Inflammation is closely related to stroke prognosis, and high inflammation status leads to poor functional outcome in stroke. DNA methylation is involved in the pathogenesis and prognosis of stroke. However, the effec...Inflammation is closely related to stroke prognosis, and high inflammation status leads to poor functional outcome in stroke. DNA methylation is involved in the pathogenesis and prognosis of stroke. However, the effect of DNA methylation on stroke at high levels of inflammation is unclear. In this study, we constructed a hyperinflammatory cerebral ischemia mouse model and investigated the effect of hypomethylation and hypermethylation on the functional outcome. We constructed a mouse model of transient middle cerebral artery occlusion and treated the mice with lipopolysaccharide to induce a hyperinflammatory state. To investigate the effect of DNA methylation on stroke, we used small molecule inhibitors to restrain the function of key DNA methylation and demethylation enzymes. 2,3,5-Triphenyltetrazolium chloride staining, neurological function scores, neurobehavioral tests, enzyme-linked immunosorbent assay, quantitative reverse transcription PCR and western blot assay were used to evaluate the effects after stroke in mice. We assessed changes in the global methylation status by measuring DNA 5-mc and DNA 5-hmc levels in peripheral blood after the use of the inhibitor. In the group treated with the DNA methylation inhibitor, brain tissue 2,3,5-triphenyltetrazolium chloride staining showed an increase in infarct volume, which was accompanied by a decrease in neurological scores and worsening of neurobehavioral performance. The levels of inflammatory factors interleukin 6 and interleukin-1 beta in ischemic brain tissue and plasma were elevated, indicating increased inflammation. Related inflammatory pathway exploration showed significant overactivation of nuclear factor kappa B. These results suggested that inhibiting DNA methylation led to poor functional outcome in mice with high inflammation following stroke. Further, the effects were reversed by inhibition of DNA demethylation. Our findings suggest that DNA methylation regulates the inflammatory response in stroke and has an important role in the functional outcome of hyperinflammatory stroke.展开更多
This paper introduces a hybrid approach combining Green’s function Monte Carlo(GFMC)method with projected entangled pair state(PEPS)ansatz.This hybrid method regards PEPS as a trial state and a guiding wave function ...This paper introduces a hybrid approach combining Green’s function Monte Carlo(GFMC)method with projected entangled pair state(PEPS)ansatz.This hybrid method regards PEPS as a trial state and a guiding wave function in GFMC.By leveraging PEPS’s proficiency in capturing quantum state entanglement and GFMC’s efficient parallel architecture,the hybrid method is well-suited for the accurate and efficient treatment of frustrated quantum spin systems.As a benchmark,we applied this approach to study the frustrated J_(1)–J_(2) Heisenberg model on a square lattice with periodic boundary conditions(PBCs).Compared with other numerical methods,our approach integrating PEPS and GFMC shows competitive accuracy in the performance of ground-state energy.This paper provides systematic and comprehensive discussion of the approach of our previous work[Phys.Rev.B 109235133(2024)].展开更多
To conveniently calculate the Wigner function of the optical cumulant operator and its dissipation evolution in a thermal environment, in this paper, the thermo-entangled state representation is introduced to derive t...To conveniently calculate the Wigner function of the optical cumulant operator and its dissipation evolution in a thermal environment, in this paper, the thermo-entangled state representation is introduced to derive the general evolution formula of the Wigner function, and its relation to Weyl correspondence is also discussed. The method of integration within the ordered product of operators is essential to our discussion.展开更多
With the widespread application of artificial permanent pacemakers in clinical practice,there have been new changes in the indications for pacemaker implantation.The current clinical indications include high atriovent...With the widespread application of artificial permanent pacemakers in clinical practice,there have been new changes in the indications for pacemaker implantation.The current clinical indications include high atrioventricular block,sick sinus syndrome,cardiac resynchronization therapy for heart failure,and implantation of cardioverter defibrillators for ventricular arrhythmias.The implantation of a pacemaker can improve the quality of life and prognosis of patients with arrhythmia.In the past,permanent pacemaker implantation was performed in clinical practice,and the right ventricular pacing electrode was often fixed at the apex of the right ventricle,which belongs to non physiological pacing.Through long-term clinical follow-up,it was found that apex pacing can easily cause abnormal depolarization of the left ventricle,asynchronous contraction of the myocardium,and ultimately lead to myocardial fibrosis,which has adverse effects on the patient's cardiac function and psychological state.In recent years,Scholars have found that pacing in the right ventricular outflow tract septum is closer to the atrioventricular node and closer to the His bundle Purkinje fibers.The pacing impulse almost simultaneously expands towards both ventricles,closer to the physiological pacing state,thereby reducing the occurrence of cardiovascular events in patients.This article explores the impact of pacing in different parts of the heart on the cardiac function and psychological state of patients based on clinical data from the past three years.展开更多
