期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Localization of s-Wave and Quantum Effective Potential of a Quasi-free Particle with Position-Dependent Mass
1
作者 JU Guo-Xing XIANG Yang REN Zhong-Zhou 《Communications in Theoretical Physics》 SCIE CAS CSCD 2006年第5X期819-825,共7页
The properties of the 8-wave for a quasl-free partide with position-dependent mass (PDM) have been discussed in details. Differed from the system with constant mass in which the localization of the s-wave for the fr... The properties of the 8-wave for a quasl-free partide with position-dependent mass (PDM) have been discussed in details. Differed from the system with constant mass in which the localization of the s-wave for the free quantum particle around the origin only occurs in two dimensions, the quasi-free particle with PDM can experience attractive forces in D dimensions except D = 1 when its mass function satisfies some conditions. The effective mass of a particle varying with its position can induce effective interaction, which may be attractive in some cases. The analytical expressions of the eigenfunctions and the corresponding probability densities for the 8-waves of the two- and three-dimensional systems with a special PDM are given, and the existences of localization around the origin for these systems are shown. 展开更多
关键词 position-dependent mass S-WAVE Schrodinger equation dimensionality of the space LOCALIZATION EIGENFUNCTION probability density
下载PDF
Polynomial solutions of quasi-homogeneous partial differential equations
2
作者 LUO Xuebo ZHENG Zhujun Institute of Applied Mathematics, Northwestern Polytechnical University, Xi’an 710072, China Institute of Mathematics, Henan University, Kaifeng 475001, China 《Science China Mathematics》 SCIE 2001年第9期1148-1155,共8页
By means of a method of analytic number theory the following theorem is proved. Letp be a quasi-homogeneous linear partial differential operator with degreem,m > 0, w.r.t a dilation $\left\{ {\delta _\tau } \right\... By means of a method of analytic number theory the following theorem is proved. Letp be a quasi-homogeneous linear partial differential operator with degreem,m > 0, w.r.t a dilation $\left\{ {\delta _\tau } \right\}{\text{ }}_{\tau< 0} $ given by ( a1, …, an). Assume that either a1, …, an are positive rational numbers or $m{\text{ = }}\sum\limits_{j = 1}^n {\alpha _j \alpha _j } $ for some $\alpha {\text{ = }}\left( {\alpha _1 ,{\text{ }} \ldots {\text{ }},\alpha _n } \right) \in l _ + ^n $ Then the dimension of the space of polynomial solutions of the equationp[u] = 0 on ?n must be infinite 展开更多
关键词 quasi-homogeneous partial differential operator polynomial solution dimension of the space of solution method of analytic number theory
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部