Static and dynamic splitting tests were conducted on ring marble specimens with different internal diameters to study the tensile strength and failure modes with the change of the ratio of internal radius to external ...Static and dynamic splitting tests were conducted on ring marble specimens with different internal diameters to study the tensile strength and failure modes with the change of the ratio of internal radius to external radius (ρ) under different loading rates. The results show that the dynamic tensile strength of disc rock specimen is approximately five times its static tensile strength. The failure modes of ring specimens are related to the dimension of the internal hole and loading rate. Under static loading tests, when the ratio of internal radius to external radius of the rock ring is small enough (ρ〈0.3), specimens mostly split along the diametral loading line. With the increase of the ratio, the secondary cracks are formed in the direction perpendicular to the loading line. Under dynamic loading tests, specimens usually break up into four pieces. When the ratio ρreaches 0.5, the secondary cracks are formed near the input bar. The tensile strength calculated by Hobbs’ formula is greater than the Brazilian splitting strength. The peak load and the radius ratio show a negative exponential relationship under static test. Using ring specimen to determine tensile strength of rock material is more like a test indicator rather than the material properties.展开更多
The splitting test is a competitive alternative method to study the tensile strength of sea ice owing to its suitability for sampling.However,the approach was questioned to the neglect of local plastic deformation dur...The splitting test is a competitive alternative method to study the tensile strength of sea ice owing to its suitability for sampling.However,the approach was questioned to the neglect of local plastic deformation during the tests.In this study,splitting tests were performed on sea ice,with 32 samples subjected to the regular procedure and 8 samples subjected to the digital image correlation method.The salinity,density,and temperature were measured to determine the total porosity.With the advantage of the digital image correlation method,the full-field deformation of the ice samples could be determined.In the loading direction,the samples mainly deformed at the ice-platen contact area.In the direction vertical to the loading,deformation appears along the central line where the splitting crack occurs.Based on the distribution of the sample deformation,a modified solution was derived to calculate the tensile strength with the maximum load.Based on the modified solution,the tensile strength was further calculated together with the splitting test results.The results show that the tensile strength has a negative correlation with the total porosity,which agrees with previous studies based on uniaxial tension tests.展开更多
An indirect tensile testing method is proposed for characterizing low strength graphite platelet reinforced vinyl ester nanocomposites at high-strain rate. In this technique, the traditional Brazilian disk (diametrica...An indirect tensile testing method is proposed for characterizing low strength graphite platelet reinforced vinyl ester nanocomposites at high-strain rate. In this technique, the traditional Brazilian disk (diametrical compression) test method for brittle materials is utilized along with conventional split-Hopkinson pressure bars (SHPB) for evaluating cylindrical disk specimens. The cylindrical disk specimen is held snugly in between two concave end fixtures attached to the incident and transmission bars. To eliminate the complexities of conventional strain gage application, a non-contact Laser Occluding Expansion Gage (LOEG) has been adapted for measuring the diametrical transverse expansion of the specimen under high-strain rate diametrical compressive loading. Failure diagnosis using high-speed digital photography validates the viability of utilizing this indirect test method for characterizing the tensile properties of xGnP (exfoliated graphite nanoplatelets) reinforced and additional CTBN (Carboxyl Terminated Butadiene Nitrile) toughened vinyl ester based nanocomposites. Also, quasi-static indirect tensile response agrees with previous investigations conducted using the traditional dog-bone specimen in direct tensile tests. Investigation of both quasi-static and dynamic indirect tensile test responses shows the strain rate effect on the tensile strength and energy absorbing capacity of the candidate materials. The contribution of reinforcement to the tensile properties of the candidate materials is presented.展开更多
