A novel size-dependent model is developed herein to study the bending behavior of beam-type micro/nano-structures considering combined effects of nonlocality and micro-rotational degrees of freedom. To accomplish this...A novel size-dependent model is developed herein to study the bending behavior of beam-type micro/nano-structures considering combined effects of nonlocality and micro-rotational degrees of freedom. To accomplish this aim, the micropolar theory is combined with the nonlocal elasticity. To consider the nonlocality, both integral (original) and differential formulations of Eringen’s nonlocal theory are considered. The beams are considered to be Timoshenko-type, and the governing equations are derived in the variational form through Hamilton’s principle. The relations are written in an appropriate matrix-vector representation that can be readily utilized in numerical approaches. A finite element (FE) approach is also proposed for the solution procedure. Parametric studies are conducted to show the simultaneous nonlocal and micropolar effects on the bending response of small-scale beams under different boundary conditions.展开更多
A new size-dependent axially functionally graded(AFG) micro-beam model is established with the application of a reformulated strain gradient elasticity theory(RSGET). The new micro-beam model incorporates the strain g...A new size-dependent axially functionally graded(AFG) micro-beam model is established with the application of a reformulated strain gradient elasticity theory(RSGET). The new micro-beam model incorporates the strain gradient, velocity gradient,and couple stress effects, and accounts for the material variation along the axial direction of the two-component functionally graded beam. The governing equations and complete boundary conditions of the AFG beam are derived based on Hamilton's principle. The correctness of the current model is verified by comparing the static behavior results of the current model and the finite element model(FEM) at the micro-scale. The influence of material inhomogeneity and size effect on the static and dynamic responses of the AFG beam is studied. The numerical results show that the static and vibration responses predicted by the newly developed model are different from those based on the classical model at the micro-scale. The new model can be applied not only in the optimization of micro acoustic wave devices but also in the design of AFG micro-sensors and micro-actuators.展开更多
The dynamic responses and generated voltage in a curved sandwich beam with glass reinforced laminate(GRL)layers and a pliable core in the presence of a piezoelectric layer under low-velocity impact(LVI)are investigate...The dynamic responses and generated voltage in a curved sandwich beam with glass reinforced laminate(GRL)layers and a pliable core in the presence of a piezoelectric layer under low-velocity impact(LVI)are investigated.The current study aims to carry out a dynamic analysis on the sandwich beam when the impactor hits the top face sheet with an initial velocity.For the layer analysis,the high-order shear deformation theory(HSDT)and Frostig's second model for the displacement fields of the core layer are used.The classical non-adhesive elastic contact theory and Hunter's principle are used to calculate the dynamic responses in terms of time.In order to validate the analytical method,the outcomes of the current investigation are compared with those gained by the experimental tests carried out by other researchers for a rectangular composite plate subject to the LVI.Finite element(FE)simulations are conducted by means of the ABAQUS software.The effects of the parameters such as foam modulus,layer material,fiber angle,impactor mass,and its velocity on the generated voltage are reviewed.展开更多
The main objective of this study is to investigate the buckling analysis of CCSs reinforced by CNTs subjected to combined loading of hydrostatic pressure and axial compression resting on the twoparameter elastic found...The main objective of this study is to investigate the buckling analysis of CCSs reinforced by CNTs subjected to combined loading of hydrostatic pressure and axial compression resting on the twoparameter elastic foundation(T-P-EF).It is one of the first attempts to derive the governing equations of the CCSs reinforced with CNTs,based on a generalized first-order shear deformation shell theory(FSDST)which includes shell-foundation interaction.By adopting the extended mixing rule,the effective material properties of CCSs reinforced by CNTs with linear distributions are approximated by introducing some efficiency parameters.Three carbon nanotube distribution in the matrix,i.e.uniform distribution(U)and V and X-types linear distribution are taken into account.The stability equations are solved by using the Galerkin procedure to determine the combined buckling loads(CBLs)of the structure selected here.The numerical illustrations cover CBLs characteristics of CCSs reinforced by CNTs in the presence of the T-P-EF.Finally,a parametric study is carried out to study the influences of the foundation parameters,the volume fraction of carbon nanotubes and the types of reinforcement on the CBLs.展开更多