Objective:To analyze the effect of continuity of care in the cardiac intensive care unit(CICU)on improving cognitive function and psychological state in patients with heart failure(HF).Methods:A total of 112 chronic H...Objective:To analyze the effect of continuity of care in the cardiac intensive care unit(CICU)on improving cognitive function and psychological state in patients with heart failure(HF).Methods:A total of 112 chronic HF patients admitted to the CICU of Xuzhou Traditional Chinese Medicine Hospital from July 2022 to August 2024 were selected and randomly divided into two groups using the red and blue ball method:a control group(n=56)and a study group(n=56).The control group received routine CICU nursing management,while the study group received routine CICU nursing combined with continuity of care management.Cognitive function(using the Montreal Cognitive Assessment,MoCA),psychological state(using the Self-Rating Depression Scale,SDS,and Self-Rating Anxiety Scale,SAS),and quality of life(using the Minnesota Living with Heart Failure Questionnaire,MLHFQ)were compared between the two groups.Results:After the intervention,the cognitive function scores of the study group were significantly higher than those of the control group(P<0.05).The SDS and SAS scores of the study group were significantly lower than those of the control group after the intervention(P<0.05).The quality of life in the study group was also significantly better than in the control group(P<0.05).Conclusion:CICU continuity of care can effectively improve cognitive function and psychological state in patients with HF,while also enhancing their quality of life.展开更多
The subthalamic nucleus(STN)is considered the best target for deep brain stimulation treatments of Parkinson’s disease(PD).It is difficult to localize the STN due to its small size and deep location.Multichannel micr...The subthalamic nucleus(STN)is considered the best target for deep brain stimulation treatments of Parkinson’s disease(PD).It is difficult to localize the STN due to its small size and deep location.Multichannel microelectrode arrays(MEAs)can rapidly and precisely locate the STN,which is important for precise stimulation.In this paper,16-channel MEAs modified with multiwalled carbon nanotube/poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate)(MWCNT/PEDOT:PSS)nanocomposites were designed and fabricated,and the accurate and rapid identification of the STN in PD rats was performed using detection sites distributed at different brain depths.These results showed that nuclei in 6-hydroxydopamine hydrobromide(6-OHDA)-lesioned brains discharged more intensely than those in unlesioned brains.In addition,the MEA simultaneously acquired neural signals from both the STN and the upper or lower boundary nuclei of the STN.Moreover,higher values of spike firing rate,spike amplitude,local field potential(LFP)power,and beta oscillations were detected in the STN of the 6-OHDA-lesioned brain,and may therefore be biomarkers of STN localization.Compared with the STNs of unlesioned brains,the power spectral density of spikes and LFPs synchronously decreased in the delta band and increased in the beta band of 6-OHDA-lesioned brains.This may be a cause of sleep and motor disorders associated with PD.Overall,this work describes a new cellular-level localization and detection method and provides a tool for future studies of deep brain nuclei.展开更多
In many engineering networks, only a part of target state variables are required to be estimated.On the other hand,multi-layer complex network exists widely in practical situations.In this paper, the state estimation ...In many engineering networks, only a part of target state variables are required to be estimated.On the other hand,multi-layer complex network exists widely in practical situations.In this paper, the state estimation of target state variables in multi-layer complex dynamical networks with nonlinear node dynamics is studied.A suitable functional state observer is constructed with the limited measurement.The parameters of the designed functional observer are obtained from the algebraic method and the stability of the functional observer is proven by the Lyapunov theorem.Some necessary conditions that need to be satisfied for the design of the functional state observer are obtained.Different from previous studies, in the multi-layer complex dynamical network with nonlinear node dynamics, the proposed method can estimate the state of target variables on some layers directly instead of estimating all the individual states.Thus, it can greatly reduce the placement of observers and computational cost.Numerical simulations with the three-layer complex dynamical network composed of three-dimensional nonlinear dynamical nodes are developed to verify the effectiveness of the method.展开更多
In this paper,by choosing some appropriate test functions,we prove the Weyl’s lemma for triharmonic functions based on the new type of mean value formulas.
