A series of mixed alkali-zinc borosilicate glasses with various r values(r=molar ratio of[ZnO]/([R^(2)O]+[ZnO]))from 0.00 to 1.00 were fabricated to probe the mixed alkali-zinc effects on thermo-mechanical properties....A series of mixed alkali-zinc borosilicate glasses with various r values(r=molar ratio of[ZnO]/([R^(2)O]+[ZnO]))from 0.00 to 1.00 were fabricated to probe the mixed alkali-zinc effects on thermo-mechanical properties.The nonlinear evolution of glass transition temperature(T_(g))with the addition of ZnO is ascribed to the competition of two converse factors,i e,the T_(g)depression as one of the colligative properties for a solution,on the one hand,and the enhancement of T_(g)due to the higher field strength of zinc cations compared to that of alkali ions.However,the nonlinear evolution of elastic moduli and coefficients of thermal expansion with r is attributed to the variance of intermediate-range clusters,which is confirmed by infrared and Raman scattering spectra.These findings are very helpful in tailoring the performance of borosilicate glasses.展开更多
We investigated the mixed alkali effect on the thermal properties and elastic response to temperature in the borosilicate glasses system with the composition of 70.65Si O_(2)·21.09B_(2)O_(3)·1.88Al_(2)O_(3)&...We investigated the mixed alkali effect on the thermal properties and elastic response to temperature in the borosilicate glasses system with the composition of 70.65Si O_(2)·21.09B_(2)O_(3)·1.88Al_(2)O_(3)·(6.38-x)Li_(2)O·x Na_(2)O glasses,where x=0.00,1.595,3.19,4.785,and 6.38.Except for the expected positive and negative deviations from linearity for the coefficients of thermal expansion,room temperature E and G,we observed a new mixed alkali efiect on the response of elastic moduli to temperature.Fourier transform infrared spectra were obtained to elucidate the possible structural origin of the mixed alkali efiects.This work provides a valuable insight into the structural and mechanical properties of mixed-alkali borosilicate glasses.展开更多
To study the room-temperature stable defects induced by electron irradiation, commercial borosilicate glasses were irradiated by 1.2 MeV electrons and then ultraviolet(UV) optical absorption(OA) spectra were measu...To study the room-temperature stable defects induced by electron irradiation, commercial borosilicate glasses were irradiated by 1.2 MeV electrons and then ultraviolet(UV) optical absorption(OA) spectra were measured. Two characteristic bands were revealed before irradiation, and they were attributed to silicon dangling bond(E'-center) and Fe^3+species,respectively. The existence of Fe3+was confirmed by electron paramagnetic resonance(EPR) measurements. After irradiation, the absorption spectra revealed irradiation-induced changes, while the content of E'-center did not change in the deep ultraviolet(DUV) region. The slightly reduced OA spectra at 4.9 eV was supposed to transform Fe3+species to Fe^2+species and this transformation leads to the appearance of 4.3 eV OA band. By calculating intensity variation, the transformation of Fe was estimated to be about 5% and the optical absorption cross section of Fe2+species is calculated to be 2.2 times larger than that of Fe^3+species. Peroxy linkage(POL, ≡Si–O–O–Si≡), which results in a 3.7 eV OA band, is speculated not to be from Si–O bond break but from Si–O–B bond, Si–O–Al bond, or Si–O–Na bond break. The co-presence defect with POL is probably responsible for 2.9-eV OA band.展开更多
The IR spectra of R2O-RO-B2O3-SiO2 and R2O-RO-B2O3-Al2O3-SiO2 glasses were tested for the study of coordination state of B, Al and their content. The results show that no matter Na2O/B2O3〉1, =1, or〈1, both [BO3] and...The IR spectra of R2O-RO-B2O3-SiO2 and R2O-RO-B2O3-Al2O3-SiO2 glasses were tested for the study of coordination state of B, Al and their content. The results show that no matter Na2O/B2O3〉1, =1, or〈1, both [BO3] and destroyed Si-O bond exist in glass structure; the addition of Al2O3 to borosilicate glass reduced both the number of non-bridging oxygen in the silicate network and the number of [BO4] units.展开更多
Er^(3+)-doped Gd_2O_3 -SiO_2 -B_2O_3 -Na_2O glasses were prepared, and formation range of glass of Gd_2O_3 -SiO_2 -B_2O_3 system was experimentally obtained. It is found that the glass phase can be formed only when th...Er^(3+)-doped Gd_2O_3 -SiO_2 -B_2O_3 -Na_2O glasses were prepared, and formation range of glass of Gd_2O_3 -SiO_2 -B_2O_3 system was experimentally obtained. It is found that the glass phase can be formed only when the content of SiO_2 is 0~50%(molar fraction), Gd_2O_3 is 0~30%(molar fraction) and B_2O_3 is above 20%(molar fraction) in this glass system. The glass can also be obtained but becomes translucent at the contents of 60%(molar fraction) SiO_2 and 30% Gd_2O_3 , or at the contents of 60%(molar fraction) SiO_2 and 30%(molar fraction) B_2O_3. There is no glass phase formed in other glass components. Glass forming ability for Gd_2O_3 content of 10%, was characterized by the value of β, the parameter of crystallization tendency, which is 0.32~1.76, obtained from the differential thermal analysis. The absorption and emission cross section, the J-O parameters Ωt_((2,4,6)) and radiative transition probabilities were calculated by using the theory of McCumber and Judd-Ofelt. The emission properties at 1.5 μm of the samples are discussed with the product of full width at half maximum and stimulated emission cross section. It can be seen that the value of the FWHM×σ_e^(peak) product in the prepared glass is more than those of germanate, silicate and phosphate glasses. Furthermore, the maximum value of the product among these glasses reported in this work is close to that of oxyfluoride silicate glass. Therefore, the Er^(3+)-doped gadolinium borosilicate glass in this paper is a candidate for broadband erbium doped fiber amplifiers.展开更多
