Recently Brutman and Passow considered Newman-type rational interpolation to |x| induced by arbitrary set of symmetric nodes in [-1,1] and gave the general estimation of the approximation error.By their methods one ...Recently Brutman and Passow considered Newman-type rational interpolation to |x| induced by arbitrary set of symmetric nodes in [-1,1] and gave the general estimation of the approximation error.By their methods one could establish the exact order of approximation for some special nodes. In the present paper we consider the special case where the interpolation nodes are the zeros of the Chebyshev polynomial of the second kind and prove that in this case the exact order of approximation is O(1/n|nn)展开更多
This paper is confined to analyzing and implementing new spectral solutions of the fractional Riccati differential equation based on the application of the spectral tau method.A new explicit formula for approximating ...This paper is confined to analyzing and implementing new spectral solutions of the fractional Riccati differential equation based on the application of the spectral tau method.A new explicit formula for approximating the fractional derivatives of shifted Chebyshev polynomials of the second kind in terms of their original polynomials is established.This formula is expressed in terms of a certain terminating hypergeometric function of the type_(4)F_(3)(1).This hypergeometric function is reduced in case of the integer case into a certain terminating hypergeometric function of the type 3 F 2(1)which can be summed with the aid of Watson’s identity.Six illustrative examples are presented to ensure the applicability and accuracy of the proposed algorithm.展开更多
A fourth-order variational inequality of the second kind arising in a plate frictional bending problem is considered. By using regularization method, the original problem can be formulated as a differentiable variatio...A fourth-order variational inequality of the second kind arising in a plate frictional bending problem is considered. By using regularization method, the original problem can be formulated as a differentiable variational equation, and the corresponding discrete FEM variational equation is presented afterwards. Abstract error estimates and error estimates of the approximation are derived in terms of energy norm and L^2-norm.展开更多
We introduce the higher-order type 2 Bernoulli numbers and polynomials of the second kind.In this paper,we investigate some identities and properties for them in connection with central factorial numbers of the second...We introduce the higher-order type 2 Bernoulli numbers and polynomials of the second kind.In this paper,we investigate some identities and properties for them in connection with central factorial numbers of the second kind and the higher-order type 2 Bernoulli polynomials.We give some relations between the higher-order type 2 Bernoulli numbers of the second kind and their conjugates.展开更多
The dual integral equations of vertical forced vibration of elastic plate on an elastic half space subject to harmonic uniform distribution loading are established according to the mixed boundary-value condition. By a...The dual integral equations of vertical forced vibration of elastic plate on an elastic half space subject to harmonic uniform distribution loading are established according to the mixed boundary-value condition. By applying Abel transformation the dual integral equations are reduced to Fredholm integral equation of the second kind which is solved numerically.展开更多
In this paper, we will use the successive approximation method for solving Fredholm integral equation of the second kind using Maple18. By means of this method, an algorithm is successfully established for solving the...In this paper, we will use the successive approximation method for solving Fredholm integral equation of the second kind using Maple18. By means of this method, an algorithm is successfully established for solving the non-linear Fredholm integral equation of the second kind. Finally, several examples are presented to illustrate the application of the algorithm and results appear that this method is very effective and convenient to solve these equations.展开更多
The second kind of modified Bessel function of order zero is the solutions of many problems in engineering. Modified Bessel equation is transformed by exponential transformation and expanded by J.P.Boyd's rational...The second kind of modified Bessel function of order zero is the solutions of many problems in engineering. Modified Bessel equation is transformed by exponential transformation and expanded by J.P.Boyd's rational Chebyshev basis.展开更多
We show how to use the Lucas polynomials of the second kind in the solution of a homogeneous linear differential system with constant coefficients, avoiding the Jordan canonical form for the relevant matrix.