In this paper,we mainly focus on the following Choquard equation-{△u-V(x)(I_(a*)|u|^(p))|u|^(p-2)u=λu,x∈R^(N),u∈H^(1)(R^(N))where N≥1,λ∈R will arise as a Lagrange multiplier,0<a<N and N+a/N<p<N+a+2/...In this paper,we mainly focus on the following Choquard equation-{△u-V(x)(I_(a*)|u|^(p))|u|^(p-2)u=λu,x∈R^(N),u∈H^(1)(R^(N))where N≥1,λ∈R will arise as a Lagrange multiplier,0<a<N and N+a/N<p<N+a+2/N Under appropriate hypotheses on V(x),we prove that the above Choquard equation has a normalized ground state solution by utilizing variational methods.展开更多
One of the most effective methods for sand control is the chemical consolidation of sandstone structures.In this paper,the impacts of crude oil and brine in the static state and the impact of the flow rates of the flu...One of the most effective methods for sand control is the chemical consolidation of sandstone structures.In this paper,the impacts of crude oil and brine in the static state and the impact of the flow rates of the fluids in the dynamic state have been assessed at the reservoir conditions.The analyses in this research were Young’s modulus,compressive strength,porosity,and permeability which were done on core samples after and before fluid contact.Samples made with two different resins showed good resistance to crude oil in both states.No considerable change was seen in the analyses even at high crude oil injection rates in the dynamic state.Conversely,brine caused a noticeable change in the analyses in both states.In the presence of brine at the static state,Young’s modulus and compressive strength respectively decreased by 37.5%and 34.5%for epoxy cores,whereas these parameters respectively reduced by 30%and 41%for furan cores.In brine presence at the dynamic state,compressive strength reduction was 10.28 MPa for furan and 6.28 MPa for epoxy samples and their compressive strength reached 16.75 MPa and 26.54 MPa respectively which are higher than the critical point to be known as weak sandstone core.Moreover,Young’s modulus decrease values for furan and epoxy samples were respectively 0.37 GPa and 0.44 GPa.Therefore,brine had a more destructive effect on the mechanical characteristics of samples in the static state than the dynamic one for two resins.In addition,brine injection increased permeability by about 13.6%for furan and 34.8%for epoxy.Also,porosity raised by about 21.8%for furan,and 19%for epoxy by brine injection.The results showed that the chemical sand consolidation weakens in the face of brine production along with crude oil which can lead to increasing cost of oil production and treating wellbore again.展开更多
A generalized form of the error function, Gp(x)=pΓ(1/p)∫0xe−tpdt, which is directly associated with the gamma function, is evaluated for arbitrary real values of p>1and 0x≤+∞by employing a fast-converging power...A generalized form of the error function, Gp(x)=pΓ(1/p)∫0xe−tpdt, which is directly associated with the gamma function, is evaluated for arbitrary real values of p>1and 0x≤+∞by employing a fast-converging power series expansion developed in resolving the so-called Grandi’s paradox. Comparisons with accurate tabulated values for well-known cases such as the error function are presented using the expansions truncated at various orders.展开更多
The solution of Poisson’s Equation plays an important role in many areas, including modeling high-intensity and high-brightness beams in particle accelerators. For the computational domain with a large aspect ratio, ...The solution of Poisson’s Equation plays an important role in many areas, including modeling high-intensity and high-brightness beams in particle accelerators. For the computational domain with a large aspect ratio, the integrated Green’s function method has been adopted to solve the 3D Poisson equation subject to open boundary conditions. In this paper, we report on the efficient implementation of this method, which can save more than a factor of 50 computing time compared with the direct brute force implementation and its improvement under certain extreme conditions.展开更多