The elastic wave propagation phenomena in two-dimensional periodic beam lattices are studied by using the Bloch wave transform. The numerical modeling is applied to the hexagonal and the rectangular beam lattices, in ...The elastic wave propagation phenomena in two-dimensional periodic beam lattices are studied by using the Bloch wave transform. The numerical modeling is applied to the hexagonal and the rectangular beam lattices, in which, both the in-plane (with respect to the lattice plane) and out-of-plane waves are considered. The dispersion relations are obtained by calculating the Bloch eigenfrequencies and eigenmodes. The frequency bandgaps are observed and the influence of the elastic and geometric properties of the primitive cell on the bandgaps is studied. By analyzing the phase and the group velocities of the Bloch wave modes, the anisotropic behaviors and the dispersive characteristics of the hexagonal beam lattice with respect to the wave prop- agation are highlighted in high frequency domains. One im- portant result presented herein is the comparison between the first Bloch wave modes to the membrane and bend- ing/transverse shear wave modes of the classical equivalent homogenized orthotropic plate model of the hexagonal beam lattice. It is shown that, in low frequency ranges, the homog- enized plate model can correctly represent both the in-plane and out-of-plane dynamic behaviors of the beam lattice, its frequency validity domain can be precisely evaluated thanks to the Bloch modal analysis. As another important and original result, we have highlighted the existence of the retro- propagating Bloch wave modes with a negative group veloc- ity, and of the corresponding "retro-propagating" frequency bands.展开更多
Based on the theory of Eider-Bernoulli beam and Winkler assumption for elastic foundation, a mathematical model is presented. By using Fourier transformation for space variable, Laplace transformation for time variabl...Based on the theory of Eider-Bernoulli beam and Winkler assumption for elastic foundation, a mathematical model is presented. By using Fourier transformation for space variable, Laplace transformation for time variable and convolution theorem for their inverse transformations, a general solution for dynamical problem of infinite beam on an elastic foundation is obtained. Finally, the cases of free vibration,impulsive response and moving load are also discussed.展开更多
A nonlocal study of the vibration responses of functionally graded(FG)beams supported by a viscoelastic Winkler-Pasternak foundation is presented.The damping responses of both the Winkler and Pasternak layers of the f...A nonlocal study of the vibration responses of functionally graded(FG)beams supported by a viscoelastic Winkler-Pasternak foundation is presented.The damping responses of both the Winkler and Pasternak layers of the foundation are considered in the formulation,which were not considered in most literature on this subject,and the bending deformation of the beams and the elastic and damping responses of the foundation as nonlocal by uniting the equivalently differential formulation of well-posed strain-driven(ε-D)and stress-driven(σ-D)two-phase local/nonlocal integral models with constitutive constraints are comprehensively considered,which can address both the stiffness softening and toughing effects due to scale reduction.The generalized differential quadrature method(GDQM)is used to solve the complex eigenvalue problem.After verifying the solution procedure,a series of benchmark results for the vibration frequency of different bounded FG beams supported by the foundation are obtained.Subsequently,the effects of the nonlocality of the foundation on the undamped/damping vibration frequency of the beams are examined.展开更多
Natural fibers have been extensively researched as reinforcement materials in polymers on account of their environmental and economic advantages in comparison with synthetic fibers in the recent years.Bamboo fibers ar...Natural fibers have been extensively researched as reinforcement materials in polymers on account of their environmental and economic advantages in comparison with synthetic fibers in the recent years.Bamboo fibers are renowned for their good mechanical properties,abundance,and short cycle growth.As beams are one of the fundamental structural components and are susceptible to mechanical loads in engineering applications,this paper performs a study on the free vibration and buckling responses of bamboo fiber reinforced composite(BFRC)beams on the elastic foundation.Three different functionally graded(FG)layouts and a uniform one are the considered distributions for unidirectional long bamboo fibers across the thickness.The elastic properties of the composite are determined with the law of mixture.Employing Hamilton’s principle,the governing equations of motion are obtained.The generalized differential quadrature method(GDQM)is then applied to the equations to obtain the results.The achieved outcomes exhibit that the natural frequency and buckling load values vary as the fiber volume fractions and distributions,elastic foundation stiffness values,and boundary conditions(BCs)and slenderness ratio of the beam change.Furthermore,a comparative study is conducted between the derived analysis outcomes for BFRC and homogenous polymer beams to examine the effectiveness of bamboo fibers as reinforcement materials,demonstrating the significant enhancements in both vibration and buckling responses,with the exception of natural frequencies for cantilever beams on the Pasternak foundation with the FG-◇fiber distribution.Eventually,the obtained analysis results of BFRC beams are also compared with those for carbon nanotube reinforced composite(CNTRC)beams found in the literature,indicating that the buckling loads and natural frequencies of BFRC beams are lower than those of CNTRC beams.展开更多