The second law of thermodynamics, i.e. the law stating that the entropy in isolated macroscopic system can never decrease, is tightly connected to the work of the device called perpetual motion machine of second kind....The second law of thermodynamics, i.e. the law stating that the entropy in isolated macroscopic system can never decrease, is tightly connected to the work of the device called perpetual motion machine of second kind. Often this law is also defined as the inability to construct such a device. In the current paper we give complete, independent and consistent definitions of static, stationary and changing physical field. Based on that for the first time we give summarising, correct and complete definitions of natural resource machine and perpetual motion machine of second kind as well as motion machine of second kind in the set of tardyons and luxons. We present a principal structure of a motion machine of second kind using which we show that the Clausius statement and its equivalent statements in the thermodynamics can be violated for a practically big interval-time even under equilibrium fluctuations.展开更多
In this paper,we introduce modified degenerate polyexponential Cauchy(or poly-Cauchy)polynomials and numbers of the second kind and investigate some identities of these polynomials.We derive recurrence relations and t...In this paper,we introduce modified degenerate polyexponential Cauchy(or poly-Cauchy)polynomials and numbers of the second kind and investigate some identities of these polynomials.We derive recurrence relations and the relationship between special polynomials and numbers.Also,we introduce modified degenerate unipolyCauchy polynomials of the second kind and derive some fruitful properties of these polynomials.In addition,positive associated beautiful zeros and graphical representations are displayed with the help of Mathematica.展开更多
The use of functions, expressible in terms of Lucas polynomials of the second kind, allows us to write down the solution of linear dynamical systems—both in the discrete and continuous case—avoiding the Jordan...The use of functions, expressible in terms of Lucas polynomials of the second kind, allows us to write down the solution of linear dynamical systems—both in the discrete and continuous case—avoiding the Jordan canonical form of involved matrices. This improves the computational complexity of the algorithms used in literature.展开更多
The generating functions of special numbers and polynomials have various applications in many fields as well as mathematics and physics.In recent years,some mathematicians have studied degenerate version of them and o...The generating functions of special numbers and polynomials have various applications in many fields as well as mathematics and physics.In recent years,some mathematicians have studied degenerate version of them and obtained many interesting results.With this in mind,in this paper,we introduce the degenerate r-Dowling polynomials and numbers associated with the degenerate r-Whitney numbers of the second kind.We derive many interesting properties and identities for them including generating functions,Dobinski-like formula,integral representations,recurrence relations,differential equation and various explicit expressions.In addition,we explore some expressions for them that can be derived from repeated applications of certain operators to the exponential functions,the derivatives of them and some identities involving them.展开更多
First,the properties of solutions of a typical second-order pendulum-like system with a specified nonlinear function were discussed.Then the case with a general form of nonlinearity is considered and its global proper...First,the properties of solutions of a typical second-order pendulum-like system with a specified nonlinear function were discussed.Then the case with a general form of nonlinearity is considered and its global properties were studied by using the qualitative theory of differential equations.As a result,sufficient conditions for estimating the critical damp are established,which improves the work by Leonov et al.展开更多
The Fourier series of the 2π-periodic functions tg(x2)and 1sin(x)and some of their relatives (first of their integrals) are investigated and illustrated with respect to their convergence. These functions are Generali...The Fourier series of the 2π-periodic functions tg(x2)and 1sin(x)and some of their relatives (first of their integrals) are investigated and illustrated with respect to their convergence. These functions are Generalized functions and the convergence is weak convergence in the sense of the convergence of continuous linear functionals defining them. The figures show that the approximations of the Fourier series possess oscillations around the function which they represent in a broad band embedding them. This is some analogue to the Gibbs phenomenon. A modification of Fourier series by expansion in powers cosn(x)for the symmetric part of functions and sin(x)cosn−1(x)for the antisymmetric part (analogous to Taylor series) is discussed and illustrated by examples. The Fourier series and their convergence behavior are illustrated also for some 2π-periodic delta-function-like sequences connected with the Poisson theorem showing non-vanishing oscillations around the singularities similar to the Gibbs phenomenon in the neighborhood of discontinuities of functions. .展开更多
基金Supported by the National Nature Science Foundation.
文摘Recently Brutman and Passow considered Newman-type rational interpolation to |x| induced by arbitrary set of symmetric nodes in [-1,1] and gave the general estimation of the approximation error.By their methods one could establish the exact order of approximation for some special nodes. In the present paper we consider the special case where the interpolation nodes are the zeros of the Chebyshev polynomial of the second kind and prove that in this case the exact order of approximation is O(1/n|nn)
文摘This paper is confined to analyzing and implementing new spectral solutions of the fractional Riccati differential equation based on the application of the spectral tau method.A new explicit formula for approximating the fractional derivatives of shifted Chebyshev polynomials of the second kind in terms of their original polynomials is established.This formula is expressed in terms of a certain terminating hypergeometric function of the type_(4)F_(3)(1).This hypergeometric function is reduced in case of the integer case into a certain terminating hypergeometric function of the type 3 F 2(1)which can be summed with the aid of Watson’s identity.Six illustrative examples are presented to ensure the applicability and accuracy of the proposed algorithm.
基金Supported by the National Natural Science Foundation of China(10201026,10672111)
文摘A fourth-order variational inequality of the second kind arising in a plate frictional bending problem is considered. By using regularization method, the original problem can be formulated as a differentiable variational equation, and the corresponding discrete FEM variational equation is presented afterwards. Abstract error estimates and error estimates of the approximation are derived in terms of energy norm and L^2-norm.
