucleotides present to the total numbers of nucleotides calculated from the target gene(s) or genome, we can readily draw conclusions from extraordinarily huge data sets integrated by human intelli-gence. 1) Assuming polymerization of amino acids or nucleotides in a simulation analysis based on a random choice, proteins were formed by simple amino acid polymerization, while nucleotide polymerization to form nucleic acids encoding specific proteins needed certain specific control. These results proposed that protein formation chronologically preceded codon formation during the establishment of primitive life forms. In the prebiotic phase, amino acid composition was a dominant factor that determined protein characteristics;the “Amino Acid World”. 2) The genome is constructed homogeneou- sly from putative small units displaying similar codon usages and coding for similar amino acid compositions;the unit is a gene assembly en-coding 3,000 - 7,000 amino acid residues and this unit size is independent not only of genome size, but also of species. 3) In codon evolution, all nucleotide alterna-tions are correlated, not only in coding regions, but also in non-coding regions;the correlations can be expressed by linear formulas;y = ax + b, where “y” and “x” represent nucleotide con-tents, and “a” and “b” are constant. 4) The basic pattern of cellular amino acid compositions obtained from whole cell lysates is conserved from bacteria to Homo sapiens, and resembles that calculated from complete genomes. This basic pattern is characterized by a “star-shape” that changes slightly among species, and changes in amino acid composi-tion seem to reflect biological evolution. 5) Organisms can essentially be classified according to two codon patterns. Biological evolution due to nucleotide sub-stitutions can be expressed by simple linear formulas based on mathematical principles, while natural selection must affect species pre- servation after nucleotide alternations. There-fore, although Darwin’s natural selection is not directly involved in nucleotide alternations, it contributes obviously to the selection of nu-cleotide alternations. Thus, Darwin’s natural selection is doubtless an important factor in biological evolution.
文摘The ratios of amino acid to the total amino acids and those of nucleotides to the total nucleotides in genes or genomes are suitable indexes to compare whole gene or genome characteristics based on the large number of nucleotides rather than their sequences. As these ratios are strictly calculated from nucleotide sequences, the values are independent of experimental errors. In the present mini-review, the following themes are approached according to the ratios of amino acids and nucleotides to their total numbers in the genome: prebiotic evolution, the chronological precedence of protein and codon formations, genome evolution, Chargaff’s second pa- rity rule, and the origins of life. Amino acid formation might have initially occurred during pre- biotic evolution, the “amino acid world”, and amino acid polymerization might chronologically precede codon formation at the end of prebiotic evolution. All nucleotide alterations occurred synchronously over the genome during biolo- gical evolution. After establishing primitive lives, all nucleotide alterations have been governed by linear formulae in nuclear and organelle genomes consisting of the double-stranded DNA. When the four nucleotide contents against each individual nucleotide content in organelles are expressed by four linear regression lines representing the diagonal lines of a 0.5 square – the “Diagonal Genome Universe”, evolution obeys Chargaff’s second parity rule. The fact that linear regression lines intersect at a single point su- ggests that all species originated from a single life source.
文摘Prime numbers are the integers that cannot be divided exactly by another integer other than one and itself. Prime numbers are notoriously disobedient to rules: they seem to be randomly distributed among natural numbers with no laws except that of chance. Questions about prime numbers have been perplexing mathematicians over centuries. How to efficiently predict greater prime numbers has been a great challenge for many. Most of the previous studies focus on how many prime numbers there are in certain ranges or patterns of the first or last digits of prime numbers. Honestly, although these patterns are true, they help little with accurately predicting new prime numbers, as a deviation at any digit is enough to annihilate the primality of a number. The author demonstrates the periodicity and inter-relationship underlying all prime numbers that makes the occurrence of all prime numbers predictable. This knowledge helps to fish all prime numbers within one net and will help to speed up the related research.
文摘Since the 5-steps rule was proposed in 2011, it has been widely used in many areas of molecular biology, both theoretical and experimental. It can be even used to deal with the commercial problems and bank systems, as well as material science systems. Just like the machine-learning algorithms, it is the jade for nearly all the statistical systems.