Boundary characteristic orthogonal polynomials are used as shape functions in the Rayleigh–Ritz method to investigate vibration and buckling of nanobeams embedded in an elastic medium. The present formulation is base...Boundary characteristic orthogonal polynomials are used as shape functions in the Rayleigh–Ritz method to investigate vibration and buckling of nanobeams embedded in an elastic medium. The present formulation is based on the nonlocal Euler–Bernoulli beam theory. The eigen value equation is developed for the buckling and vibration analyses. The orthogonal property of these polynomials makes the computation easier with less computational effort. It is observed that the frequency and critical buckling load parameters are dependent on the temperature, elastic medium, small scale coefficient,and length-to-diameter ratio. These observations are useful in the mechanical design of devices that use carbon nanotubes.展开更多
Discretising a structure into elements is a key step in finite element(FE)analysis.The discretised geometry used to formulate an FE model can greatly affect accuracy and validity.This paper presents a unified dimensio...Discretising a structure into elements is a key step in finite element(FE)analysis.The discretised geometry used to formulate an FE model can greatly affect accuracy and validity.This paper presents a unified dimensionless parameter to generate a mesh of cubic FEs for the analysis of very long beams resting on an elastic foundation.A uniform beam resting on elastic foundation with various values of flexural stiffness and elastic supporting coefficients subject to static load and moving load is used to illustrate the application of the proposed parameter.The numerical results show that(a)Even if the values of the flexural stiffness of the beam and elastic supporting coefficient of the elastic foundation are different,the same proposed parameter“s”can ensure the same accuracy of the FE solution,but the accuracy may differ for use of the same element length;(b)The proposed dimensionless parameter“s”can indeed be used as a unified index to generate the mesh for a beam resting on elastic foundation,whereas the use of the same element length as a criterion may be misleading;(c)The errors between the FE and analytical solutions for the maximum vertical displacement,shear force and bending moment of the beam increase with the dimensionless parameter“s”;and(d)For the given allowable errors for the vertical displacement,shear force and bending moment of the beam under static load and moving load,the corresponding values of the proposed parameter are provided to guide the mesh generation.展开更多
Non-local plane elasticity problems are discussed in the context of Λ-fractional linear elasticity theory. Adapting the Λ-fractional derivative along with the Λ-fractional space, where geometry and mechanics are va...Non-local plane elasticity problems are discussed in the context of Λ-fractional linear elasticity theory. Adapting the Λ-fractional derivative along with the Λ-fractional space, where geometry and mechanics are valid in the conventional way, non-local plane elasticity problems are solved with the help of biharmonic functions. Then, the results are transferred into the initial plane.Applications are presented to homogeneous and the fractional beam bending problem.展开更多
Based on the elastic foundation beam theory and the multi-floating-module hydrodynamic theory,a novel method is proposed to estimate the dynamic responses of VLFS(Very Large Floating Structure).In still water,a VLFS c...Based on the elastic foundation beam theory and the multi-floating-module hydrodynamic theory,a novel method is proposed to estimate the dynamic responses of VLFS(Very Large Floating Structure).In still water,a VLFS can be simplified as an elastic foundation beam model or a multi-floating-module model connected by elastic hinges.According to equivalent displacement of the two models in static analysis,the problem of rotation stiffness of elastic hinges can be solved.Then,based on the potential flow theory,the dynamic responding analysis of multi-floatingmodule model under wave loads can be computed in ANSYS-AQWA software.By assembling the time domain analysis results of each module,the dynamic responses of the VLFS can be obtained.Validation of the method is conducted through a series of comparison calculations,which mainly includes a continuous structure and a three-part structure connected by hinges in regular waves.The results of this paper method show a satisfactory agreement with the experiment and calculation data given in relative references.展开更多