This work aimed to analyze the glass material used for sealing the end of a thermal collector in a parabolic trough solar power plant. Based on matched sealing requirements and application performance of glass and Kov...This work aimed to analyze the glass material used for sealing the end of a thermal collector in a parabolic trough solar power plant. Based on matched sealing requirements and application performance of glass and Kovar alloy 4J29, one borosilicate glass material (GD480S), whose expansion coefficient was similar to that of Kovar alloy 4J29, was studied. Moreover, the effect of the ratio of SiO2 to B203 on the glass properties was explored in detail by Fourier transform infrared spectroscopy. As the SiO2 to B203 ratio in the glass increased from 4.18 to 5.77, the expansion coefficient showed a decreasing trend from 4.95×10-6/℃ to 4.55℃ 10-6/℃. In addition, the water resistance performance improved, enabling the glass material to seal well with the alloy for application in a trough solar power plant. Thus, the increase in the SiO2 to B2O3 ratio made the glass structure more compact and improved the glass performance to meet the requirements of an industrial tubular receiver.展开更多
Sm2O3 containing zinc-borosilicate glass and glass ceramics were prepared by melt quenching method, and the effect of Sm2O3 and micro-crystallization on the chemical stability of borosilicate glass was explored. DTA a...Sm2O3 containing zinc-borosilicate glass and glass ceramics were prepared by melt quenching method, and the effect of Sm2O3 and micro-crystallization on the chemical stability of borosilicate glass was explored. DTA analysis showed that the endothermic peak and exothermic peak of basic glass changed from 635 ℃ and 834 ℃ to 630 ℃ and 828 ℃ respectively as a result of the doping of Sm2O3. XRD analysis showed the promoting effect of Sm2O3 on crystallization ability of this glass. The cumulative mass loss of base glass, Sm2O3 containing glass, glass ceramic and Sm2O3 containing glass ceramic was 0.289, 0.253, 0.329, 0.269 mg/mm2 respectively after 26 days corrosion in alkali solution, and 1.293, 1.290, 0.999, 1.040 mg/mm2 respectively in acidic erosion medium. Micro-crystallization decreased and improved the alkali and acid resistance of borosilicate glass respectively, the addition of Sm2O3 increased the alkali resistance of base glass and glass ceramics, and the slight effect of Sm2O3 on the acid resistance of borosilicate glass was also observed.展开更多
The underground disposal of waste arising from the nuclear industry needs constant evaluation in order to improve upon it through minimizing the volume and cost by reducing the amount of glass used without compromisin...The underground disposal of waste arising from the nuclear industry needs constant evaluation in order to improve upon it through minimizing the volume and cost by reducing the amount of glass used without compromising the safety of any leakage from the radioactive waste form. The immobilization of the spent resin (NRW-40) in borosilicate glass was investigated to meet the acceptance criteria for disposal of nuclear waste. The organic mixed bed resin in granular form was used as a waste target. The analysis of surrogate resin doped with radioactive and non-radioactive cesium (Cs) and cobalt (Co) was carried out to investigate their thermal and chemical properties and their compatibility with an alkaline borosilicate glass. The thermal analysis indicates that the structural damage caused by 1 mSv gamma radiation to the radioactive resin has altered its properties in comparison with the non-radioactive resin, same amount of cesium (8.88 wt%) and cobalt (1.88 wt%) were used in both resins. The immobilization of residue shows that the excess sulfur in the residue caused phase crystallization in the final glass matrix. It was found that the volatilization of Cs-137 and Co-60 from the successful radioactive resin-glass matrix (HG-3-IER-500) were more than that in the non-radioactive resin-glass matrix (HG-3-IEX-500). The study demonstrates comprehensive experimental and analytical works and shows that it is possible to minimise the volume of the waste while keeping the required safety levels, however further research needs to be carried out in this area.展开更多