Water pollution regarding dyes and heavy metal ions is crucial facing the world.How to effectively separate these contaminants from water has been a key issue.Graphene oxide(GO)promises the greenwater world as a long-...Water pollution regarding dyes and heavy metal ions is crucial facing the world.How to effectively separate these contaminants from water has been a key issue.Graphene oxide(GO)promises the greenwater world as a long-lasting spotlight adsorbent material and therefore,harnessing GO has been the research hotspot for over a decade.The state of GO as well as its surface functional groups plays an important role in adsorption.And the way of preparation and structural modification matters to the performance of GO.In this review,the significance of the state of existence of stock GO and surface functional groups is explored in terms of preparation,structural modification,and adsorption.Besides,various adsorbates for GO adsorption are also involved,the discussion of which is rarely established elsewhere.展开更多
This paper is concerned with the following fourth-order three-point boundary value problem , where , we discuss the existence of positive solutions to the above problem by applying to the fixed point theory in cones a...This paper is concerned with the following fourth-order three-point boundary value problem , where , we discuss the existence of positive solutions to the above problem by applying to the fixed point theory in cones and iterative technique.展开更多
For a set S of real numbers, we introduce the concept of S-almost automorphic functions valued in a Banach space. It generalizes in particular the space of Z-almost automorphic functions. Considering the space of S-al...For a set S of real numbers, we introduce the concept of S-almost automorphic functions valued in a Banach space. It generalizes in particular the space of Z-almost automorphic functions. Considering the space of S-almost automorphic functions, we give sufficient conditions of the existence and uniqueness of almost automorphic solutions of a differential equation with a piecewise constant argument of generalized type. This is done using the Banach fixed point theorem.展开更多
基金supported by the National Natural Science Foundation of China,No.82171270 (to ZL)Public Service Platform for Artificial In telligence Screening and Auxiliary Diagnosis for the Medical and Health Industry,Ministry of Industry and Information Technology of the People's Republic of China,No.2020-0103-3-1 (to ZL)+3 种基金the Natural Science Foundation of Beijing,No.Z200016 (to ZL)Beijing Talents Project,No.2018000021223ZK03 (to ZL)Beijing Municipal Committee of Science and Technology,No.Z201 100005620010 (to ZL)CAMS Innovation Fund for Medical Sciences,No.2019-I2M-5-029 (to YongW)。
文摘Inflammation is closely related to stroke prognosis, and high inflammation status leads to poor functional outcome in stroke. DNA methylation is involved in the pathogenesis and prognosis of stroke. However, the effect of DNA methylation on stroke at high levels of inflammation is unclear. In this study, we constructed a hyperinflammatory cerebral ischemia mouse model and investigated the effect of hypomethylation and hypermethylation on the functional outcome. We constructed a mouse model of transient middle cerebral artery occlusion and treated the mice with lipopolysaccharide to induce a hyperinflammatory state. To investigate the effect of DNA methylation on stroke, we used small molecule inhibitors to restrain the function of key DNA methylation and demethylation enzymes. 2,3,5-Triphenyltetrazolium chloride staining, neurological function scores, neurobehavioral tests, enzyme-linked immunosorbent assay, quantitative reverse transcription PCR and western blot assay were used to evaluate the effects after stroke in mice. We assessed changes in the global methylation status by measuring DNA 5-mc and DNA 5-hmc levels in peripheral blood after the use of the inhibitor. In the group treated with the DNA methylation inhibitor, brain tissue 2,3,5-triphenyltetrazolium chloride staining showed an increase in infarct volume, which was accompanied by a decrease in neurological scores and worsening of neurobehavioral performance. The levels of inflammatory factors interleukin 6 and interleukin-1 beta in ischemic brain tissue and plasma were elevated, indicating increased inflammation. Related inflammatory pathway exploration showed significant overactivation of nuclear factor kappa B. These results suggested that inhibiting DNA methylation led to poor functional outcome in mice with high inflammation following stroke. Further, the effects were reversed by inhibition of DNA demethylation. Our findings suggest that DNA methylation regulates the inflammatory response in stroke and has an important role in the functional outcome of hyperinflammatory stroke.
