In the Changqing Oilfield in northwest China, when traditional petroleum exploitation encounters forestry reserves or water source protection areas, sectorial well-factory design is proposed. The most distinct feature...In the Changqing Oilfield in northwest China, when traditional petroleum exploitation encounters forestry reserves or water source protection areas, sectorial well-factory design is proposed. The most distinct feature of a sectorial well-factory is the deviation of the well from the minimum horizontal principal stress, resulting in hydraulic fracture deflection after the initiation, along with possible well interference (i.e., fracture hit) and fracture coalescence in the oblique wells. Four indexes describing well deflection are then proposed according to fracture morphology. Several fracturing designs, including stage arrangement, fracturing sequences, and fracturing techniques are applied to study the feasibility of the sectorial well-factory design. The results show that the “gradual” or “sparse” stage arrangement, large injection rate, and simultaneous multifracture treatment can help to optimize the fracture morphology and stimulation design. However, the subsequent stress shadowing effect usually adversely affects the fracturing of adjacent wells. With a small initial horizontal stress difference, large injection rate and staggered stage arrangement can achieve ideal stimulation performance. Our results can provide a guidance for optimizing stimulation design in unconventional well-factory while taking into account environmental protection.展开更多
Gearing is one of the most critical components in mechanical power transmission systems. This article examines the various stresses and deflection developed in sun gear tooth of planetary gearbox which is used in Grab...Gearing is one of the most critical components in mechanical power transmission systems. This article examines the various stresses and deflection developed in sun gear tooth of planetary gearbox which is used in Grabbing Crane. Article includes checking sun gear wear stresses and bending stresses using IS 4460 equations. Also calculate various forces acting on gear tooth. In this study, perform the calculation for sun gear tooth to calculate bending, shear, wear & deflection using theoretical method. 3D model is created of circular root fillet & trochoidal root fillet of gear tooth for simulation using ProE Wildfire 3. In Pro-E, the geometry is saved as a file and then it is transferred from Pro-E to ANSYS 10 in IGES format. The results of the 3 D analyses from ANSYS are compared with the theoretical values. Comparison of ANSYS results in circular root fillet & trochoidal root fillet also carry out.展开更多
A numerical approach is an effective means of solving boundary value problems(BVPs).This study focuses on physical problems with general partial differential equations(PDEs).It investigates the solution approach throu...A numerical approach is an effective means of solving boundary value problems(BVPs).This study focuses on physical problems with general partial differential equations(PDEs).It investigates the solution approach through the standard forms of the PDE module in COMSOL.Two typical mechanics problems are exemplified:The deflection of a thin plate,which can be addressed with the dedicated finite element module,and the stress of a pure bending beamthat cannot be tackled.The procedure for the two problems regarding the three standard forms required by the PDE module is detailed.The results were in good agreement with the literature,indicating that the PDE module provides a promising means to solve complex PDEs,especially for those a dedicated finite element module has yet to be developed.展开更多
To obtain the stress level at the earthquake source, this paper sets forth the solution of the stress magnitude at the earthquake source by seismic stress drop and the stress axis deflections before and after large ea...To obtain the stress level at the earthquake source, this paper sets forth the solution of the stress magnitude at the earthquake source by seismic stress drop and the stress axis deflections before and after large earthquakes. The pre-seismic and post-seismic stress direction can be statistically determined by a large collection of foreshock and aftershock focal mechanism data while the stress drop can be determined through the source fracture inversion from seismic wave data or crust deformation data. The paper attempts to make a fundamental contribution to seismic dynamics.展开更多
Internal stresses in glass are generated by interactions between thermal contraction, elasticity at low tem-peratures, viscoelastic flow at higher temperature, and temperature gradients caused by cooling. This work in...Internal stresses in glass are generated by interactions between thermal contraction, elasticity at low tem-peratures, viscoelastic flow at higher temperature, and temperature gradients caused by cooling. This work intends to work out calculation program for real temperature distribution and internals stress, and to study their behaviour during the quenching through a flat plate of soda-lime glass from different temperatures.展开更多
A simulation of the stress analysis for a vacuum glass bulb of 35 inch (V) 120° Color Picture Tube(CPT) has been developed. It is shown that extra large deflection angle Color Picture Tube is viable. Increase ...A simulation of the stress analysis for a vacuum glass bulb of 35 inch (V) 120° Color Picture Tube(CPT) has been developed. It is shown that extra large deflection angle Color Picture Tube is viable. Increase in the deflection angle will shorten the de展开更多