Tensile strength is an important material property for rocks. In applications where rocks are subjected to dynamic loads, the dynamic tensile strength is the controlling parameter. Similar to the study of static tensi...Tensile strength is an important material property for rocks. In applications where rocks are subjected to dynamic loads, the dynamic tensile strength is the controlling parameter. Similar to the study of static tensile strength, there are various methods proposed to measure the dynamic tensile strength of rocks.Here we examine dynamic tensile strength values of Laurentian granite(LG) measured from three methods: dynamic direct tension, dynamic Brazilian disc(BD) test, and dynamic semi-circular bending(SCB). We found that the dynamic tensile strength from direct tension has the lowest value, and the dynamic SCB gives the highest strength at a given loading rate. Because the dynamic direct tension measures the intrinsic rock tensile strength, it is thus necessary to reconcile the differences in strength values between the direct tension and the other two methods. We attribute the difference between the dynamic BD results and the direct tension results to the overload and internal friction in BD tests. The difference between the dynamic SCB results and the direct tension results can be understood by invoking the non-local failure theory. It is shown that, after appropriate corrections, the dynamic tensile strengths from the two other tests can be reduced to those from direct tension.展开更多
To improve the accuracy of indirect tensile strength for a transversely isotropic rock in the Brazilian test, this study considered the three-dimensional (3D) deformation and the nonlinear stress–strain relationship....To improve the accuracy of indirect tensile strength for a transversely isotropic rock in the Brazilian test, this study considered the three-dimensional (3D) deformation and the nonlinear stress–strain relationship. A parametric study of a numerical Brazilian test was performed for a general range of elastic constants, revealing that the 3D modeling evaluated the indirect tensile strength up to 40% higher than the plane stress modeling. For the actual Asan gneiss, the 3D model evaluated the indirect tensile strength up to 10% higher and slightly enhanced the accuracy of deformation estimation compared with the plane stress model. The nonlinearity in stress–strain curve of Asan gneiss under uniaxial compression was then considered, such that the evaluated indirect tensile strength was affected by up to 10% and its anisotropy agreed well with the physical intuition. The estimation of deformation was significantly enhanced. The further validation on the nonlinear model is expected as future research.展开更多
This study empirically investigated the influence of freeze-thaw cycling on the dynamic splitting tensile properties of steel fiber reinforced concrete(SFRC).Brazilian disc splitting tests were conducted using four lo...This study empirically investigated the influence of freeze-thaw cycling on the dynamic splitting tensile properties of steel fiber reinforced concrete(SFRC).Brazilian disc splitting tests were conducted using four loading rates(0.002,0.02,0.2,and 2 mm/s)on specimens with four steel fiber contents(0%,0.6%,1.2%,and 1.8%)subjected to 0 and 50 freeze-thaw cycles.The dynamic splitting tensile damage characteristics were evaluated using acoustic emission(AE)parameter analysis and Fourier transform spectral analysis.The results quantified using the freeze-thaw damage factor defined in this paper indicate that the degree of damage to SFRC caused by freeze-thaw cycling was aggravated with increasing loading rate but mitigated by increasing fiber content.The percentage of low-frequency AE signals produced by the SFRC specimens during loading decreased with increasing loading rate,whereas that of high-frequency AE signals increased.Freeze-thaw action had little effect on the crack types observed during the early and middle stages of the loading process;however,the primary crack type observed during the later stage of loading changed from shear to tensile after the SFRC specimens were subjected to freeze-thaw cycling.Notably,the results of this study indicate that the freeze-thaw damage to SFRC reduces AE signal activity at low frequencies.展开更多
Three diferent kinds of artificially frozen soils are tested for artificial ground freezing(AGF) project in the tunnel construction of Stonecutters Island Sewage Treatment Works, Hong Kong. Uniaxial compressive test i...Three diferent kinds of artificially frozen soils are tested for artificial ground freezing(AGF) project in the tunnel construction of Stonecutters Island Sewage Treatment Works, Hong Kong. Uniaxial compressive test is conducted and uniaxial compressive strength, modulus of elasticity and Poisson's ratio are obtained. Meanwhile, relations of all these three parameters and temperature are fitted by linear function. The linear relationship between the above-mentioned parameters and temperature is suitable for engineering practice. Splitting tensile test of frozen soil is conducted to obtain tensile strength and find out failure pattern in test. All the parameters obtained are necessities in design and practice.展开更多