基金Project supported by the National Natural Science Foundation of China(Grant No.11934020)the Innovation Program for Quantum Science and Technology(Grant No.2021ZD0302402).
文摘This paper introduces a hybrid approach combining Green’s function Monte Carlo(GFMC)method with projected entangled pair state(PEPS)ansatz.This hybrid method regards PEPS as a trial state and a guiding wave function in GFMC.By leveraging PEPS’s proficiency in capturing quantum state entanglement and GFMC’s efficient parallel architecture,the hybrid method is well-suited for the accurate and efficient treatment of frustrated quantum spin systems.As a benchmark,we applied this approach to study the frustrated J_(1)–J_(2) Heisenberg model on a square lattice with periodic boundary conditions(PBCs).Compared with other numerical methods,our approach integrating PEPS and GFMC shows competitive accuracy in the performance of ground-state energy.This paper provides systematic and comprehensive discussion of the approach of our previous work[Phys.Rev.B 109235133(2024)].
基金Project supported by the Foundation for Young Talents in College of Anhui Province, China (Grant Nos. gxyq2021210 and gxyq2019077)the Natural Science Foundation of the Anhui Higher Education Institutions, China (Grant Nos. 2022AH051580 and 2022AH051586)。
文摘To conveniently calculate the Wigner function of the optical cumulant operator and its dissipation evolution in a thermal environment, in this paper, the thermo-entangled state representation is introduced to derive the general evolution formula of the Wigner function, and its relation to Weyl correspondence is also discussed. The method of integration within the ordered product of operators is essential to our discussion.
文摘With the widespread application of artificial permanent pacemakers in clinical practice,there have been new changes in the indications for pacemaker implantation.The current clinical indications include high atrioventricular block,sick sinus syndrome,cardiac resynchronization therapy for heart failure,and implantation of cardioverter defibrillators for ventricular arrhythmias.The implantation of a pacemaker can improve the quality of life and prognosis of patients with arrhythmia.In the past,permanent pacemaker implantation was performed in clinical practice,and the right ventricular pacing electrode was often fixed at the apex of the right ventricle,which belongs to non physiological pacing.Through long-term clinical follow-up,it was found that apex pacing can easily cause abnormal depolarization of the left ventricle,asynchronous contraction of the myocardium,and ultimately lead to myocardial fibrosis,which has adverse effects on the patient's cardiac function and psychological state.In recent years,Scholars have found that pacing in the right ventricular outflow tract septum is closer to the atrioventricular node and closer to the His bundle Purkinje fibers.The pacing impulse almost simultaneously expands towards both ventricles,closer to the physiological pacing state,thereby reducing the occurrence of cardiovascular events in patients.This article explores the impact of pacing in different parts of the heart on the cardiac function and psychological state of patients based on clinical data from the past three years.