Stress relaxation of glass is a dualism effect, it often lead to strength degradation in strengthened glass, but on the other hand, it improves the reliability and stress-uniformity of glasses. In this work, stress re...Stress relaxation of glass is a dualism effect, it often lead to strength degradation in strengthened glass, but on the other hand, it improves the reliability and stress-uniformity of glasses. In this work, stress relaxation of soda-lime glass was investigated using three-point bending tests at 400-560℃ which is near the brittle to ductile transition temperature, for enhancing the safety of glass productions and exploring the most economic anneal process. The experimental results show that the speed of stress relaxation increases but the ultimate stress decreases with increasing temperature. The stress uniformity of the glass samples before and after anneal was examined using spherical indentation at arranged testing points. It indicates that the scatter of the local strength measured by the Hertzian indentation is smaller in the anneal glass than in initial specimen, so that the estimated Weibull modulus for the anneal specimen is higher. Furthermore, the strength evaluation by Hertzian indentation and statistical analysis was presented.展开更多
Residual stresses and deformation of static bonding multi-layer Pyrex7740 glass and aluminum have important effects on performances of bonding parts. The stress and strain finite element analysis of anodic bonding can...Residual stresses and deformation of static bonding multi-layer Pyrex7740 glass and aluminum have important effects on performances of bonding parts. The stress and strain finite element analysis of anodic bonding can optimize the structure and process design, reduce the workload of the experiments, shorten the production cycle, improve the bonding quality, and reduce the process costs. In this paper, residual stresses and deformation in the static bonding two-layer (glass/aluminum), three-layer (glass/aluminum/ glass),five-layer(glass/aluminum/glass/aluminum/glass)and seven-layer (glass/aluminum/glass/aluminum/glass/ aluminum/glass) samples have been analyzed using nonlinear finite element simulation software MARC. The simulation results show that the shear stress distribution and deformation distribution in different multi-layer glass and aluminum samples are similar. The stress distribution along thickness at different typical positions in all multi-layer samples has characteristics of pulse pattern, which has pulse peak at the position of transition layers and then decreases abruptly to the minimum value at the positions of glass and aluminum. The maximum shear stress is located in the outside surface area in the transition layer between the top unconstrained glass layer and aluminum layer. The displacement distribution along thickness in all multi-layer samples increases gradually fi'om the constrained bottom glass layer to the top unconstrained glass layer with abrupt step increase in the aluminum layers, The maximum deformations occur in aluminum layers. It is found that the minimum deformation distortion and the minimum shear stress occur in the three-layer static bonding sample.展开更多
A kind of new deflection technique has been developed for measuring the growth stress of thermally growing oxide scales during high temperature oxidation of alloys. The average growth stresses in oxide scales such as ...A kind of new deflection technique has been developed for measuring the growth stress of thermally growing oxide scales during high temperature oxidation of alloys. The average growth stresses in oxide scales such as Al2O3, NiO and Cr2O3 formed on the surface of the superalloys can be investigated by this technique. Unlike the comventional deflection method, the novel method does not need to apply a coating for preventing one main face of thin strip specimen from oxidizing and can be used under the condition of longer time and higher temperature.展开更多
Based on a series of newly developed bioactive glasses having suitable thermo-mechanical properties to allow application as fixation agents between bone and titanium alloy biomedical implants, the stress corrosion cra...Based on a series of newly developed bioactive glasses having suitable thermo-mechanical properties to allow application as fixation agents between bone and titanium alloy biomedical implants, the stress corrosion crack growth (SCCG) behavior of their interfaces with Ti6AI4V was investigated in simulated body fluid (SBF) with the objective of discerning the salient mechanisms of crack advance and to assess the reliability of the bonds. Results indicated that crack growth rates in Ti6AI4V/glass/Ti6AI4V sandwich specimens were nearly the same as or slightly lower than those in the bulk glasses at comparable stress intensities; indeed, cracks would prefer to propagate off the interface, suggesting that the Ti6AI4V/glass interface has relatively good crack-growth resistance. Mechanistically, interfacial crack growth appears to be controlled by the classic stress corrosion mechanisms for silicate glasses, with no discernible effect of bioactivity on the SCCG behavior being observed.展开更多
The samples were attained through altering the cooling system of producing glass-ceramics. The X-ray diffraction was used to test the stress value of different samples. The relation of the cooling system and internal ...The samples were attained through altering the cooling system of producing glass-ceramics. The X-ray diffraction was used to test the stress value of different samples. The relation of the cooling system and internal stress were also investigated. The experimental results show that the stress of glass-ceramic had a close relation with starting cool temperature. Above 800 ~C, glass-ceramic could be accelerated cooling and did not bring stress. Temperature between 500 ℃ and 800℃ was an important temperature range of the formation of stress in glass-ceramic, in which the glass-ceramic stress would change obviously. Cool system was the key on how to control and eliminate internal stress in order to reduce the destroy of materials crated by internal stress. In addition, glass particles size increase, glass-ceramic stress increase in consequent.展开更多
