期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
An Equation of Stirling Numbers of the Second Kind 被引量:3
1
作者 DU Chun-yu ZHANG Jian-guo 《Chinese Quarterly Journal of Mathematics》 CSCD 北大核心 2006年第2期261-263,共3页
In this paper, We propose and prove the following equation, where {3^n} is a stirling number of the second kind, when n ≥ 3 is given.
关键词 COMBINATIONS stirling numbers of the second kind
下载PDF
Partial Bell Polynomials, Falling and Rising Factorials, Stirling Numbers, and Combinatorial Identities
2
作者 Siqintuya Jin Bai-Ni Guo Feng Qi 《Computer Modeling in Engineering & Sciences》 SCIE EI 2022年第9期781-799,共19页
In the paper,the authors collect,discuss,and find out several connections,equivalences,closed-form formulas,and combinatorial identities concerning partial Bell polynomials,falling factorials,rising factorials,extende... In the paper,the authors collect,discuss,and find out several connections,equivalences,closed-form formulas,and combinatorial identities concerning partial Bell polynomials,falling factorials,rising factorials,extended binomial coefficients,and the Stirling numbers of the first and second kinds.These results are new,interesting,important,useful,and applicable in combinatorial number theory. 展开更多
关键词 Connection EQUIVALENCE closed-form formula combinatorial identity partial Bell polynomial falling factorial rising factorial binomial coefficient stirling number of the first kind stirling number of the second kind problem
下载PDF
On Degenerate Array Type Polynomials
3
作者 Lan Wu Xue-Yan Chen +1 位作者 Muhammet Cihat Dagli Feng Qi 《Computer Modeling in Engineering & Sciences》 SCIE EI 2022年第4期295-305,共11页
In the paper,with the help of the Fa′a di Bruno formula and an identity of the Bell polynomials of the second kind,the authors define degenerateλ-array type polynomials,establish two explicit formulas,and present se... In the paper,with the help of the Fa′a di Bruno formula and an identity of the Bell polynomials of the second kind,the authors define degenerateλ-array type polynomials,establish two explicit formulas,and present several recurrence relations of degenerateλ-array type polynomials and numbers. 展开更多
关键词 Degenerate array polynomial stirling number of the second kind generating function explicit formula recurrence relation
下载PDF
Annihilation Coefficients, Binomial Expansions and q-Analogs
4
作者 H.W.GOULD J.QUAINTANCE 《Journal of Mathematical Research and Exposition》 CSCD 2010年第2期191-204,共14页
Let {An}∞n=0 be an arbitary sequence of natural numbers. We say A(n,k;A) are the Convolution Annihilation Coefficients for {An}n∞=0 if and only if n∑κ=0A(n,k;A)(x-Aκ)n-k=xn. (0.1) Similary, we define B(n... Let {An}∞n=0 be an arbitary sequence of natural numbers. We say A(n,k;A) are the Convolution Annihilation Coefficients for {An}n∞=0 if and only if n∑κ=0A(n,k;A)(x-Aκ)n-k=xn. (0.1) Similary, we define B(n,k;A) to be the Dot Product Annihilation Coefficients for {An}n∞=0 if and only if n∑κ=0A(n,k;A)(x-Aκ)n-k=xn. (0.2) The main result of this paper is an explicit formula for B(n,k;A), which depends on both k and {An}∞n=0. This paper also discusses binomial and q-analogs of Equations (0.1) and (0.2). 展开更多
关键词 Annihilation coefficient Binomial expansion stirling number of the first kind stirling number of the second kind vadermonde convolution.
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部