Sodium borosilicate glasses are candidate materials for high-level radioactive waste vitrification;therefore, understanding the irradiation effects in model borosilicate glass is crucial. Effects of electronic energy ...Sodium borosilicate glasses are candidate materials for high-level radioactive waste vitrification;therefore, understanding the irradiation effects in model borosilicate glass is crucial. Effects of electronic energy deposition and nuclear energy deposition induced by the impact of heavy ions on the hardness and Young’s modulus of sodium borosilicate glass were investigated. The work concentrates on sodium borosilicate glasses, henceforth termed NBS1 (60.0% SiO2, 15.0% B2O3, and 25.0% Na2O in mol%). The NBS1 glasses were irradiated by P, Kr, and Xe ions with 0.3 MeV, 4 MeV, and 5 MeV, respectively. The hardness and Young’s modulus of ion-irradiated NBS1 glasses were measured by nanoindentation tests. The relationships between the evolution of the hardness, the change in the Young’s modulus of the NBS1 glasses, and the energy deposition were investigated. With the increase in the nuclear energy deposition, both the hardness and Young’s modulus of NBS1 glasses dropped exponentially and then saturated. Regardless of the ion species, the nuclear energy depositions required for the saturation of hardness and Young’s modulus were apparent at approximately 1.2 × 10^20 keV/cm^3 and 1.8 × 10^20 keV/cm^3, respectively. The dose dependency of the hardness and Young’s modulus of NBS1 glasses was consistent with previous studies by Peuget et al. Moreover, the electronic energy loss is less than 4 keV/nm, and the electronic energy deposition is less than 3.0 × 10^22 keV/cm^3 in this work. Therefore, the evolution of hardness and Young’s modulus could have been primarily induced by nuclear energy deposition.展开更多
Tin was found in the bottom of float borosilicate glasses. To simulate the enriched amounts of SnO found on the surface of the float borosilicate glasses, a series of glasses were produced in which the stannous concen...Tin was found in the bottom of float borosilicate glasses. To simulate the enriched amounts of SnO found on the surface of the float borosilicate glasses, a series of glasses were produced in which the stannous concentration was varied from 0.1 wt% to 9.0 wt%, while the relative concentration of other components were held constant. Infrared spectra were obtained to probe the effect of increased amounts of SnO on the structure of the glass samples. The results show that SnO plays the role of an intermediate in glasses studied. When FO/SnO〉1.0, SnO takes the role of network-former. And when FO/SnO〈1.0, SnO can give the free oxygen as network-modifier. Besides, SnO has intensive effect on thermal performance of borosilicate glasses.展开更多
Yb^3+:Er^3+:Tm^3+co-doped borosilicate glasses are prepared. Their strong up-conversion photoluminescence spectra in a range from ultra-violet to near-infrared, which are excited by a 978-nm laser diode, are meas...Yb^3+:Er^3+:Tm^3+co-doped borosilicate glasses are prepared. Their strong up-conversion photoluminescence spectra in a range from ultra-violet to near-infrared, which are excited by a 978-nm laser diode, are measured, and the mechanisms of energy transfer among Yb^3+ Er^3+ and Tm^3+ ions are discussed. The results show that there is an unexpected wavelength at 900-nm emission from Yb^3+ Stark splitting levels to pump Tm^3+ ions and there exists an optimum pump power. The concentration of the Tm^3+ dopant gives rise to a prominent effect on the intensity of visible and near-infrared emissions for the yb^3+:Er^3+:Tm^3+ co-doped borosilicate glasses.展开更多
Borosilicate glasses and glass ceramics in the system 30Na2O-2Al2O3-25SiO2-xFe2O3(43-x)B2O3 (x = 0 - 20 mol%) have been prepared and studied by distinguished techniques. X-ray diffraction (XRD), transmission electron ...Borosilicate glasses and glass ceramics in the system 30Na2O-2Al2O3-25SiO2-xFe2O3(43-x)B2O3 (x = 0 - 20 mol%) have been prepared and studied by distinguished techniques. X-ray diffraction (XRD), transmission electron microscope (TEM), electron diffraction pattern (EDP) and SEM experiments are applied to explore the induced structural changes. Nanometer-sized species of polycrystalline structure are formed particularly in low Fe2O3 containing glasses. The size of the crystallites is found to depend on Fe2O3 concentrations. It is ranged from 10 to 33 nanometers. Structurally, these materials are suggested to contain different components, crystalline component and an interfacial component which situated between the crystallized domains. Presence of these components affects the atomic arrangement without short- or long-range order. An intermediate range ordered structure is dominant in glass ceramics of Fe2O3 2O3 concentration, since more disordered structure of lower size is present. These structural changes are found to be connected with the role of Fe2O3 and Na2O in glasses. Na2O is the strong glass modifier in the studied composition region, while Fe2O3 is consumed also as a modifier in composition of 2O3 is mainly dominant in the composition region of higher iron oxide concentration (8 - 20 mol%).展开更多