By incorporating the strain gradient elasticity into the classical Bernoulli-Euler beam and Timoshenko beam models, the size-dependent characteristics of wave propaga- tion in micro/nanobeams is studied. The formulati...By incorporating the strain gradient elasticity into the classical Bernoulli-Euler beam and Timoshenko beam models, the size-dependent characteristics of wave propaga- tion in micro/nanobeams is studied. The formulations of dis- persion relation are explicitly derived for both strain gradi- ent beam models, and presented for different material length scale parameters (MLSPs). For both phenomenological size- dependent beam models, the angular frequency, phase veloc- ity and group velocity increase with increasing wave num- ber. However, the velocity ratios approach different values for different beam models, indicating an interesting behavior of the asymptotic velocity ratio. The present theory is also compared with the nonlocal continuum beam models.展开更多
This paper presents a generalized form of the method of full approximation. By using the concept of asymptotic linearization and making the coordinate transformations including the nonlinear functionals of dependent v...This paper presents a generalized form of the method of full approximation. By using the concept of asymptotic linearization and making the coordinate transformations including the nonlinear functionals of dependent variables, the original nonlinear problems are linearized and their higher-order solutions are given in terms of the first-term asymptotic solutions and corresponding transformations. The analysis of a model equation and some problems of weakly nonlinear oscillations and waves with the generalized method shows that it is effective and straightforward.展开更多
Thermo-elastic analysis of simply-supported orthotropic laminated beams subjected to high temperature and mechanical load is presented on the basis of the exact two-dimensional thermoelasticity theory.The beam is comp...Thermo-elastic analysis of simply-supported orthotropic laminated beams subjected to high temperature and mechanical load is presented on the basis of the exact two-dimensional thermoelasticity theory.The beam is composed of several orthotropic layers,each with temperaturedependent material properties.The governing equation for each layer is analytically solved using the state space method.The displacement and stress solutions of the beam are obtained using the transfer-matrix method.A numerical example is included to study the effects of temperature on the mechanical responses of a sandwich beam.The results reveal two main effects of temperature:(i)inducing deformations and stresses by itself;(ii)affecting the deformations and stresses induced by the mechanical load.展开更多
Grouting pile is a new soft soil foundation treatment method with characteristics such as no vibration, no noise, no soil compaction, light construction machines and quick construction velocity and so on. At present, ...Grouting pile is a new soft soil foundation treatment method with characteristics such as no vibration, no noise, no soil compaction, light construction machines and quick construction velocity and so on. At present, study on reinforcement mechanism and design calculation method of composite foundation of grouting pile is initially started without design specifications, so it is usually required to draw on design specifications of stump pile when designing composite foundation of grouting pile while grouting pile has its characteristics and difference although reinforcement mechanisms and construction processes of two types of piles are similar. Sedimentation formula of composite foundation of grouting pile with cover plate is educed and a suitable deformation mode is proposed by aiming to deformation characteristics of composite foundation of grouting pile with cover plate under embankment load on basis of relevant sedimentation theories of composite foundation by combination of characteristics of composite foundation of grouting pile. The sedimentation calculation formula of grouting pile with cover plate under embankment load is educed according to balance relation of force and displacement coordination conditions by elastic theory and sedimentation calculation model established is validated by sedimentation monitoring documents of one expressway in China.展开更多