Heat-ray absorbing film is used to be bonded on the existing sheet glasses of the windows.It is effective for air-conditioning energy saving against the global warming,because it absorbs heat-ray in the thin film and ...Heat-ray absorbing film is used to be bonded on the existing sheet glasses of the windows.It is effective for air-conditioning energy saving against the global warming,because it absorbs heat-ray in the thin film and decreases the incoming heat-ray into the room.On the other hand,the sheet glasses increase the temperature at the surface which the sheet is bonded and sometimes yield heat cracks by thermal stresses.It is important to know the state of thermal stresses accurately in order to develop the heat-ray absorbing film with higher performance and without heat cracks.In this paper,the analysis model is treated as the two-layer plate of the conventional soda sheet glass and the heat-ray absorbing film with different absorptivities.The unsteady temperature and thermal stresses are analyzed and calculated numerically.The influence of the patch side,which the heat-ray absorbing film is bonded at the exterior side or the interior side,on the heat-ray absorbing performance and the thermal stresses is discussed.It is found that the alternative patch side has no effect on the heat-ray absorbing performance and that the patch side is recommended to be interior side from a view point of decreasing thermal stresses against the heat crack of glasses.展开更多
The structure and properties of the glass-ceramics were tested with X-ray diffraction testing instrument,correlative software,and other modern testing means.Then the effect of Al2O3 content on internal stresses in CaO...The structure and properties of the glass-ceramics were tested with X-ray diffraction testing instrument,correlative software,and other modern testing means.Then the effect of Al2O3 content on internal stresses in CaO-Al2O3-SiO2 glass-ceramics was studied deeply.In order to study the relationship of Al2O3 to the residual stress of CaO-Al2O3-SiO2 glass-ceramics,X-ray diffraction "sin2ψ" was used.The means utilized the x radial incidence produced from cathode radial tube,and took the space between crystals as measurement of strain.When the stresses produced,the space between crystals changed and the diffraction peak moved during Bragg diffraction.The magnitude of movement is related to the stresses.The experimental results show the residual stress is considerably high and Al2O3 can influence the mechanical properties of this material hugely.展开更多
Heat-ray absorbing sheet glass can decrease electric energy used for air-conditioning by controling the incoming heat-ray through windows into the rooms.On the other hand,the glasses increase the temperature and somet...Heat-ray absorbing sheet glass can decrease electric energy used for air-conditioning by controling the incoming heat-ray through windows into the rooms.On the other hand,the glasses increase the temperature and sometimes yield heat cracks by thermal stresses.It is important to know the state of thermal stress accurately in order to develop heat-ray absorbing sheet glasses with higher performance and without heat cracks.A conventional design manual at field site treats the steady state and the thermal boundary condition that all heat-rays are absorbed at glass surface.In this paper,it is assumed that the heat-ray is absorbed over all the plate thickness.The idea of the local absorptibity per unit length is introduced.The modeling of internal heat absorbing process is proposed.It can explain well that the total absorptivity depends on the plate thickness.The temperature and the thermal stresses are calculated and discussed.Sudden weather changes such as rain and/or wind after the glass is heated to be steady state are also discussed.Those weather changes are treated with the change of amount of absorbed heat-ray and/or the change of heat transfer coefficient between the glass surface and the outside atmosphere.展开更多
Seven reinforced concrete (RC) beams with epoxy-bonded glass fiber reinforced plastic (GFRP) sheets and two control RC beams were experimentally tested to investigate the bond behavior of the interfaces between RC...Seven reinforced concrete (RC) beams with epoxy-bonded glass fiber reinforced plastic (GFRP) sheets and two control RC beams were experimentally tested to investigate the bond behavior of the interfaces between RC beams and GFRP sheets. The variable parameters considered in test beams are the layers of GFRP sheets, the bond lengths and the reinforcement ratios. The results indicate that the flexural strength of the repaired beams is increased, but the ultimate load of beams with GFRP sheets debonding failure is reduced relatively. The bond length is the main factor that results in bonding failure of the strengthened beams. An experimental method of interfacial shear stress is proposed to analyze the distribution of shear stress according to experimental results. The analytical method of shear and normal stresses and a simple equation are proposed to predict the peeling loads. The proposed model is applied to experimental beams. The analytical results show a good agreement with the experimental results.展开更多