Photosensitive glass-ceramics have been extensively studied in recent years in that it is an attractive high diffraction efficiency grating materials. It is based on Stookey’s mixed fluoride sodium glass system for u...Photosensitive glass-ceramics have been extensively studied in recent years in that it is an attractive high diffraction efficiency grating materials. It is based on Stookey’s mixed fluoride sodium glass system for us to adopt, design prescriptions on the basis of SiO2-Na2O-Al2O3-ZnO for the glass main component and a series of glass doped with CeO2, AgNO3 and NaF etc. melted at about 1450?C, and the glass have good optical property (homogeneity, without bubble and stripe, high transparency). The borosilicate glass was exposed by ultraviolet light, and then after the heat treatment of the sample, the measurement of ultraviolet-visible-near infrared absorption spectrum and the X ray diffraction of exposure part was performed.展开更多
Glass from a light bulb is a waste product that cannot be utilised in a traditional way. This study looks into the possibilities of using lamp borosilicate glass powder as a cement replacing admixture in conventional ...Glass from a light bulb is a waste product that cannot be utilised in a traditional way. This study looks into the possibilities of using lamp borosilicate glass powder as a cement replacing admixture in conventional concrete. Experimental work provides preparation of standard concrete samples and sample testing after seven and 28-day ageing periods in standard conditions. The following glass materials were used for cement replacement: rough ground glass powder, glass dust from filters (both materials were obtained from a glass treatment plant) and additionally ground glass powder. The effect of glass powder on cement setting time was studied. The experimental results indicate that replacement of cement by rough glass powder decreases the compressive strength. Fine glass particles make it possible to replace up to 20% of cement without the loss in strength characteristics. Fine glass powder offers a long-term hardening effect. The best compressive strength results were achieved by using the glass that was additionally ground for 60 minutes. Glass dust obtained from filters shows a less significant effect. Summarising the research findings it may be concluded that ground borosilicate lamp glass may be successfully applied as a micro-filler for concrete as cement replacing material.展开更多
Cerium oxide has a great capacity to remove nonbridging oxygen atoms (NBO) from the glass network and serves as glass former units. The well formed CeO<sub>4</sub> units played the role of decreasing NBO f...Cerium oxide has a great capacity to remove nonbridging oxygen atoms (NBO) from the glass network and serves as glass former units. The well formed CeO<sub>4</sub> units played the role of decreasing NBO from the silicate network and cause a reduction in the concentration of tetrahedral boron groups (N<sub>4</sub>). The highest content of NBO in glass of lower CeO<sub>2</sub> (1 mol%) has a dominant role in constructing crystalline clusters in the glass. Higher CeO<sub>2</sub> concentration leads to formation of an amorphous glass network as documented by XRD and TEM-EDP spectra. Coordination of cerium with oxygen atoms gives uniform units of spherical morphology in the pure CeO<sub>2</sub> as well as in cerium rich glass. Clustered species has a great benefit in the field of application, used as a shielding material for ionized radiations.展开更多
The structure of borosilicate glasses of composition 30Na<sub>2</sub>O-2Al<sub>2</sub>O<sub>3</sub>-25SiO<sub>2</sub>-xFe<sub>2</sub>O<sub>3</sub>...The structure of borosilicate glasses of composition 30Na<sub>2</sub>O-2Al<sub>2</sub>O<sub>3</sub>-25SiO<sub>2</sub>-xFe<sub>2</sub>O<sub>3</sub><sub></sub> (43-x) B<sub>2</sub>O<sub>3</sub> has been investigated in the composition range of 0.5 20 mol% Fe<sub>2</sub>O<sub>3</sub>. <sup>27</sup>Al, <sup>11</sup>B, <sup>29 </sup>Si MAS NMR and FTIR spectroscopies have been used to measure the fraction of different structural species in the glasses. It is evidenced from NMR data that both sodium and Fe<sub>2</sub>O<sub>3</sub> (in low region up to 7 mol%) are the main glass modifier. Structural determination for borosilicate glasses with a high content of (Fe<sub>2</sub>O<sub>3</sub>) was carried out by FTIR spectroscopy, where both <sup>11</sup>B and <sup>29</sup>Si MAS NMR are impossible because of the high quantities of paramagnetic iron (III) species present. NMR analysis was performed on borosilicate glasses containing up to 7 mol% Fe<sub>2</sub>O<sub>3</sub> and the N<sub>4</sub> values obtained by FTIR spectroscopy agree within error with the <sup>11</sup>B NMR results of the same glass samples. Fe<sub>2</sub>O<sub>3</sub> is a main glass modifier in the low-Fe<sub>2</sub>O<sub>3</sub>-content region (≤6 mol%). On other hand, it plays the role of glass former at higher content of Fe<sub>2</sub>O<sub>3</sub>. Increasing both N<sub>4 </sub>of boron tetrahedral units and chemical shift of silicon nuclei to reach maxima at 5 mol% Fe<sub>2</sub>O<sub>3</sub> confirms the role of Fe<sub>2</sub>O<sub>3</sub> as a glass modifier in the low composition region. On the other hand, fast decrease in N<sub>4</sub> with further increasing Fe<sub>2</sub>O<sub>3</sub> contents ≥6 mol%) is an evidence for iron oxide to inter the glass network as a network former.展开更多