基金This work was supported by the National Research Foundation of Korea(NRF)Grant Funded by the Korea Government(No.2020R1F1A1A01071564).
文摘We introduce the higher-order type 2 Bernoulli numbers and polynomials of the second kind.In this paper,we investigate some identities and properties for them in connection with central factorial numbers of the second kind and the higher-order type 2 Bernoulli polynomials.We give some relations between the higher-order type 2 Bernoulli numbers of the second kind and their conjugates.
文摘The dual integral equations of vertical forced vibration of elastic plate on an elastic half space subject to harmonic uniform distribution loading are established according to the mixed boundary-value condition. By applying Abel transformation the dual integral equations are reduced to Fredholm integral equation of the second kind which is solved numerically.
文摘In this paper, we will use the successive approximation method for solving Fredholm integral equation of the second kind using Maple18. By means of this method, an algorithm is successfully established for solving the non-linear Fredholm integral equation of the second kind. Finally, several examples are presented to illustrate the application of the algorithm and results appear that this method is very effective and convenient to solve these equations.
文摘The second kind of modified Bessel function of order zero is the solutions of many problems in engineering. Modified Bessel equation is transformed by exponential transformation and expanded by J.P.Boyd's rational Chebyshev basis.
文摘We show how to use the Lucas polynomials of the second kind in the solution of a homogeneous linear differential system with constant coefficients, avoiding the Jordan canonical form for the relevant matrix.
文摘The second law of thermodynamics, i.e. the law stating that the entropy in isolated macroscopic system can never decrease, is tightly connected to the work of the device called perpetual motion machine of second kind. Often this law is also defined as the inability to construct such a device. In the current paper we give complete, independent and consistent definitions of static, stationary and changing physical field. Based on that for the first time we give summarising, correct and complete definitions of natural resource machine and perpetual motion machine of second kind as well as motion machine of second kind in the set of tardyons and luxons. We present a principal structure of a motion machine of second kind using which we show that the Clausius statement and its equivalent statements in the thermodynamics can be violated for a practically big interval-time even under equilibrium fluctuations.
基金supported by the Taif University Researchers Supporting Project(TURSP-2020/246),Taif University,Taif,Saudi Arabia.
文摘In this paper,we introduce modified degenerate polyexponential Cauchy(or poly-Cauchy)polynomials and numbers of the second kind and investigate some identities of these polynomials.We derive recurrence relations and the relationship between special polynomials and numbers.Also,we introduce modified degenerate unipolyCauchy polynomials of the second kind and derive some fruitful properties of these polynomials.In addition,positive associated beautiful zeros and graphical representations are displayed with the help of Mathematica.
文摘The use of functions, expressible in terms of Lucas polynomials of the second kind, allows us to write down the solution of linear dynamical systems—both in the discrete and continuous case—avoiding the Jordan canonical form of involved matrices. This improves the computational complexity of the algorithms used in literature.
基金supported by the Basic Science Research Program,the National Research Foundation of Korea(NRF-2021R1F1A1050151).
文摘The generating functions of special numbers and polynomials have various applications in many fields as well as mathematics and physics.In recent years,some mathematicians have studied degenerate version of them and obtained many interesting results.With this in mind,in this paper,we introduce the degenerate r-Dowling polynomials and numbers associated with the degenerate r-Whitney numbers of the second kind.We derive many interesting properties and identities for them including generating functions,Dobinski-like formula,integral representations,recurrence relations,differential equation and various explicit expressions.In addition,we explore some expressions for them that can be derived from repeated applications of certain operators to the exponential functions,the derivatives of them and some identities involving them.
文摘First,the properties of solutions of a typical second-order pendulum-like system with a specified nonlinear function were discussed.Then the case with a general form of nonlinearity is considered and its global properties were studied by using the qualitative theory of differential equations.As a result,sufficient conditions for estimating the critical damp are established,which improves the work by Leonov et al.
文摘The Fourier series of the 2π-periodic functions tg(x2)and 1sin(x)and some of their relatives (first of their integrals) are investigated and illustrated with respect to their convergence. These functions are Generalized functions and the convergence is weak convergence in the sense of the convergence of continuous linear functionals defining them. The figures show that the approximations of the Fourier series possess oscillations around the function which they represent in a broad band embedding them. This is some analogue to the Gibbs phenomenon. A modification of Fourier series by expansion in powers cosn(x)for the symmetric part of functions and sin(x)cosn−1(x)for the antisymmetric part (analogous to Taylor series) is discussed and illustrated by examples. The Fourier series and their convergence behavior are illustrated also for some 2π-periodic delta-function-like sequences connected with the Poisson theorem showing non-vanishing oscillations around the singularities similar to the Gibbs phenomenon in the neighborhood of discontinuities of functions. .