文摘Objective:To analyze the effect of continuity of care in the cardiac intensive care unit(CICU)on improving cognitive function and psychological state in patients with heart failure(HF).Methods:A total of 112 chronic HF patients admitted to the CICU of Xuzhou Traditional Chinese Medicine Hospital from July 2022 to August 2024 were selected and randomly divided into two groups using the red and blue ball method:a control group(n=56)and a study group(n=56).The control group received routine CICU nursing management,while the study group received routine CICU nursing combined with continuity of care management.Cognitive function(using the Montreal Cognitive Assessment,MoCA),psychological state(using the Self-Rating Depression Scale,SDS,and Self-Rating Anxiety Scale,SAS),and quality of life(using the Minnesota Living with Heart Failure Questionnaire,MLHFQ)were compared between the two groups.Results:After the intervention,the cognitive function scores of the study group were significantly higher than those of the control group(P<0.05).The SDS and SAS scores of the study group were significantly lower than those of the control group after the intervention(P<0.05).The quality of life in the study group was also significantly better than in the control group(P<0.05).Conclusion:CICU continuity of care can effectively improve cognitive function and psychological state in patients with HF,while also enhancing their quality of life.
基金funded by the National Natural Science Foundation of China(Nos.L2224042,T2293731,62121003,61960206012,61973292,62171434,61975206,and 61971400)the Frontier Interdisciplinary Project of the Chinese Academy of Sciences(No.XK2022XXC003)+2 种基金the National Key Research and Development Program of China(Nos.2022YFC2402501 and 2022YFB3205602)the Major Program of Scientific and Technical Innovation 2030(No.2021ZD02016030)the Scientific Instrument Developing Project of he Chinese Academy of Sciences(No.GJJSTD20210004).
文摘The subthalamic nucleus(STN)is considered the best target for deep brain stimulation treatments of Parkinson’s disease(PD).It is difficult to localize the STN due to its small size and deep location.Multichannel microelectrode arrays(MEAs)can rapidly and precisely locate the STN,which is important for precise stimulation.In this paper,16-channel MEAs modified with multiwalled carbon nanotube/poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate)(MWCNT/PEDOT:PSS)nanocomposites were designed and fabricated,and the accurate and rapid identification of the STN in PD rats was performed using detection sites distributed at different brain depths.These results showed that nuclei in 6-hydroxydopamine hydrobromide(6-OHDA)-lesioned brains discharged more intensely than those in unlesioned brains.In addition,the MEA simultaneously acquired neural signals from both the STN and the upper or lower boundary nuclei of the STN.Moreover,higher values of spike firing rate,spike amplitude,local field potential(LFP)power,and beta oscillations were detected in the STN of the 6-OHDA-lesioned brain,and may therefore be biomarkers of STN localization.Compared with the STNs of unlesioned brains,the power spectral density of spikes and LFPs synchronously decreased in the delta band and increased in the beta band of 6-OHDA-lesioned brains.This may be a cause of sleep and motor disorders associated with PD.Overall,this work describes a new cellular-level localization and detection method and provides a tool for future studies of deep brain nuclei.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.62373197 and 61873326)。
文摘In many engineering networks, only a part of target state variables are required to be estimated.On the other hand,multi-layer complex network exists widely in practical situations.In this paper, the state estimation of target state variables in multi-layer complex dynamical networks with nonlinear node dynamics is studied.A suitable functional state observer is constructed with the limited measurement.The parameters of the designed functional observer are obtained from the algebraic method and the stability of the functional observer is proven by the Lyapunov theorem.Some necessary conditions that need to be satisfied for the design of the functional state observer are obtained.Different from previous studies, in the multi-layer complex dynamical network with nonlinear node dynamics, the proposed method can estimate the state of target variables on some layers directly instead of estimating all the individual states.Thus, it can greatly reduce the placement of observers and computational cost.Numerical simulations with the three-layer complex dynamical network composed of three-dimensional nonlinear dynamical nodes are developed to verify the effectiveness of the method.
基金Supported by National Natural Science Foundation of China(Grant Nos.11801006 and 12071489).
文摘In this paper,by choosing some appropriate test functions,we prove the Weyl’s lemma for triharmonic functions based on the new type of mean value formulas.
基金Supported by National Natural Science Foundation of China(Grant Nos.11671403 and 11671236)Henan Provincial General Natural Science Foundation Project(Grant No.232300420113)National Natural Science Foundation of China Youth Foud of China Youth Foud(Grant No.12101192).