Water distribution and gas supply systems are among the infrastructure systems that have many buried steel pipelines. Corrosion gradually appears inside and outside of the pipe walls over the service life of these pip...Water distribution and gas supply systems are among the infrastructure systems that have many buried steel pipelines. Corrosion gradually appears inside and outside of the pipe walls over the service life of these pipelines, the corrosion is primarily caused by the surrounding soil and the materials that flow through the pipelines. However, due to the uncertainty of the characteristics of the soil and materials, the size of the corrosion region is a stochastic variable. In this paper, using a homogeneous Markov process, a model is presented to simulate the occurrence of corrosion. Then, in combinations with a linear corrosion development model, the probability density function of the pipeline area corrosion percentage is derived. Based on the corrosion model, the pipeline seismic displacements and stresses are predicted. Furthermore, using the random perturbation approach, the mean and variance of the pipeline seismic response are given. To illustrate the validity of the proposed approach, a 200-meter long pipeline is numerically investigated and its random seismic response is obtained.展开更多
文摘A novel size-dependent model is developed herein to study the bending behavior of beam-type micro/nano-structures considering combined effects of nonlocality and micro-rotational degrees of freedom. To accomplish this aim, the micropolar theory is combined with the nonlocal elasticity. To consider the nonlocality, both integral (original) and differential formulations of Eringen’s nonlocal theory are considered. The beams are considered to be Timoshenko-type, and the governing equations are derived in the variational form through Hamilton’s principle. The relations are written in an appropriate matrix-vector representation that can be readily utilized in numerical approaches. A finite element (FE) approach is also proposed for the solution procedure. Parametric studies are conducted to show the simultaneous nonlocal and micropolar effects on the bending response of small-scale beams under different boundary conditions.
基金Project supported by the National Natural Science Foundation of China (No. 12002086)the Fundamental Research Funds for the Central Universities of China (No. 2242022R40040)。
文摘A new size-dependent axially functionally graded(AFG) micro-beam model is established with the application of a reformulated strain gradient elasticity theory(RSGET). The new micro-beam model incorporates the strain gradient, velocity gradient,and couple stress effects, and accounts for the material variation along the axial direction of the two-component functionally graded beam. The governing equations and complete boundary conditions of the AFG beam are derived based on Hamilton's principle. The correctness of the current model is verified by comparing the static behavior results of the current model and the finite element model(FEM) at the micro-scale. The influence of material inhomogeneity and size effect on the static and dynamic responses of the AFG beam is studied. The numerical results show that the static and vibration responses predicted by the newly developed model are different from those based on the classical model at the micro-scale. The new model can be applied not only in the optimization of micro acoustic wave devices but also in the design of AFG micro-sensors and micro-actuators.
文摘The dynamic responses and generated voltage in a curved sandwich beam with glass reinforced laminate(GRL)layers and a pliable core in the presence of a piezoelectric layer under low-velocity impact(LVI)are investigated.The current study aims to carry out a dynamic analysis on the sandwich beam when the impactor hits the top face sheet with an initial velocity.For the layer analysis,the high-order shear deformation theory(HSDT)and Frostig's second model for the displacement fields of the core layer are used.The classical non-adhesive elastic contact theory and Hunter's principle are used to calculate the dynamic responses in terms of time.In order to validate the analytical method,the outcomes of the current investigation are compared with those gained by the experimental tests carried out by other researchers for a rectangular composite plate subject to the LVI.Finite element(FE)simulations are conducted by means of the ABAQUS software.The effects of the parameters such as foam modulus,layer material,fiber angle,impactor mass,and its velocity on the generated voltage are reviewed.
文摘The main objective of this study is to investigate the buckling analysis of CCSs reinforced by CNTs subjected to combined loading of hydrostatic pressure and axial compression resting on the twoparameter elastic foundation(T-P-EF).It is one of the first attempts to derive the governing equations of the CCSs reinforced with CNTs,based on a generalized first-order shear deformation shell theory(FSDST)which includes shell-foundation interaction.By adopting the extended mixing rule,the effective material properties of CCSs reinforced by CNTs with linear distributions are approximated by introducing some efficiency parameters.Three carbon nanotube distribution in the matrix,i.e.uniform distribution(U)and V and X-types linear distribution are taken into account.The stability equations are solved by using the Galerkin procedure to determine the combined buckling loads(CBLs)of the structure selected here.The numerical illustrations cover CBLs characteristics of CCSs reinforced by CNTs in the presence of the T-P-EF.Finally,a parametric study is carried out to study the influences of the foundation parameters,the volume fraction of carbon nanotubes and the types of reinforcement on the CBLs.