基于离散元法(discrete element method,DEM)建立沥青混合料二维劈裂(indirect tensile,IDT)试验模型,研究集料模型、集料形状、空隙率,以及加载方位角等因素对混合料低温劈裂虚拟试验结果(劈裂强度和最大水平拉应力)的影响。结果表明:...基于离散元法(discrete element method,DEM)建立沥青混合料二维劈裂(indirect tensile,IDT)试验模型,研究集料模型、集料形状、空隙率,以及加载方位角等因素对混合料低温劈裂虚拟试验结果(劈裂强度和最大水平拉应力)的影响。结果表明:沥青混合料低温虚拟劈裂试验时,集料模型对数值模拟计算效率、内部结构中的接触力链和裂纹扩展路径等有很大影响;实际边界模型较等效椭圆形与等效多边形模型其数值模拟结果变异性较小;空隙率大小对劈裂强度及水平向最大拉应力有显著影响,随空隙率的增大两者均有不同程度的减小;不同加载方位角下的劈裂试验数值模拟结果呈各向异性。展开更多
The dynamic failure behavior of CoCrFeNi High-Entropy Alloy(HEA)under plane biaxial stress was investigated in detail.The dynamic biaxial tensile tests were conducted using an Electromagnetic Biaxial Split Hopkinson T...The dynamic failure behavior of CoCrFeNi High-Entropy Alloy(HEA)under plane biaxial stress was investigated in detail.The dynamic biaxial tensile tests were conducted using an Electromagnetic Biaxial Split Hopkinson Tensile Bar(EBSHTB)system.For comparison,the quasi-static uniaxial and biaxial tensile tests,as well as dynamic uniaxial tensile tests,were per-formed respectively.A cruciform specimen suitable for large plastic deformation was designed and employed in the experiments.The Finite Element Method(FEM)verified that the improved cruciform specimen could satisfy the basic requirements.The feasibility of the proposed specimen was further confirmed through loading tests.Finally,the quasi-static and dynamic yield loci of the HEA in the first quadrant of the principal stress space were plotted.The results indicate that the alloy exhibits obvious strain hardening effect and strain rate strengthening effect,the yield locus and plastic work contours can be accurately described by Hill'48 criterion.展开更多
With the continuous advancement of China’s infrastructure construction to the west,according to the geographic situation in the southwest region,such as mountainous areas and complex terrain,the road construction pro...With the continuous advancement of China’s infrastructure construction to the west,according to the geographic situation in the southwest region,such as mountainous areas and complex terrain,the road construction process is inevitably accompanied by earth and rock blasting.To improve the quality and safety of the project,this paper addresses the problems of land and rock blasting faced in the construction of mountain road projects,taking the research of rock dynamic mechanics test as the starting point,and using a combination of theoretical analysis and experimental research methods.The specific research content includes the following parts:dynamic impact compression test(SHPB),dynamic splitting tensile test,and stress-strain curve analysis of the test results,which provides the theoretical basis and numerical parameters for the numerical simulation of future engineering blasting.展开更多
基金Project(2015CB060200)supported by the National Basic Research Program of ChinaProject(51474250)supported by the National Natural Science Foundation of ChinaProject(2015JJ3166)supported by the Natural Science Foundation of Hunan Province,China
文摘Static and dynamic splitting tests were conducted on ring marble specimens with different internal diameters to study the tensile strength and failure modes with the change of the ratio of internal radius to external radius (ρ) under different loading rates. The results show that the dynamic tensile strength of disc rock specimen is approximately five times its static tensile strength. The failure modes of ring specimens are related to the dimension of the internal hole and loading rate. Under static loading tests, when the ratio of internal radius to external radius of the rock ring is small enough (ρ〈0.3), specimens mostly split along the diametral loading line. With the increase of the ratio, the secondary cracks are formed in the direction perpendicular to the loading line. Under dynamic loading tests, specimens usually break up into four pieces. When the ratio ρreaches 0.5, the secondary cracks are formed near the input bar. The tensile strength calculated by Hobbs’ formula is greater than the Brazilian splitting strength. The peak load and the radius ratio show a negative exponential relationship under static test. Using ring specimen to determine tensile strength of rock material is more like a test indicator rather than the material properties.
基金This study was supported financially by the National Key Research and Development Program of China(Grant no.2018YFA0605902)the National Natural Science Foundation of China(Grant no.52101300)+1 种基金the Fundamental Research Funds for the Central Universities(Grant no.DUT21LK03)Joint Scientific Research Fund Project of DBJI(Grant no.ICR2102).