We report a unique red light-emitting Eu-doped borosilicate glass to convert color for warm white light-emitting diodes. This glass can be excited from 394 nm-peaked near ultraviolet light, 466 nm-peaked blue light, t...We report a unique red light-emitting Eu-doped borosilicate glass to convert color for warm white light-emitting diodes. This glass can be excited from 394 nm-peaked near ultraviolet light, 466 nm-peaked blue light, to 534 nm- peaked green light to emit the desired red light with an excellent transmission in the wavelength range of 400-700 nm which makes this glass suitable for color conversion without a great cost of luminous power loss. In particular, when assembling this glass for commercial white light-emitting diodes, the tested results show that the color rendering index is improved to 84 with a loss of luminous power by 12 percent at average, making this variety of glass promising for inorganic "remote-phosphor" color conversion.展开更多
基金Funded by National Natural Science Foundation of China(No.52172007)the Ph D Program Fund of Non-Metallic Excellence and Innovation Center for Building Materials(No.2022SFP6-2)+1 种基金the Key Technology Innovation Project of Hubei Province(No.2022BAA025)Guangdong Basic and Applied Basic Research Foundation(No.2022A1515010312)。
文摘A series of mixed alkali-zinc borosilicate glasses with various r values(r=molar ratio of[ZnO]/([R^(2)O]+[ZnO]))from 0.00 to 1.00 were fabricated to probe the mixed alkali-zinc effects on thermo-mechanical properties.The nonlinear evolution of glass transition temperature(T_(g))with the addition of ZnO is ascribed to the competition of two converse factors,i e,the T_(g)depression as one of the colligative properties for a solution,on the one hand,and the enhancement of T_(g)due to the higher field strength of zinc cations compared to that of alkali ions.However,the nonlinear evolution of elastic moduli and coefficients of thermal expansion with r is attributed to the variance of intermediate-range clusters,which is confirmed by infrared and Raman scattering spectra.These findings are very helpful in tailoring the performance of borosilicate glasses.
基金National Natural Science Foundation of China(No.52172007)the Ph D Program Fund of Non-Metallic Excellence and Innovation Center for Building Materials(No.2022SFP6-2)+1 种基金Guang Dong Basic and Applied Basic Research Foundation(No.2022A1515010312)Jiangsu Science and Technology Innovation Project for Carbon Peaking and Carbon Neutrality(No.BE2022035)。
文摘We investigated the mixed alkali effect on the thermal properties and elastic response to temperature in the borosilicate glasses system with the composition of 70.65Si O_(2)·21.09B_(2)O_(3)·1.88Al_(2)O_(3)·(6.38-x)Li_(2)O·x Na_(2)O glasses,where x=0.00,1.595,3.19,4.785,and 6.38.Except for the expected positive and negative deviations from linearity for the coefficients of thermal expansion,room temperature E and G,we observed a new mixed alkali efiect on the response of elastic moduli to temperature.Fourier transform infrared spectra were obtained to elucidate the possible structural origin of the mixed alkali efiects.This work provides a valuable insight into the structural and mechanical properties of mixed-alkali borosilicate glasses.
基金Project supported by the Fundamental Research Funds for the Central Universities of China(Grant No.lzujbky-2014-16)
文摘To study the room-temperature stable defects induced by electron irradiation, commercial borosilicate glasses were irradiated by 1.2 MeV electrons and then ultraviolet(UV) optical absorption(OA) spectra were measured. Two characteristic bands were revealed before irradiation, and they were attributed to silicon dangling bond(E'-center) and Fe^3+species,respectively. The existence of Fe3+was confirmed by electron paramagnetic resonance(EPR) measurements. After irradiation, the absorption spectra revealed irradiation-induced changes, while the content of E'-center did not change in the deep ultraviolet(DUV) region. The slightly reduced OA spectra at 4.9 eV was supposed to transform Fe3+species to Fe^2+species and this transformation leads to the appearance of 4.3 eV OA band. By calculating intensity variation, the transformation of Fe was estimated to be about 5% and the optical absorption cross section of Fe2+species is calculated to be 2.2 times larger than that of Fe^3+species. Peroxy linkage(POL, ≡Si–O–O–Si≡), which results in a 3.7 eV OA band, is speculated not to be from Si–O bond break but from Si–O–B bond, Si–O–Al bond, or Si–O–Na bond break. The co-presence defect with POL is probably responsible for 2.9-eV OA band.
基金Funded by the Key Science and Technology Project of Hubei Province(No.2004AA103B03)
文摘The IR spectra of R2O-RO-B2O3-SiO2 and R2O-RO-B2O3-Al2O3-SiO2 glasses were tested for the study of coordination state of B, Al and their content. The results show that no matter Na2O/B2O3〉1, =1, or〈1, both [BO3] and destroyed Si-O bond exist in glass structure; the addition of Al2O3 to borosilicate glass reduced both the number of non-bridging oxygen in the silicate network and the number of [BO4] units.