文摘The elastic wave propagation phenomena in two-dimensional periodic beam lattices are studied by using the Bloch wave transform. The numerical modeling is applied to the hexagonal and the rectangular beam lattices, in which, both the in-plane (with respect to the lattice plane) and out-of-plane waves are considered. The dispersion relations are obtained by calculating the Bloch eigenfrequencies and eigenmodes. The frequency bandgaps are observed and the influence of the elastic and geometric properties of the primitive cell on the bandgaps is studied. By analyzing the phase and the group velocities of the Bloch wave modes, the anisotropic behaviors and the dispersive characteristics of the hexagonal beam lattice with respect to the wave prop- agation are highlighted in high frequency domains. One im- portant result presented herein is the comparison between the first Bloch wave modes to the membrane and bend- ing/transverse shear wave modes of the classical equivalent homogenized orthotropic plate model of the hexagonal beam lattice. It is shown that, in low frequency ranges, the homog- enized plate model can correctly represent both the in-plane and out-of-plane dynamic behaviors of the beam lattice, its frequency validity domain can be precisely evaluated thanks to the Bloch modal analysis. As another important and original result, we have highlighted the existence of the retro- propagating Bloch wave modes with a negative group veloc- ity, and of the corresponding "retro-propagating" frequency bands.
文摘Based on the theory of Eider-Bernoulli beam and Winkler assumption for elastic foundation, a mathematical model is presented. By using Fourier transformation for space variable, Laplace transformation for time variable and convolution theorem for their inverse transformations, a general solution for dynamical problem of infinite beam on an elastic foundation is obtained. Finally, the cases of free vibration,impulsive response and moving load are also discussed.
基金the National Natural Science Foundation of China(No.12172169)the China Scholarship Council(CSC)(No.202006830038)the Natural Sciences and Engineering Research Council of Canada(No.RGPIN-2017-03716115112)。
文摘A nonlocal study of the vibration responses of functionally graded(FG)beams supported by a viscoelastic Winkler-Pasternak foundation is presented.The damping responses of both the Winkler and Pasternak layers of the foundation are considered in the formulation,which were not considered in most literature on this subject,and the bending deformation of the beams and the elastic and damping responses of the foundation as nonlocal by uniting the equivalently differential formulation of well-posed strain-driven(ε-D)and stress-driven(σ-D)two-phase local/nonlocal integral models with constitutive constraints are comprehensively considered,which can address both the stiffness softening and toughing effects due to scale reduction.The generalized differential quadrature method(GDQM)is used to solve the complex eigenvalue problem.After verifying the solution procedure,a series of benchmark results for the vibration frequency of different bounded FG beams supported by the foundation are obtained.Subsequently,the effects of the nonlocality of the foundation on the undamped/damping vibration frequency of the beams are examined.
文摘Natural fibers have been extensively researched as reinforcement materials in polymers on account of their environmental and economic advantages in comparison with synthetic fibers in the recent years.Bamboo fibers are renowned for their good mechanical properties,abundance,and short cycle growth.As beams are one of the fundamental structural components and are susceptible to mechanical loads in engineering applications,this paper performs a study on the free vibration and buckling responses of bamboo fiber reinforced composite(BFRC)beams on the elastic foundation.Three different functionally graded(FG)layouts and a uniform one are the considered distributions for unidirectional long bamboo fibers across the thickness.The elastic properties of the composite are determined with the law of mixture.Employing Hamilton’s principle,the governing equations of motion are obtained.The generalized differential quadrature method(GDQM)is then applied to the equations to obtain the results.The achieved outcomes exhibit that the natural frequency and buckling load values vary as the fiber volume fractions and distributions,elastic foundation stiffness values,and boundary conditions(BCs)and slenderness ratio of the beam change.Furthermore,a comparative study is conducted between the derived analysis outcomes for BFRC and homogenous polymer beams to examine the effectiveness of bamboo fibers as reinforcement materials,demonstrating the significant enhancements in both vibration and buckling responses,with the exception of natural frequencies for cantilever beams on the Pasternak foundation with the FG-◇fiber distribution.Eventually,the obtained analysis results of BFRC beams are also compared with those for carbon nanotube reinforced composite(CNTRC)beams found in the literature,indicating that the buckling loads and natural frequencies of BFRC beams are lower than those of CNTRC beams.