文摘The splitting test is a competitive alternative method to study the tensile strength of sea ice owing to its suitability for sampling.However,the approach was questioned to the neglect of local plastic deformation during the tests.In this study,splitting tests were performed on sea ice,with 32 samples subjected to the regular procedure and 8 samples subjected to the digital image correlation method.The salinity,density,and temperature were measured to determine the total porosity.With the advantage of the digital image correlation method,the full-field deformation of the ice samples could be determined.In the loading direction,the samples mainly deformed at the ice-platen contact area.In the direction vertical to the loading,deformation appears along the central line where the splitting crack occurs.Based on the distribution of the sample deformation,a modified solution was derived to calculate the tensile strength with the maximum load.Based on the modified solution,the tensile strength was further calculated together with the splitting test results.The results show that the tensile strength has a negative correlation with the total porosity,which agrees with previous studies based on uniaxial tension tests.
文摘An indirect tensile testing method is proposed for characterizing low strength graphite platelet reinforced vinyl ester nanocomposites at high-strain rate. In this technique, the traditional Brazilian disk (diametrical compression) test method for brittle materials is utilized along with conventional split-Hopkinson pressure bars (SHPB) for evaluating cylindrical disk specimens. The cylindrical disk specimen is held snugly in between two concave end fixtures attached to the incident and transmission bars. To eliminate the complexities of conventional strain gage application, a non-contact Laser Occluding Expansion Gage (LOEG) has been adapted for measuring the diametrical transverse expansion of the specimen under high-strain rate diametrical compressive loading. Failure diagnosis using high-speed digital photography validates the viability of utilizing this indirect test method for characterizing the tensile properties of xGnP (exfoliated graphite nanoplatelets) reinforced and additional CTBN (Carboxyl Terminated Butadiene Nitrile) toughened vinyl ester based nanocomposites. Also, quasi-static indirect tensile response agrees with previous investigations conducted using the traditional dog-bone specimen in direct tensile tests. Investigation of both quasi-static and dynamic indirect tensile test responses shows the strain rate effect on the tensile strength and energy absorbing capacity of the candidate materials. The contribution of reinforcement to the tensile properties of the candidate materials is presented.
基金provided by the Innovative Research Groups of Natural Science Foundation of China (NSFC) (Grant No. 51321065)NSFC (Grant No. 51479131)The research of Kaiwen Xia was partially supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) through the Discovery (Grant No. 72031326)
文摘Tensile strength is an important material property for rocks. In applications where rocks are subjected to dynamic loads, the dynamic tensile strength is the controlling parameter. Similar to the study of static tensile strength, there are various methods proposed to measure the dynamic tensile strength of rocks.Here we examine dynamic tensile strength values of Laurentian granite(LG) measured from three methods: dynamic direct tension, dynamic Brazilian disc(BD) test, and dynamic semi-circular bending(SCB). We found that the dynamic tensile strength from direct tension has the lowest value, and the dynamic SCB gives the highest strength at a given loading rate. Because the dynamic direct tension measures the intrinsic rock tensile strength, it is thus necessary to reconcile the differences in strength values between the direct tension and the other two methods. We attribute the difference between the dynamic BD results and the direct tension results to the overload and internal friction in BD tests. The difference between the dynamic SCB results and the direct tension results can be understood by invoking the non-local failure theory. It is shown that, after appropriate corrections, the dynamic tensile strengths from the two other tests can be reduced to those from direct tension.
基金supported by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(Grant No.2023R1 A2C1004298)a grant from the Human Resources Development program(Grant No.20204010600250)of the Korea Institute of Energy Technology Evaluation and Planning(KETEP),funded by the Ministry of Trade,Industry,and Energy of the Korean Government.
文摘To improve the accuracy of indirect tensile strength for a transversely isotropic rock in the Brazilian test, this study considered the three-dimensional (3D) deformation and the nonlinear stress–strain relationship. A parametric study of a numerical Brazilian test was performed for a general range of elastic constants, revealing that the 3D modeling evaluated the indirect tensile strength up to 40% higher than the plane stress modeling. For the actual Asan gneiss, the 3D model evaluated the indirect tensile strength up to 10% higher and slightly enhanced the accuracy of deformation estimation compared with the plane stress model. The nonlinearity in stress–strain curve of Asan gneiss under uniaxial compression was then considered, such that the evaluated indirect tensile strength was affected by up to 10% and its anisotropy agreed well with the physical intuition. The estimation of deformation was significantly enhanced. The further validation on the nonlinear model is expected as future research.