The reflected optical caustics method is applied to study dynamic fracture problems in hardened cement paste. First both the unreinforced cement paste and the glass fibres reinforced cement paste specimens were fabric...The reflected optical caustics method is applied to study dynamic fracture problems in hardened cement paste. First both the unreinforced cement paste and the glass fibres reinforced cement paste specimens were fabricated and the reflective coating on the surface of the specimen was prepared. Secondly the crack path and the shadow spot patterns during the crack propagation process for the two specimens were recorded by using a multi-spark high speed camera.Thirdly some dynamic parameters of two cement paste specimens including crack onset time the dynamic stress intensity factor and crack growth velocity were determined and analyzed comparatively.This indicates that the glass fibres can improve the fracture resistance and delay fracture time.These results will play an important role in evaluating the dynamic fracture properties of cement paste.展开更多
The relation between the maximum contact stress ratio and deflection angle is derived from Hertz contact theory when the deflection of rotary kiln supporting wheel happens. According to the analysis of practical examp...The relation between the maximum contact stress ratio and deflection angle is derived from Hertz contact theory when the deflection of rotary kiln supporting wheel happens. According to the analysis of practical example, the maximum contact stress ratio within the deflection range of rotary kiln supporting wheel is listed. The contact stress will increase largely when rotary kiln supporting wheel deflects with little angle, which probably will result in accidents correlating to safety. This will provide theory conference for the design, the operating condition analysis and adjusting of the rotary kiln.展开更多
For the problem of hydraulic fracture propagation when weakening the hard roof in fully mechanized top-coal caving stope of ultra-thick coal seam, based on the stress arch theory and the fracture mechanics, a two-dime...For the problem of hydraulic fracture propagation when weakening the hard roof in fully mechanized top-coal caving stope of ultra-thick coal seam, based on the stress arch theory and the fracture mechanics, a two-dimensional model for hydraulic fracture of the roof in the stope was established to investigate the propagation laws of hydraulic fracture. The result shows that, after mining, the principal stress direction of overlaying rock deflects to form the stress arch, whose arrow height and arch thickness increase with the increase of the mining width and the side pressure coefficient. Within the influence range of stress arch, the hydraulic fracture in hard roof deflects towards the stope direction in the course of propagation and forms the ‘‘arch" fracture, which cuts off the roof below the fracture in a laminated way. The deflection angle of hydraulic fracture increases with the increase of the mining width, but decreases with the increase of the side pressure coefficient and the fractured horizon. This research can provide theoretical basis for the application of hydraulic fracturing method in the stope roof weakening.展开更多
A numerical simulation model for predicting residual stresses which arise during the solidification process of pressed glass bulb panel was developed. The solidification of a molten layer of glass between cooled paral...A numerical simulation model for predicting residual stresses which arise during the solidification process of pressed glass bulb panel was developed. The solidification of a molten layer of glass between cooled parallel plates was used to model the mechanics of the buildup of residual stresses in the forming process. A thermorheologically simple thermoviscoelastic model was assumed for the material. The finite element method employed was based on the theory of shells as an assembly of flat elements. This approach calculates residual stresses layer by layer like a truly three-dimensional calculation, which is well suited for thin pressed products of complex shape. An experimental comparison was employed to verify the proposed models and methods.展开更多
Breakage patterns, residual stress, and fractured surfaces on tempered glasses are investigated to find the correlation among glass thickness, tempered level, and the number of fragments, particularly when the glass t...Breakage patterns, residual stress, and fractured surfaces on tempered glasses are investigated to find the correlation among glass thickness, tempered level, and the number of fragments, particularly when the glass thickness is less than 4 mm. Relatively thin glasses require high compressive stress for producing fragments, and the required compressive stress is increased with decreasing glass thickness (3.2 to 2.1 mm). By analyzing the residual stress of glasses before and after the fragmentation test, we observe that a relatively thin glass spends more stored energy to generate a new fracture surface and stores less energy for the second cracking as compared to thick glasses. Fractography shows that all glasses have a similar characterization on the fractured surface irrespective of glass thickness. However, the only dif- ference is the depth of the compressive layer. By reducing the depth of the compressive layer to less than approx. 20% of the glass thickness, it is observed that the possibility of producing small fragments is dramatically decreased. There- fore, this study confirms that the compressive stress and its depth are essential as key factors contributing to the achievement of a relatively high fragmentation using a thin glass.展开更多
基金funded by the National Natural Science Foundation of China(42077247,52104029)the Fundamental Research Funds for the Central Universities.