文摘Boundary characteristic orthogonal polynomials are used as shape functions in the Rayleigh–Ritz method to investigate vibration and buckling of nanobeams embedded in an elastic medium. The present formulation is based on the nonlocal Euler–Bernoulli beam theory. The eigen value equation is developed for the buckling and vibration analyses. The orthogonal property of these polynomials makes the computation easier with less computational effort. It is observed that the frequency and critical buckling load parameters are dependent on the temperature, elastic medium, small scale coefficient,and length-to-diameter ratio. These observations are useful in the mechanical design of devices that use carbon nanotubes.
基金the National Key Research and Development Program of China(Grant 2017YFB1201204)National Natural Science Foundation of China(Grants 51578552,U1334203).
文摘Discretising a structure into elements is a key step in finite element(FE)analysis.The discretised geometry used to formulate an FE model can greatly affect accuracy and validity.This paper presents a unified dimensionless parameter to generate a mesh of cubic FEs for the analysis of very long beams resting on an elastic foundation.A uniform beam resting on elastic foundation with various values of flexural stiffness and elastic supporting coefficients subject to static load and moving load is used to illustrate the application of the proposed parameter.The numerical results show that(a)Even if the values of the flexural stiffness of the beam and elastic supporting coefficient of the elastic foundation are different,the same proposed parameter“s”can ensure the same accuracy of the FE solution,but the accuracy may differ for use of the same element length;(b)The proposed dimensionless parameter“s”can indeed be used as a unified index to generate the mesh for a beam resting on elastic foundation,whereas the use of the same element length as a criterion may be misleading;(c)The errors between the FE and analytical solutions for the maximum vertical displacement,shear force and bending moment of the beam increase with the dimensionless parameter“s”;and(d)For the given allowable errors for the vertical displacement,shear force and bending moment of the beam under static load and moving load,the corresponding values of the proposed parameter are provided to guide the mesh generation.
文摘Non-local plane elasticity problems are discussed in the context of Λ-fractional linear elasticity theory. Adapting the Λ-fractional derivative along with the Λ-fractional space, where geometry and mechanics are valid in the conventional way, non-local plane elasticity problems are solved with the help of biharmonic functions. Then, the results are transferred into the initial plane.Applications are presented to homogeneous and the fractional beam bending problem.
基金financially supported by the High-Tech Ship Research Projects sponsored by the Ministry of Industry and Information Technology of China(Grant No.[2019]357)China Postdoctoral Science Foundation(Grant No.2020M683755)。
文摘Based on the elastic foundation beam theory and the multi-floating-module hydrodynamic theory,a novel method is proposed to estimate the dynamic responses of VLFS(Very Large Floating Structure).In still water,a VLFS can be simplified as an elastic foundation beam model or a multi-floating-module model connected by elastic hinges.According to equivalent displacement of the two models in static analysis,the problem of rotation stiffness of elastic hinges can be solved.Then,based on the potential flow theory,the dynamic responding analysis of multi-floatingmodule model under wave loads can be computed in ANSYS-AQWA software.By assembling the time domain analysis results of each module,the dynamic responses of the VLFS can be obtained.Validation of the method is conducted through a series of comparison calculations,which mainly includes a continuous structure and a three-part structure connected by hinges in regular waves.The results of this paper method show a satisfactory agreement with the experiment and calculation data given in relative references.