文摘Er^(3+)-doped Gd_2O_3 -SiO_2 -B_2O_3 -Na_2O glasses were prepared, and formation range of glass of Gd_2O_3 -SiO_2 -B_2O_3 system was experimentally obtained. It is found that the glass phase can be formed only when the content of SiO_2 is 0~50%(molar fraction), Gd_2O_3 is 0~30%(molar fraction) and B_2O_3 is above 20%(molar fraction) in this glass system. The glass can also be obtained but becomes translucent at the contents of 60%(molar fraction) SiO_2 and 30% Gd_2O_3 , or at the contents of 60%(molar fraction) SiO_2 and 30%(molar fraction) B_2O_3. There is no glass phase formed in other glass components. Glass forming ability for Gd_2O_3 content of 10%, was characterized by the value of β, the parameter of crystallization tendency, which is 0.32~1.76, obtained from the differential thermal analysis. The absorption and emission cross section, the J-O parameters Ωt_((2,4,6)) and radiative transition probabilities were calculated by using the theory of McCumber and Judd-Ofelt. The emission properties at 1.5 μm of the samples are discussed with the product of full width at half maximum and stimulated emission cross section. It can be seen that the value of the FWHM×σ_e^(peak) product in the prepared glass is more than those of germanate, silicate and phosphate glasses. Furthermore, the maximum value of the product among these glasses reported in this work is close to that of oxyfluoride silicate glass. Therefore, the Er^(3+)-doped gadolinium borosilicate glass in this paper is a candidate for broadband erbium doped fiber amplifiers.
基金Funded by the Special Projects of Major Scientific and Technological Achievements of Hebei Province(No.13041110Z)
文摘This work aimed to analyze the glass material used for sealing the end of a thermal collector in a parabolic trough solar power plant. Based on matched sealing requirements and application performance of glass and Kovar alloy 4J29, one borosilicate glass material (GD480S), whose expansion coefficient was similar to that of Kovar alloy 4J29, was studied. Moreover, the effect of the ratio of SiO2 to B203 on the glass properties was explored in detail by Fourier transform infrared spectroscopy. As the SiO2 to B203 ratio in the glass increased from 4.18 to 5.77, the expansion coefficient showed a decreasing trend from 4.95×10-6/℃ to 4.55℃ 10-6/℃. In addition, the water resistance performance improved, enabling the glass material to seal well with the alloy for application in a trough solar power plant. Thus, the increase in the SiO2 to B2O3 ratio made the glass structure more compact and improved the glass performance to meet the requirements of an industrial tubular receiver.
基金Funded by the National Natural Science Foundation of China(51025416,51202104 and 51362019)the Natural Science Foundation of the Inner Mongolia Autonomous Region(2012MS0807)+1 种基金the Program for Young Talents of Science and Technology in Universities of Inner Mongolia Autonomous Region,the Talent Incubation Funding of School of Materials and Metallurgy(2014CY012)the Talent Incubation Funding of School of Materials and Metallurgy(2014CY012)
文摘Sm2O3 containing zinc-borosilicate glass and glass ceramics were prepared by melt quenching method, and the effect of Sm2O3 and micro-crystallization on the chemical stability of borosilicate glass was explored. DTA analysis showed that the endothermic peak and exothermic peak of basic glass changed from 635 ℃ and 834 ℃ to 630 ℃ and 828 ℃ respectively as a result of the doping of Sm2O3. XRD analysis showed the promoting effect of Sm2O3 on crystallization ability of this glass. The cumulative mass loss of base glass, Sm2O3 containing glass, glass ceramic and Sm2O3 containing glass ceramic was 0.289, 0.253, 0.329, 0.269 mg/mm2 respectively after 26 days corrosion in alkali solution, and 1.293, 1.290, 0.999, 1.040 mg/mm2 respectively in acidic erosion medium. Micro-crystallization decreased and improved the alkali and acid resistance of borosilicate glass respectively, the addition of Sm2O3 increased the alkali resistance of base glass and glass ceramics, and the slight effect of Sm2O3 on the acid resistance of borosilicate glass was also observed.
文摘The underground disposal of waste arising from the nuclear industry needs constant evaluation in order to improve upon it through minimizing the volume and cost by reducing the amount of glass used without compromising the safety of any leakage from the radioactive waste form. The immobilization of the spent resin (NRW-40) in borosilicate glass was investigated to meet the acceptance criteria for disposal of nuclear waste. The organic mixed bed resin in granular form was used as a waste target. The analysis of surrogate resin doped with radioactive and non-radioactive cesium (Cs) and cobalt (Co) was carried out to investigate their thermal and chemical properties and their compatibility with an alkaline borosilicate glass. The thermal analysis indicates that the structural damage caused by 1 mSv gamma radiation to the radioactive resin has altered its properties in comparison with the non-radioactive resin, same amount of cesium (8.88 wt%) and cobalt (1.88 wt%) were used in both resins. The immobilization of residue shows that the excess sulfur in the residue caused phase crystallization in the final glass matrix. It was found that the volatilization of Cs-137 and Co-60 from the successful radioactive resin-glass matrix (HG-3-IER-500) were more than that in the non-radioactive resin-glass matrix (HG-3-IEX-500). The study demonstrates comprehensive experimental and analytical works and shows that it is possible to minimise the volume of the waste while keeping the required safety levels, however further research needs to be carried out in this area.