文摘In the Changqing Oilfield in northwest China, when traditional petroleum exploitation encounters forestry reserves or water source protection areas, sectorial well-factory design is proposed. The most distinct feature of a sectorial well-factory is the deviation of the well from the minimum horizontal principal stress, resulting in hydraulic fracture deflection after the initiation, along with possible well interference (i.e., fracture hit) and fracture coalescence in the oblique wells. Four indexes describing well deflection are then proposed according to fracture morphology. Several fracturing designs, including stage arrangement, fracturing sequences, and fracturing techniques are applied to study the feasibility of the sectorial well-factory design. The results show that the “gradual” or “sparse” stage arrangement, large injection rate, and simultaneous multifracture treatment can help to optimize the fracture morphology and stimulation design. However, the subsequent stress shadowing effect usually adversely affects the fracturing of adjacent wells. With a small initial horizontal stress difference, large injection rate and staggered stage arrangement can achieve ideal stimulation performance. Our results can provide a guidance for optimizing stimulation design in unconventional well-factory while taking into account environmental protection.
文摘Gearing is one of the most critical components in mechanical power transmission systems. This article examines the various stresses and deflection developed in sun gear tooth of planetary gearbox which is used in Grabbing Crane. Article includes checking sun gear wear stresses and bending stresses using IS 4460 equations. Also calculate various forces acting on gear tooth. In this study, perform the calculation for sun gear tooth to calculate bending, shear, wear & deflection using theoretical method. 3D model is created of circular root fillet & trochoidal root fillet of gear tooth for simulation using ProE Wildfire 3. In Pro-E, the geometry is saved as a file and then it is transferred from Pro-E to ANSYS 10 in IGES format. The results of the 3 D analyses from ANSYS are compared with the theoretical values. Comparison of ANSYS results in circular root fillet & trochoidal root fillet also carry out.
基金supported by the National Natural Science Foundations of China(Grant Nos.12372073 and U20B2013)the Natural Science Basic Research Program of Shaanxi(Program No.2023-JC-QN-0030).
文摘A numerical approach is an effective means of solving boundary value problems(BVPs).This study focuses on physical problems with general partial differential equations(PDEs).It investigates the solution approach through the standard forms of the PDE module in COMSOL.Two typical mechanics problems are exemplified:The deflection of a thin plate,which can be addressed with the dedicated finite element module,and the stress of a pure bending beamthat cannot be tackled.The procedure for the two problems regarding the three standard forms required by the PDE module is detailed.The results were in good agreement with the literature,indicating that the PDE module provides a promising means to solve complex PDEs,especially for those a dedicated finite element module has yet to be developed.
基金National Natural Science Foundation of China (40374012) and State Key Fundamental Research Development Plan Project (2001CB711005).
文摘To obtain the stress level at the earthquake source, this paper sets forth the solution of the stress magnitude at the earthquake source by seismic stress drop and the stress axis deflections before and after large earthquakes. The pre-seismic and post-seismic stress direction can be statistically determined by a large collection of foreshock and aftershock focal mechanism data while the stress drop can be determined through the source fracture inversion from seismic wave data or crust deformation data. The paper attempts to make a fundamental contribution to seismic dynamics.
文摘Internal stresses in glass are generated by interactions between thermal contraction, elasticity at low tem-peratures, viscoelastic flow at higher temperature, and temperature gradients caused by cooling. This work intends to work out calculation program for real temperature distribution and internals stress, and to study their behaviour during the quenching through a flat plate of soda-lime glass from different temperatures.