基金supported by the National Natural Science Foundation of China(11202117,11272186,11172231 and 50928601)the Postdoctoral Science Foundation of China(2012M521326)+3 种基金the Natural Science Fund of Shandong Province(ZR2012AM014 and BS2012ZZ006)Independent Innovation Fund of Shandong University(2011GN055)National Science Foundation(CMMI-0643726),DARPA(W91CRB-11-C-0112)Changjiang Scholar Program from Ministry of Education of China
文摘By incorporating the strain gradient elasticity into the classical Bernoulli-Euler beam and Timoshenko beam models, the size-dependent characteristics of wave propaga- tion in micro/nanobeams is studied. The formulations of dis- persion relation are explicitly derived for both strain gradi- ent beam models, and presented for different material length scale parameters (MLSPs). For both phenomenological size- dependent beam models, the angular frequency, phase veloc- ity and group velocity increase with increasing wave num- ber. However, the velocity ratios approach different values for different beam models, indicating an interesting behavior of the asymptotic velocity ratio. The present theory is also compared with the nonlocal continuum beam models.
基金Project Supported by National Natural Science Foundation of ChinaMunicipal Natural Science Foundation of Shanghai
文摘This paper presents a generalized form of the method of full approximation. By using the concept of asymptotic linearization and making the coordinate transformations including the nonlinear functionals of dependent variables, the original nonlinear problems are linearized and their higher-order solutions are given in terms of the first-term asymptotic solutions and corresponding transformations. The analysis of a model equation and some problems of weakly nonlinear oscillations and waves with the generalized method shows that it is effective and straightforward.
基金financially supported by the National Natural Science Foundation of China (51778289)the Transportation Science and Technology Project of Jiangsu Province (2014Y01)the Science and Technology Plan Project of Jiangsu Province (BY2016005-12)
文摘Thermo-elastic analysis of simply-supported orthotropic laminated beams subjected to high temperature and mechanical load is presented on the basis of the exact two-dimensional thermoelasticity theory.The beam is composed of several orthotropic layers,each with temperaturedependent material properties.The governing equation for each layer is analytically solved using the state space method.The displacement and stress solutions of the beam are obtained using the transfer-matrix method.A numerical example is included to study the effects of temperature on the mechanical responses of a sandwich beam.The results reveal two main effects of temperature:(i)inducing deformations and stresses by itself;(ii)affecting the deformations and stresses induced by the mechanical load.
文摘Grouting pile is a new soft soil foundation treatment method with characteristics such as no vibration, no noise, no soil compaction, light construction machines and quick construction velocity and so on. At present, study on reinforcement mechanism and design calculation method of composite foundation of grouting pile is initially started without design specifications, so it is usually required to draw on design specifications of stump pile when designing composite foundation of grouting pile while grouting pile has its characteristics and difference although reinforcement mechanisms and construction processes of two types of piles are similar. Sedimentation formula of composite foundation of grouting pile with cover plate is educed and a suitable deformation mode is proposed by aiming to deformation characteristics of composite foundation of grouting pile with cover plate under embankment load on basis of relevant sedimentation theories of composite foundation by combination of characteristics of composite foundation of grouting pile. The sedimentation calculation formula of grouting pile with cover plate under embankment load is educed according to balance relation of force and displacement coordination conditions by elastic theory and sedimentation calculation model established is validated by sedimentation monitoring documents of one expressway in China.
基金Natural Science Funds for the Innovative Research Group of China Under Grant No. 50621062
文摘Water distribution and gas supply systems are among the infrastructure systems that have many buried steel pipelines. Corrosion gradually appears inside and outside of the pipe walls over the service life of these pipelines, the corrosion is primarily caused by the surrounding soil and the materials that flow through the pipelines. However, due to the uncertainty of the characteristics of the soil and materials, the size of the corrosion region is a stochastic variable. In this paper, using a homogeneous Markov process, a model is presented to simulate the occurrence of corrosion. Then, in combinations with a linear corrosion development model, the probability density function of the pipeline area corrosion percentage is derived. Based on the corrosion model, the pipeline seismic displacements and stresses are predicted. Furthermore, using the random perturbation approach, the mean and variance of the pipeline seismic response are given. To illustrate the validity of the proposed approach, a 200-meter long pipeline is numerically investigated and its random seismic response is obtained.