文摘This study empirically investigated the influence of freeze-thaw cycling on the dynamic splitting tensile properties of steel fiber reinforced concrete(SFRC).Brazilian disc splitting tests were conducted using four loading rates(0.002,0.02,0.2,and 2 mm/s)on specimens with four steel fiber contents(0%,0.6%,1.2%,and 1.8%)subjected to 0 and 50 freeze-thaw cycles.The dynamic splitting tensile damage characteristics were evaluated using acoustic emission(AE)parameter analysis and Fourier transform spectral analysis.The results quantified using the freeze-thaw damage factor defined in this paper indicate that the degree of damage to SFRC caused by freeze-thaw cycling was aggravated with increasing loading rate but mitigated by increasing fiber content.The percentage of low-frequency AE signals produced by the SFRC specimens during loading decreased with increasing loading rate,whereas that of high-frequency AE signals increased.Freeze-thaw action had little effect on the crack types observed during the early and middle stages of the loading process;however,the primary crack type observed during the later stage of loading changed from shear to tensile after the SFRC specimens were subjected to freeze-thaw cycling.Notably,the results of this study indicate that the freeze-thaw damage to SFRC reduces AE signal activity at low frequencies.
基金the National Natural Science Foundation of China(No.51178336)
文摘Three diferent kinds of artificially frozen soils are tested for artificial ground freezing(AGF) project in the tunnel construction of Stonecutters Island Sewage Treatment Works, Hong Kong. Uniaxial compressive test is conducted and uniaxial compressive strength, modulus of elasticity and Poisson's ratio are obtained. Meanwhile, relations of all these three parameters and temperature are fitted by linear function. The linear relationship between the above-mentioned parameters and temperature is suitable for engineering practice. Splitting tensile test of frozen soil is conducted to obtain tensile strength and find out failure pattern in test. All the parameters obtained are necessities in design and practice.
文摘基于离散元法(discrete element method,DEM)建立沥青混合料二维劈裂(indirect tensile,IDT)试验模型,研究集料模型、集料形状、空隙率,以及加载方位角等因素对混合料低温劈裂虚拟试验结果(劈裂强度和最大水平拉应力)的影响。结果表明:沥青混合料低温虚拟劈裂试验时,集料模型对数值模拟计算效率、内部结构中的接触力链和裂纹扩展路径等有很大影响;实际边界模型较等效椭圆形与等效多边形模型其数值模拟结果变异性较小;空隙率大小对劈裂强度及水平向最大拉应力有显著影响,随空隙率的增大两者均有不同程度的减小;不同加载方位角下的劈裂试验数值模拟结果呈各向异性。
基金supported by the National Natural Science Foundation of China (Nos.11922211,11832015,11527803)the 111 Project,China (No.BP0719007)the Science Challenge Project,China (No.TZ2018001).
文摘The dynamic failure behavior of CoCrFeNi High-Entropy Alloy(HEA)under plane biaxial stress was investigated in detail.The dynamic biaxial tensile tests were conducted using an Electromagnetic Biaxial Split Hopkinson Tensile Bar(EBSHTB)system.For comparison,the quasi-static uniaxial and biaxial tensile tests,as well as dynamic uniaxial tensile tests,were per-formed respectively.A cruciform specimen suitable for large plastic deformation was designed and employed in the experiments.The Finite Element Method(FEM)verified that the improved cruciform specimen could satisfy the basic requirements.The feasibility of the proposed specimen was further confirmed through loading tests.Finally,the quasi-static and dynamic yield loci of the HEA in the first quadrant of the principal stress space were plotted.The results indicate that the alloy exhibits obvious strain hardening effect and strain rate strengthening effect,the yield locus and plastic work contours can be accurately described by Hill'48 criterion.
文摘With the continuous advancement of China’s infrastructure construction to the west,according to the geographic situation in the southwest region,such as mountainous areas and complex terrain,the road construction process is inevitably accompanied by earth and rock blasting.To improve the quality and safety of the project,this paper addresses the problems of land and rock blasting faced in the construction of mountain road projects,taking the research of rock dynamic mechanics test as the starting point,and using a combination of theoretical analysis and experimental research methods.The specific research content includes the following parts:dynamic impact compression test(SHPB),dynamic splitting tensile test,and stress-strain curve analysis of the test results,which provides the theoretical basis and numerical parameters for the numerical simulation of future engineering blasting.