文摘A simulation of the stress analysis for a vacuum glass bulb of 35 inch (V) 120° Color Picture Tube(CPT) has been developed. It is shown that extra large deflection angle Color Picture Tube is viable. Increase in the deflection angle will shorten the de
基金supported by the National Outstanding Young Scientist Foundation(No.50125204)National High Technical Research and Development Programme of China(No.A339010).
文摘Stress relaxation of glass is a dualism effect, it often lead to strength degradation in strengthened glass, but on the other hand, it improves the reliability and stress-uniformity of glasses. In this work, stress relaxation of soda-lime glass was investigated using three-point bending tests at 400-560℃ which is near the brittle to ductile transition temperature, for enhancing the safety of glass productions and exploring the most economic anneal process. The experimental results show that the speed of stress relaxation increases but the ultimate stress decreases with increasing temperature. The stress uniformity of the glass samples before and after anneal was examined using spherical indentation at arranged testing points. It indicates that the scatter of the local strength measured by the Hertzian indentation is smaller in the anneal glass than in initial specimen, so that the estimated Weibull modulus for the anneal specimen is higher. Furthermore, the strength evaluation by Hertzian indentation and statistical analysis was presented.
基金Supported by the National Natural Science Foundation of China(No.51275332)Shanxi Graduate Outstanding Innovative Projects(No.20123104)
文摘Residual stresses and deformation of static bonding multi-layer Pyrex7740 glass and aluminum have important effects on performances of bonding parts. The stress and strain finite element analysis of anodic bonding can optimize the structure and process design, reduce the workload of the experiments, shorten the production cycle, improve the bonding quality, and reduce the process costs. In this paper, residual stresses and deformation in the static bonding two-layer (glass/aluminum), three-layer (glass/aluminum/ glass),five-layer(glass/aluminum/glass/aluminum/glass)and seven-layer (glass/aluminum/glass/aluminum/glass/ aluminum/glass) samples have been analyzed using nonlinear finite element simulation software MARC. The simulation results show that the shear stress distribution and deformation distribution in different multi-layer glass and aluminum samples are similar. The stress distribution along thickness at different typical positions in all multi-layer samples has characteristics of pulse pattern, which has pulse peak at the position of transition layers and then decreases abruptly to the minimum value at the positions of glass and aluminum. The maximum shear stress is located in the outside surface area in the transition layer between the top unconstrained glass layer and aluminum layer. The displacement distribution along thickness in all multi-layer samples increases gradually fi'om the constrained bottom glass layer to the top unconstrained glass layer with abrupt step increase in the aluminum layers, The maximum deformations occur in aluminum layers. It is found that the minimum deformation distortion and the minimum shear stress occur in the three-layer static bonding sample.
文摘A kind of new deflection technique has been developed for measuring the growth stress of thermally growing oxide scales during high temperature oxidation of alloys. The average growth stresses in oxide scales such as Al2O3, NiO and Cr2O3 formed on the surface of the superalloys can be investigated by this technique. Unlike the comventional deflection method, the novel method does not need to apply a coating for preventing one main face of thin strip specimen from oxidizing and can be used under the condition of longer time and higher temperature.
文摘Based on a series of newly developed bioactive glasses having suitable thermo-mechanical properties to allow application as fixation agents between bone and titanium alloy biomedical implants, the stress corrosion crack growth (SCCG) behavior of their interfaces with Ti6AI4V was investigated in simulated body fluid (SBF) with the objective of discerning the salient mechanisms of crack advance and to assess the reliability of the bonds. Results indicated that crack growth rates in Ti6AI4V/glass/Ti6AI4V sandwich specimens were nearly the same as or slightly lower than those in the bulk glasses at comparable stress intensities; indeed, cracks would prefer to propagate off the interface, suggesting that the Ti6AI4V/glass interface has relatively good crack-growth resistance. Mechanistically, interfacial crack growth appears to be controlled by the classic stress corrosion mechanisms for silicate glasses, with no discernible effect of bioactivity on the SCCG behavior being observed.
