The conventional solar heating floor system contains a big water tank to store energy in the day time for heating at night,which takes much building space and is very heavy.In order to reduce the water tank volume eve...The conventional solar heating floor system contains a big water tank to store energy in the day time for heating at night,which takes much building space and is very heavy.In order to reduce the water tank volume even to cancel the tank,a novel structure of integrated water pipe floor heating system using shape-stabilized phase change materials(SSPCM)for thermal energy storage was developed.A numerical model was developed to analyze the performance of SSPCM floor heating system under the intermittent heating condition,which was verified by our experimental data.The thermal performance of the heating system and the effects of various factors on it were analyzed numerically.The factors including phase transition temperature,heat of fusion,thermal conductivity of SSPCM and thermal conductivity of the decoration material were analyzed.The results show that tm and kd are the most import influencing factors on the thermal performance of SSPCM floor heating system,since they determine the heat source temperature and thermal resistance between SSPCM plates and indoor air,respectively.Hm should be large to store enough thermal energy in the day time for nighttimes heating.The effects of kp can be ignored in this system.The SSPCM floor heating system has potential of making use of the daytime solar energy for heating at night efficiently in various climates when its structure is properly designed.展开更多
This work presents a cost-effective and environment-friendly form-stabilized phase change material(PCM)and corresponding solar thermal application in the tankless solar water heater(TSWH).Coconut shell charcoal(CSC)as...This work presents a cost-effective and environment-friendly form-stabilized phase change material(PCM)and corresponding solar thermal application in the tankless solar water heater(TSWH).Coconut shell charcoal(CSC)as supporting material was modified by moderate oxidant of H_(2)O_(2)with different concentrations,and then sta-bilized stearic acid(SA)to prepare composite PCMs through vacuum impregnation.It found that CSC support causes a 15.70%improvement of SA loadage after treated by 15%H_(2)O_(2)due to coefficient enhancement by phys-ical interaction and surface modification.The modified CSC 15 support appears more super macropores which contribute to the impregnation of SA than non-modified CSC 0 support verifying from SEM and BET results.And the content of oxygen functional groups was increased after oxidation modification,also motivating SA stabiliza-tion by hydrogen bond interaction in XPS analysis.FTIR results proved there is no chemical reaction happened between SA and CSC.Moreover,the latent heat and phase transition temperature of the as-prepared SA/CSC 15 composite are 76.69 J g^(−1)and 52.52℃,respectively.All composites exhibit excellent thermal stability under a working temperature of 180℃and form stability during phase change.Thermal energy storage-release test within 70℃presents the composite has fast heat transfer efficiency than pure SA.The composite filled in TSWH system has 0.75 W m^(−1)K^(−1)thermal conductivity which is 2.88 times higher than that of pure SA(0.26 W m^(−1)K−1).Besides,the TSWH system with a flow rate of 0.004 kg s^(−1)could heat water effectively after sunset and the energy obtained from the thermal storage system within 1830 s testing times is about 0.15 kW h.In all,SA/CSC composite with good physical-thermo properties has potential in thermal energy storage application,especially in solar energy storage.展开更多
In this study,experimental and numerical investigations were conducted on a tube-fin heat-exchanger latent-heat cold energy storage unit.The fin side of the heat exchanger was filled with water as the energy storage m...In this study,experimental and numerical investigations were conducted on a tube-fin heat-exchanger latent-heat cold energy storage unit.The fin side of the heat exchanger was filled with water as the energy storage medium,and modified expanded graphite(MEG)was employed to improve the thermal characteristics of water.The water contact angle of the expanded graphite decreased from 106.31°to 0°,and the hydrophilicity and the absorption rate of water significantly improved after the modification.Moreover,the experimental analyses of the charge/discharge process showed that the cooling capacity of the system filled with 90 wt.%water/MEG was 80.8%of that of pure water,whereas its cooling time was only 69.7%of that of pure water.The average power increased by 15.9%compared with that of water.The system filled with 90 wt.%water/MEG completed two energy charging and discharging cycles,whereas the system filled with water completed only 1.5 cycles within 15000 s.Furthermore,the effects of the flow rate and inlet temperature of the heat transfer fluid on the charging process were explored.Finally,a numerical model was built and validated to investigate the phase change behavior and the effect of the structure size on the performance of the system.The heat-exchanger fin spacing had no significant effect on the cold energy storage unit,whereas the vertical spacing of the tube pass had the highest effect.It can be concluded that the heat exchanger combined with high-thermal-conductivity water/MEG exhibits better energy storage capacity and working power,showing a wide application prospect in the field of cold energy storage.展开更多
Friction stir welding (FSW) with water cooling and air cooling was used to weld 2219-T62 aluminum alloy joints with a thickness of 20 mm. The effect of cooling conditions on the corrosion resistance of joints in 3.5% ...Friction stir welding (FSW) with water cooling and air cooling was used to weld 2219-T62 aluminum alloy joints with a thickness of 20 mm. The effect of cooling conditions on the corrosion resistance of joints in 3.5% NaCl solution was investigated using the open circuit potential (OCP), the potentiodynamic polarization, and the corrosion morphology after immersing for different time. And the precipitates distribution was characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results reveal that the weld nugget zone (WNZ) owning positive potential, lower corrosion current density and fine and uniform precipitates, is much more difficult to corrode than the heat affected zone (HAZ) and the base metal (BM). Compared with air-cooled joint, the water-cooled joint has better corrosion resistance. In addition, the results of microstructure observation show that the potential, distribution and size of second phase particles determine the corrosion resistance of FSW AA2219 alloy joints in chlorine-contained solution.展开更多
基金Supported by National 11th Five-Year Plan of Dept.of Science,China(2006BAA04B02,2006BAJ02A09)
文摘The conventional solar heating floor system contains a big water tank to store energy in the day time for heating at night,which takes much building space and is very heavy.In order to reduce the water tank volume even to cancel the tank,a novel structure of integrated water pipe floor heating system using shape-stabilized phase change materials(SSPCM)for thermal energy storage was developed.A numerical model was developed to analyze the performance of SSPCM floor heating system under the intermittent heating condition,which was verified by our experimental data.The thermal performance of the heating system and the effects of various factors on it were analyzed numerically.The factors including phase transition temperature,heat of fusion,thermal conductivity of SSPCM and thermal conductivity of the decoration material were analyzed.The results show that tm and kd are the most import influencing factors on the thermal performance of SSPCM floor heating system,since they determine the heat source temperature and thermal resistance between SSPCM plates and indoor air,respectively.Hm should be large to store enough thermal energy in the day time for nighttimes heating.The effects of kp can be ignored in this system.The SSPCM floor heating system has potential of making use of the daytime solar energy for heating at night efficiently in various climates when its structure is properly designed.