基金supported by the National Natural Science Foundations of China(Nos.11505085 and 11505086)the Fundamental Research Funds for the Central Universities(No.lzujbky-2018-72)DSTI Foundation of Gansu(No.2018ZX-07)
文摘Sodium borosilicate glasses are candidate materials for high-level radioactive waste vitrification;therefore, understanding the irradiation effects in model borosilicate glass is crucial. Effects of electronic energy deposition and nuclear energy deposition induced by the impact of heavy ions on the hardness and Young’s modulus of sodium borosilicate glass were investigated. The work concentrates on sodium borosilicate glasses, henceforth termed NBS1 (60.0% SiO2, 15.0% B2O3, and 25.0% Na2O in mol%). The NBS1 glasses were irradiated by P, Kr, and Xe ions with 0.3 MeV, 4 MeV, and 5 MeV, respectively. The hardness and Young’s modulus of ion-irradiated NBS1 glasses were measured by nanoindentation tests. The relationships between the evolution of the hardness, the change in the Young’s modulus of the NBS1 glasses, and the energy deposition were investigated. With the increase in the nuclear energy deposition, both the hardness and Young’s modulus of NBS1 glasses dropped exponentially and then saturated. Regardless of the ion species, the nuclear energy depositions required for the saturation of hardness and Young’s modulus were apparent at approximately 1.2 × 10^20 keV/cm^3 and 1.8 × 10^20 keV/cm^3, respectively. The dose dependency of the hardness and Young’s modulus of NBS1 glasses was consistent with previous studies by Peuget et al. Moreover, the electronic energy loss is less than 4 keV/nm, and the electronic energy deposition is less than 3.0 × 10^22 keV/cm^3 in this work. Therefore, the evolution of hardness and Young’s modulus could have been primarily induced by nuclear energy deposition.
基金the Key Technologies Program from Department of Science and Technology of Hubei Province(No.2004AA1031303)
文摘Tin was found in the bottom of float borosilicate glasses. To simulate the enriched amounts of SnO found on the surface of the float borosilicate glasses, a series of glasses were produced in which the stannous concentration was varied from 0.1 wt% to 9.0 wt%, while the relative concentration of other components were held constant. Infrared spectra were obtained to probe the effect of increased amounts of SnO on the structure of the glass samples. The results show that SnO plays the role of an intermediate in glasses studied. When FO/SnO〉1.0, SnO takes the role of network-former. And when FO/SnO〈1.0, SnO can give the free oxygen as network-modifier. Besides, SnO has intensive effect on thermal performance of borosilicate glasses.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10804015)the Science Foundation of the Education Department of Liaoning Province of China (Grant No. 2009A417)
文摘Yb^3+:Er^3+:Tm^3+co-doped borosilicate glasses are prepared. Their strong up-conversion photoluminescence spectra in a range from ultra-violet to near-infrared, which are excited by a 978-nm laser diode, are measured, and the mechanisms of energy transfer among Yb^3+ Er^3+ and Tm^3+ ions are discussed. The results show that there is an unexpected wavelength at 900-nm emission from Yb^3+ Stark splitting levels to pump Tm^3+ ions and there exists an optimum pump power. The concentration of the Tm^3+ dopant gives rise to a prominent effect on the intensity of visible and near-infrared emissions for the yb^3+:Er^3+:Tm^3+ co-doped borosilicate glasses.
文摘Borosilicate glasses and glass ceramics in the system 30Na2O-2Al2O3-25SiO2-xFe2O3(43-x)B2O3 (x = 0 - 20 mol%) have been prepared and studied by distinguished techniques. X-ray diffraction (XRD), transmission electron microscope (TEM), electron diffraction pattern (EDP) and SEM experiments are applied to explore the induced structural changes. Nanometer-sized species of polycrystalline structure are formed particularly in low Fe2O3 containing glasses. The size of the crystallites is found to depend on Fe2O3 concentrations. It is ranged from 10 to 33 nanometers. Structurally, these materials are suggested to contain different components, crystalline component and an interfacial component which situated between the crystallized domains. Presence of these components affects the atomic arrangement without short- or long-range order. An intermediate range ordered structure is dominant in glass ceramics of Fe2O3 2O3 concentration, since more disordered structure of lower size is present. These structural changes are found to be connected with the role of Fe2O3 and Na2O in glasses. Na2O is the strong glass modifier in the studied composition region, while Fe2O3 is consumed also as a modifier in composition of 2O3 is mainly dominant in the composition region of higher iron oxide concentration (8 - 20 mol%).
文摘Photosensitive glass-ceramics have been extensively studied in recent years in that it is an attractive high diffraction efficiency grating materials. It is based on Stookey’s mixed fluoride sodium glass system for us to adopt, design prescriptions on the basis of SiO2-Na2O-Al2O3-ZnO for the glass main component and a series of glass doped with CeO2, AgNO3 and NaF etc. melted at about 1450?C, and the glass have good optical property (homogeneity, without bubble and stripe, high transparency). The borosilicate glass was exposed by ultraviolet light, and then after the heat treatment of the sample, the measurement of ultraviolet-visible-near infrared absorption spectrum and the X ray diffraction of exposure part was performed.