基金This work was funded by the Geological Survey Fund of the China Geological Survey(Grant Nos.DD20190358,DD20221646)the National Natural Science Foundation of China(Grant Nos.42172218,41772195).
文摘The fundamental theoretical framework of the Multisphere Tectonics of the Earth System is as follows:(1)It intends to extend the geotectonic studies from the crustal and lithospheric tectonics to the multisphere tectonics of the Ear th system as a whole.(2)The global dynamics driven by both the Earth system and the cosmic celestial system:solar energy,multispheric interactions of the Earth system and the combined effects of the motions of celestial bodies in the cosmos syste m are the driving forces of various geological processes.(3)The Continent-Ocean transformation theory:the continent and ocean are two opposite yet unified geological units,which can be transformed into each other;neither continent nor ocean wi ll survive forever;there is no one-way development of continental accretion or ocean extinction;the simple theory of one-way continental accretion is regarded as invalid.(4)The continental crust and mantle are characterized by multiple layers,with different layers liable to slide along the interfaces between them,but corroboration is needed that continents move as a who le or even drift freely.(5)The cyclic evolution theory:the development of Earth’s tectonics is not a uniform change,but a spiral forward evolution,characterized by a combination of non-uniform,non-linear,gradual and catastrophic changes;different evolutionary stages(tectonic cycles)of Earth have distinctive global tectonic patterns and characteristics,one tectonic mo del should not be applied to different tectonic cycles or evolutionary stages.(6)The structure and evolution of Earth are asymmetric and heterogeneous,thus one tectonic model cannot be applied to different areas of the world.(7)The polycyclic evolution of the continental crust:the continental crust is formed by polycyclic tectonics and magmatism,rather than simply lateral or vertical accretion.(8)The role of deep faults:the deep fault zones cutting through different layers of the crus t a nd mantle usually play important roles in tectonic evolution.For example,the present-day mid-ocean ridge fault zones,transform fault zones and Benioff zones outline the global tectonic framework.Different tectonic cycles and stages of Earth’s evolutio n must have their own distinctive deep fault systems which control the global tectonic framework and evolutionary processes during different tectonic cycles and stages.Starting from the two mantle superplumes Jason(Pacific)and Tuzo(Africa),the study of the evolutionary process of the composition and structure of the crust and mantle during the great transformation an d reorganization of the Meso-Cenozoic tectonic framework in China and the other regions of Asia is a good demonstration of theory of Multisphere Tectonics of the Earth System.
基金supported by the Provincial Universities Basic Business Expense Scientific Research Projects of Heilongjiang Province(No.2021-KYYWF-0179)the Science and Technology Project of Henan Province(No.212102310991)+2 种基金the Opening Project of Shanghai Key Laboratory of Integrated Administration Technologies for Information Security(No.AGK2015003)the Key Scientific Research Project of Henan Province(No.21A413001)the Postgraduate Innovation Project of Harbin Normal University(No.HSDSSCX2021-121).
文摘To address the problem of network security situation assessment in the Industrial Internet,this paper adopts the evidential reasoning(ER)algorithm and belief rule base(BRB)method to establish an assessment model.First,this paper analyzes the influencing factors of the Industrial Internet and selects evaluation indicators that contain not only quantitative data but also qualitative knowledge.Second,the evaluation indicators are fused with expert knowledge and the ER algorithm.According to the fusion results,a network security situation assessment model of the Industrial Internet based on the ER and BRB method is established,and the projection covariance matrix adaptive evolution strategy(P-CMA-ES)is used to optimize the model parameters.This method can not only utilize semiquantitative information effectively but also use more uncertain information and prevent the problem of combinatorial explosion.Moreover,it solves the problem of the uncertainty of expert knowledge and overcomes the problem of low modeling accuracy caused by insufficient data.Finally,a network security situation assessment case of the Industrial Internet is analyzed to verify the effectiveness and superiority of the method.The research results showthat this method has strong applicability to the network security situation assessment of complex Industrial Internet systems.It can accurately reflect the actual network security situation of Industrial Internet systems and provide safe and reliable suggestions for network administrators to take timely countermeasures,thereby improving the risk monitoring and emergency response capabilities of the Industrial Internet.