基金National Natural Science Foundation of China(50272043)Natural Science Foundation of Hubei Province(2002AB077)+1 种基金Natural Science Foundation of Wuhan University of Technology(2003XJJ013)Natural Science Foundation of Key Laboratory of Silicate Materials Science and Engineering of Ministry of Education,Wuhan University of Technology
文摘The samples were attained through altering the cooling system of producing glass-ceramics. The X-ray diffraction was used to test the stress value of different samples. The relation of the cooling system and internal stress were also investigated. The experimental results show that the stress of glass-ceramic had a close relation with starting cool temperature. Above 800 ~C, glass-ceramic could be accelerated cooling and did not bring stress. Temperature between 500 ℃ and 800℃ was an important temperature range of the formation of stress in glass-ceramic, in which the glass-ceramic stress would change obviously. Cool system was the key on how to control and eliminate internal stress in order to reduce the destroy of materials crated by internal stress. In addition, glass particles size increase, glass-ceramic stress increase in consequent.
文摘Heat-ray absorbing film is used to be bonded on the existing sheet glasses of the windows.It is effective for air-conditioning energy saving against the global warming,because it absorbs heat-ray in the thin film and decreases the incoming heat-ray into the room.On the other hand,the sheet glasses increase the temperature at the surface which the sheet is bonded and sometimes yield heat cracks by thermal stresses.It is important to know the state of thermal stresses accurately in order to develop the heat-ray absorbing film with higher performance and without heat cracks.In this paper,the analysis model is treated as the two-layer plate of the conventional soda sheet glass and the heat-ray absorbing film with different absorptivities.The unsteady temperature and thermal stresses are analyzed and calculated numerically.The influence of the patch side,which the heat-ray absorbing film is bonded at the exterior side or the interior side,on the heat-ray absorbing performance and the thermal stresses is discussed.It is found that the alternative patch side has no effect on the heat-ray absorbing performance and that the patch side is recommended to be interior side from a view point of decreasing thermal stresses against the heat crack of glasses.
基金Funded by the Open Fund Project of Key Laboratory of New Processing Technology for Nonferrous Metal and Materials, Ministry of Education(Guangxi University)(No.063006-5C-22)the National Natural Science Foun-dation of China(50272043)Key Technology R&D Program of China(2006BAJ02B00)
文摘The structure and properties of the glass-ceramics were tested with X-ray diffraction testing instrument,correlative software,and other modern testing means.Then the effect of Al2O3 content on internal stresses in CaO-Al2O3-SiO2 glass-ceramics was studied deeply.In order to study the relationship of Al2O3 to the residual stress of CaO-Al2O3-SiO2 glass-ceramics,X-ray diffraction "sin2ψ" was used.The means utilized the x radial incidence produced from cathode radial tube,and took the space between crystals as measurement of strain.When the stresses produced,the space between crystals changed and the diffraction peak moved during Bragg diffraction.The magnitude of movement is related to the stresses.The experimental results show the residual stress is considerably high and Al2O3 can influence the mechanical properties of this material hugely.
文摘Heat-ray absorbing sheet glass can decrease electric energy used for air-conditioning by controling the incoming heat-ray through windows into the rooms.On the other hand,the glasses increase the temperature and sometimes yield heat cracks by thermal stresses.It is important to know the state of thermal stress accurately in order to develop heat-ray absorbing sheet glasses with higher performance and without heat cracks.A conventional design manual at field site treats the steady state and the thermal boundary condition that all heat-rays are absorbed at glass surface.In this paper,it is assumed that the heat-ray is absorbed over all the plate thickness.The idea of the local absorptibity per unit length is introduced.The modeling of internal heat absorbing process is proposed.It can explain well that the total absorptivity depends on the plate thickness.The temperature and the thermal stresses are calculated and discussed.Sudden weather changes such as rain and/or wind after the glass is heated to be steady state are also discussed.Those weather changes are treated with the change of amount of absorbed heat-ray and/or the change of heat transfer coefficient between the glass surface and the outside atmosphere.
文摘Seven reinforced concrete (RC) beams with epoxy-bonded glass fiber reinforced plastic (GFRP) sheets and two control RC beams were experimentally tested to investigate the bond behavior of the interfaces between RC beams and GFRP sheets. The variable parameters considered in test beams are the layers of GFRP sheets, the bond lengths and the reinforcement ratios. The results indicate that the flexural strength of the repaired beams is increased, but the ultimate load of beams with GFRP sheets debonding failure is reduced relatively. The bond length is the main factor that results in bonding failure of the strengthened beams. An experimental method of interfacial shear stress is proposed to analyze the distribution of shear stress according to experimental results. The analytical method of shear and normal stresses and a simple equation are proposed to predict the peeling loads. The proposed model is applied to experimental beams. The analytical results show a good agreement with the experimental results.