文摘Glass from a light bulb is a waste product that cannot be utilised in a traditional way. This study looks into the possibilities of using lamp borosilicate glass powder as a cement replacing admixture in conventional concrete. Experimental work provides preparation of standard concrete samples and sample testing after seven and 28-day ageing periods in standard conditions. The following glass materials were used for cement replacement: rough ground glass powder, glass dust from filters (both materials were obtained from a glass treatment plant) and additionally ground glass powder. The effect of glass powder on cement setting time was studied. The experimental results indicate that replacement of cement by rough glass powder decreases the compressive strength. Fine glass particles make it possible to replace up to 20% of cement without the loss in strength characteristics. Fine glass powder offers a long-term hardening effect. The best compressive strength results were achieved by using the glass that was additionally ground for 60 minutes. Glass dust obtained from filters shows a less significant effect. Summarising the research findings it may be concluded that ground borosilicate lamp glass may be successfully applied as a micro-filler for concrete as cement replacing material.
文摘Cerium oxide has a great capacity to remove nonbridging oxygen atoms (NBO) from the glass network and serves as glass former units. The well formed CeO<sub>4</sub> units played the role of decreasing NBO from the silicate network and cause a reduction in the concentration of tetrahedral boron groups (N<sub>4</sub>). The highest content of NBO in glass of lower CeO<sub>2</sub> (1 mol%) has a dominant role in constructing crystalline clusters in the glass. Higher CeO<sub>2</sub> concentration leads to formation of an amorphous glass network as documented by XRD and TEM-EDP spectra. Coordination of cerium with oxygen atoms gives uniform units of spherical morphology in the pure CeO<sub>2</sub> as well as in cerium rich glass. Clustered species has a great benefit in the field of application, used as a shielding material for ionized radiations.
文摘The structure of borosilicate glasses of composition 30Na<sub>2</sub>O-2Al<sub>2</sub>O<sub>3</sub>-25SiO<sub>2</sub>-xFe<sub>2</sub>O<sub>3</sub><sub></sub> (43-x) B<sub>2</sub>O<sub>3</sub> has been investigated in the composition range of 0.5 20 mol% Fe<sub>2</sub>O<sub>3</sub>. <sup>27</sup>Al, <sup>11</sup>B, <sup>29 </sup>Si MAS NMR and FTIR spectroscopies have been used to measure the fraction of different structural species in the glasses. It is evidenced from NMR data that both sodium and Fe<sub>2</sub>O<sub>3</sub> (in low region up to 7 mol%) are the main glass modifier. Structural determination for borosilicate glasses with a high content of (Fe<sub>2</sub>O<sub>3</sub>) was carried out by FTIR spectroscopy, where both <sup>11</sup>B and <sup>29</sup>Si MAS NMR are impossible because of the high quantities of paramagnetic iron (III) species present. NMR analysis was performed on borosilicate glasses containing up to 7 mol% Fe<sub>2</sub>O<sub>3</sub> and the N<sub>4</sub> values obtained by FTIR spectroscopy agree within error with the <sup>11</sup>B NMR results of the same glass samples. Fe<sub>2</sub>O<sub>3</sub> is a main glass modifier in the low-Fe<sub>2</sub>O<sub>3</sub>-content region (≤6 mol%). On other hand, it plays the role of glass former at higher content of Fe<sub>2</sub>O<sub>3</sub>. Increasing both N<sub>4 </sub>of boron tetrahedral units and chemical shift of silicon nuclei to reach maxima at 5 mol% Fe<sub>2</sub>O<sub>3</sub> confirms the role of Fe<sub>2</sub>O<sub>3</sub> as a glass modifier in the low composition region. On the other hand, fast decrease in N<sub>4</sub> with further increasing Fe<sub>2</sub>O<sub>3</sub> contents ≥6 mol%) is an evidence for iron oxide to inter the glass network as a network former.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 50872091 and 21076161)the Tianjin Municipal Sci/Tech. Commission, China (Grant Nos. 10SYSYJC28100 and 2006ZD30)the Tianjin Municipal Higher Education Commission, China (Grant No. 20110304)
文摘We report a unique red light-emitting Eu-doped borosilicate glass to convert color for warm white light-emitting diodes. This glass can be excited from 394 nm-peaked near ultraviolet light, 466 nm-peaked blue light, to 534 nm- peaked green light to emit the desired red light with an excellent transmission in the wavelength range of 400-700 nm which makes this glass suitable for color conversion without a great cost of luminous power loss. In particular, when assembling this glass for commercial white light-emitting diodes, the tested results show that the color rendering index is improved to 84 with a loss of luminous power by 12 percent at average, making this variety of glass promising for inorganic "remote-phosphor" color conversion.