基金This work was supported by the National Natural Science Founda-tion of China(51874047,51504041)the Training Program for Excel-lent Young Innovators of Changsha(kq1802007)+2 种基金the Fund for Univer-sity Young Core Instructors of Hunan Provincethe Outstanding Youth Project of Hunan Provincial Department of Education(18B148)and the Hunan Province 2011 Collaborative Innovation Center of Clean Energy and Smart Grid.
文摘This work presents a cost-effective and environment-friendly form-stabilized phase change material(PCM)and corresponding solar thermal application in the tankless solar water heater(TSWH).Coconut shell charcoal(CSC)as supporting material was modified by moderate oxidant of H_(2)O_(2)with different concentrations,and then sta-bilized stearic acid(SA)to prepare composite PCMs through vacuum impregnation.It found that CSC support causes a 15.70%improvement of SA loadage after treated by 15%H_(2)O_(2)due to coefficient enhancement by phys-ical interaction and surface modification.The modified CSC 15 support appears more super macropores which contribute to the impregnation of SA than non-modified CSC 0 support verifying from SEM and BET results.And the content of oxygen functional groups was increased after oxidation modification,also motivating SA stabiliza-tion by hydrogen bond interaction in XPS analysis.FTIR results proved there is no chemical reaction happened between SA and CSC.Moreover,the latent heat and phase transition temperature of the as-prepared SA/CSC 15 composite are 76.69 J g^(−1)and 52.52℃,respectively.All composites exhibit excellent thermal stability under a working temperature of 180℃and form stability during phase change.Thermal energy storage-release test within 70℃presents the composite has fast heat transfer efficiency than pure SA.The composite filled in TSWH system has 0.75 W m^(−1)K^(−1)thermal conductivity which is 2.88 times higher than that of pure SA(0.26 W m^(−1)K−1).Besides,the TSWH system with a flow rate of 0.004 kg s^(−1)could heat water effectively after sunset and the energy obtained from the thermal storage system within 1830 s testing times is about 0.15 kW h.In all,SA/CSC composite with good physical-thermo properties has potential in thermal energy storage application,especially in solar energy storage.
基金National Key R&D Program of China(Grant No.:2020YFA0210704).
文摘In this study,experimental and numerical investigations were conducted on a tube-fin heat-exchanger latent-heat cold energy storage unit.The fin side of the heat exchanger was filled with water as the energy storage medium,and modified expanded graphite(MEG)was employed to improve the thermal characteristics of water.The water contact angle of the expanded graphite decreased from 106.31°to 0°,and the hydrophilicity and the absorption rate of water significantly improved after the modification.Moreover,the experimental analyses of the charge/discharge process showed that the cooling capacity of the system filled with 90 wt.%water/MEG was 80.8%of that of pure water,whereas its cooling time was only 69.7%of that of pure water.The average power increased by 15.9%compared with that of water.The system filled with 90 wt.%water/MEG completed two energy charging and discharging cycles,whereas the system filled with water completed only 1.5 cycles within 15000 s.Furthermore,the effects of the flow rate and inlet temperature of the heat transfer fluid on the charging process were explored.Finally,a numerical model was built and validated to investigate the phase change behavior and the effect of the structure size on the performance of the system.The heat-exchanger fin spacing had no significant effect on the cold energy storage unit,whereas the vertical spacing of the tube pass had the highest effect.It can be concluded that the heat exchanger combined with high-thermal-conductivity water/MEG exhibits better energy storage capacity and working power,showing a wide application prospect in the field of cold energy storage.
基金Project (51405392) supported by the National Natural Science Foundation of ChinaProject (2019T120954) supported by the China Postdoctoral Science Foundation+1 种基金Project (3102019MS0404) supported by Fundamental Research Funds for the Central Universities, ChinaProject (2018BSHQYXMZZ31) supported by the Postdoctoral Science Foundation of Shaanxi Province, China。
文摘Friction stir welding (FSW) with water cooling and air cooling was used to weld 2219-T62 aluminum alloy joints with a thickness of 20 mm. The effect of cooling conditions on the corrosion resistance of joints in 3.5% NaCl solution was investigated using the open circuit potential (OCP), the potentiodynamic polarization, and the corrosion morphology after immersing for different time. And the precipitates distribution was characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results reveal that the weld nugget zone (WNZ) owning positive potential, lower corrosion current density and fine and uniform precipitates, is much more difficult to corrode than the heat affected zone (HAZ) and the base metal (BM). Compared with air-cooled joint, the water-cooled joint has better corrosion resistance. In addition, the results of microstructure observation show that the potential, distribution and size of second phase particles determine the corrosion resistance of FSW AA2219 alloy joints in chlorine-contained solution.