基金The Ph.D.Programs Foundation of Ministry of Education of China(No.20120023120020)the National Natural Science Foundation of China(No.51404273)
文摘The reflected optical caustics method is applied to study dynamic fracture problems in hardened cement paste. First both the unreinforced cement paste and the glass fibres reinforced cement paste specimens were fabricated and the reflective coating on the surface of the specimen was prepared. Secondly the crack path and the shadow spot patterns during the crack propagation process for the two specimens were recorded by using a multi-spark high speed camera.Thirdly some dynamic parameters of two cement paste specimens including crack onset time the dynamic stress intensity factor and crack growth velocity were determined and analyzed comparatively.This indicates that the glass fibres can improve the fracture resistance and delay fracture time.These results will play an important role in evaluating the dynamic fracture properties of cement paste.
基金Supported by Hunan Provincial Natural Science Foundation(04JJ3050)Supported by Key ScientificResearch Projectof Hunan Provincial Education Bureau(03A052)
文摘The relation between the maximum contact stress ratio and deflection angle is derived from Hertz contact theory when the deflection of rotary kiln supporting wheel happens. According to the analysis of practical example, the maximum contact stress ratio within the deflection range of rotary kiln supporting wheel is listed. The contact stress will increase largely when rotary kiln supporting wheel deflects with little angle, which probably will result in accidents correlating to safety. This will provide theory conference for the design, the operating condition analysis and adjusting of the rotary kiln.
基金Financial supports for this work,provided by the National Natural Science Foundation of China (No.51104191)the China Postdoctoral Science Foundation (2016M602655)the Program for Changjiang Scholars and Innovative Research Team in University of China (No.IRT13043)
文摘For the problem of hydraulic fracture propagation when weakening the hard roof in fully mechanized top-coal caving stope of ultra-thick coal seam, based on the stress arch theory and the fracture mechanics, a two-dimensional model for hydraulic fracture of the roof in the stope was established to investigate the propagation laws of hydraulic fracture. The result shows that, after mining, the principal stress direction of overlaying rock deflects to form the stress arch, whose arrow height and arch thickness increase with the increase of the mining width and the side pressure coefficient. Within the influence range of stress arch, the hydraulic fracture in hard roof deflects towards the stope direction in the course of propagation and forms the ‘‘arch" fracture, which cuts off the roof below the fracture in a laminated way. The deflection angle of hydraulic fracture increases with the increase of the mining width, but decreases with the increase of the side pressure coefficient and the fractured horizon. This research can provide theoretical basis for the application of hydraulic fracturing method in the stope roof weakening.
基金Project supported by the National Natural Science Foundation of China (No.50205011)
文摘A numerical simulation model for predicting residual stresses which arise during the solidification process of pressed glass bulb panel was developed. The solidification of a molten layer of glass between cooled parallel plates was used to model the mechanics of the buildup of residual stresses in the forming process. A thermorheologically simple thermoviscoelastic model was assumed for the material. The finite element method employed was based on the theory of shells as an assembly of flat elements. This approach calculates residual stresses layer by layer like a truly three-dimensional calculation, which is well suited for thin pressed products of complex shape. An experimental comparison was employed to verify the proposed models and methods.
文摘Breakage patterns, residual stress, and fractured surfaces on tempered glasses are investigated to find the correlation among glass thickness, tempered level, and the number of fragments, particularly when the glass thickness is less than 4 mm. Relatively thin glasses require high compressive stress for producing fragments, and the required compressive stress is increased with decreasing glass thickness (3.2 to 2.1 mm). By analyzing the residual stress of glasses before and after the fragmentation test, we observe that a relatively thin glass spends more stored energy to generate a new fracture surface and stores less energy for the second cracking as compared to thick glasses. Fractography shows that all glasses have a similar characterization on the fractured surface irrespective of glass thickness. However, the only dif- ference is the depth of the compressive layer. By reducing the depth of the compressive layer to less than approx. 20% of the glass thickness, it is observed that the possibility of producing small fragments is dramatically decreased. There- fore, this study confirms that the compressive stress and its depth are essential as key factors contributing to the achievement of a relatively high fragmentation using a thin glass.