文摘In this paper,we mainly focus on the following Choquard equation-{△u-V(x)(I_(a*)|u|^(p))|u|^(p-2)u=λu,x∈R^(N),u∈H^(1)(R^(N))where N≥1,λ∈R will arise as a Lagrange multiplier,0<a<N and N+a/N<p<N+a+2/N Under appropriate hypotheses on V(x),we prove that the above Choquard equation has a normalized ground state solution by utilizing variational methods.
文摘One of the most effective methods for sand control is the chemical consolidation of sandstone structures.In this paper,the impacts of crude oil and brine in the static state and the impact of the flow rates of the fluids in the dynamic state have been assessed at the reservoir conditions.The analyses in this research were Young’s modulus,compressive strength,porosity,and permeability which were done on core samples after and before fluid contact.Samples made with two different resins showed good resistance to crude oil in both states.No considerable change was seen in the analyses even at high crude oil injection rates in the dynamic state.Conversely,brine caused a noticeable change in the analyses in both states.In the presence of brine at the static state,Young’s modulus and compressive strength respectively decreased by 37.5%and 34.5%for epoxy cores,whereas these parameters respectively reduced by 30%and 41%for furan cores.In brine presence at the dynamic state,compressive strength reduction was 10.28 MPa for furan and 6.28 MPa for epoxy samples and their compressive strength reached 16.75 MPa and 26.54 MPa respectively which are higher than the critical point to be known as weak sandstone core.Moreover,Young’s modulus decrease values for furan and epoxy samples were respectively 0.37 GPa and 0.44 GPa.Therefore,brine had a more destructive effect on the mechanical characteristics of samples in the static state than the dynamic one for two resins.In addition,brine injection increased permeability by about 13.6%for furan and 34.8%for epoxy.Also,porosity raised by about 21.8%for furan,and 19%for epoxy by brine injection.The results showed that the chemical sand consolidation weakens in the face of brine production along with crude oil which can lead to increasing cost of oil production and treating wellbore again.
文摘A generalized form of the error function, Gp(x)=pΓ(1/p)∫0xe−tpdt, which is directly associated with the gamma function, is evaluated for arbitrary real values of p>1and 0x≤+∞by employing a fast-converging power series expansion developed in resolving the so-called Grandi’s paradox. Comparisons with accurate tabulated values for well-known cases such as the error function are presented using the expansions truncated at various orders.
文摘The solution of Poisson’s Equation plays an important role in many areas, including modeling high-intensity and high-brightness beams in particle accelerators. For the computational domain with a large aspect ratio, the integrated Green’s function method has been adopted to solve the 3D Poisson equation subject to open boundary conditions. In this paper, we report on the efficient implementation of this method, which can save more than a factor of 50 computing time compared with the direct brute force implementation and its improvement under certain extreme conditions.
基金supported by the National Natural Science Foundation of China(51902007)。
文摘Water pollution regarding dyes and heavy metal ions is crucial facing the world.How to effectively separate these contaminants from water has been a key issue.Graphene oxide(GO)promises the greenwater world as a long-lasting spotlight adsorbent material and therefore,harnessing GO has been the research hotspot for over a decade.The state of GO as well as its surface functional groups plays an important role in adsorption.And the way of preparation and structural modification matters to the performance of GO.In this review,the significance of the state of existence of stock GO and surface functional groups is explored in terms of preparation,structural modification,and adsorption.Besides,various adsorbates for GO adsorption are also involved,the discussion of which is rarely established elsewhere.
文摘This paper is concerned with the following fourth-order three-point boundary value problem , where , we discuss the existence of positive solutions to the above problem by applying to the fixed point theory in cones and iterative technique.
文摘For a set S of real numbers, we introduce the concept of S-almost automorphic functions valued in a Banach space. It generalizes in particular the space of Z-almost automorphic functions. Considering the space of S-almost automorphic functions, we give sufficient conditions of the existence and uniqueness of almost automorphic solutions of a differential equation with a piecewise constant argument of generalized type. This is done using the Banach fixed point theorem.