Hypothesis testing analysis and unknown parameter estimation of both the intermediate frequency(IF) and baseband GPS signal detection are given by using the generalized likelihood ratio test(GLRT) approach,applying th...Hypothesis testing analysis and unknown parameter estimation of both the intermediate frequency(IF) and baseband GPS signal detection are given by using the generalized likelihood ratio test(GLRT) approach,applying the model of GPS signal in white Gaussian noise,It is proved that the test statistic follows central or noncentral F distribution,It is also pointed out that the test statistic is nearly identical to central or noncentral chi-squared distribution because the processing samples are large enough to be considered as infinite in GPS acquisition problem.It is also proved that the probability of false alarm,the probability of detection and the threshold are affected largely when the hypothesis testing refers to the full pseudorandom noise(PRN) code phase and Doppler frequency search space cells instead of each individual cell.The performance of the test statistic is also given with combining the noncoherent integration.展开更多
Vehicle turning movement data from signalized intersections is utilized for numerous applications in the field of transportation. Such applications include real-time adaptive signal control, dynamic traffic assignment...Vehicle turning movement data from signalized intersections is utilized for numerous applications in the field of transportation. Such applications include real-time adaptive signal control, dynamic traffic assignment, and traffic demand estimation. However, it is very time consuming and costly to obtain vehicle turning movement information manually. Previous efforts to simplify this process were focused on solving the problem using an O-D matrix, but this method proved to be inaccurate and unreliable with the existing data acquisition system. Another study involved the identification of vehicle turning movements from the detector information, but the presence of shared lanes led to uncertainties in vehicle matching, thus limiting application of the method only to intersections without shared lanes. In light of those unsuccessful attempts, this paper develops and tests a system called the Automatic Turning Movement Identification System (ATMIS), which estimates vehicle turning movements at a signalized intersection in real time, regardless of its geometry. The results from lab experiments as well as a field test show that the algorithm is very promising and may potentially be expanded for field applications.展开更多
This paper describes a new method of small moving target detection and analyzes the performance of this algorithm. The method is based on multi-level threshold decision-making and sliding trajectory confidence testing...This paper describes a new method of small moving target detection and analyzes the performance of this algorithm. The method is based on multi-level threshold decision-making and sliding trajectory confidence testing technology. The parameters of the algorithm are also given. Experiments have been conducted, the results show that the algorithm has advantages of high detection probability, simple structure, and excellent real-time performance.展开更多
Receiver Autonomous Integrity Monitoring (RAIM) is a software algorithm available in some GPS receivers which gives an indication if the position solution given by the GPS receiver is suitable to use. The detail alg...Receiver Autonomous Integrity Monitoring (RAIM) is a software algorithm available in some GPS receivers which gives an indication if the position solution given by the GPS receiver is suitable to use. The detail algorithm of the parity space method of RAIM technique is presented. Using FDI and FDE methods, the simulations of RAIM performance have been done in three different phases independently with respect to the bias of the fault satellite. Case study of simulation results is discussed and each performance of RAIM is analyzed. According to the analysis of simulation results, the parity space method of RAIM can meet the integrity requirements for nonprecision, terminal and enroute flight phase. It also indicates that the results of performance of FDE are better than that of FDI.展开更多
文摘Hypothesis testing analysis and unknown parameter estimation of both the intermediate frequency(IF) and baseband GPS signal detection are given by using the generalized likelihood ratio test(GLRT) approach,applying the model of GPS signal in white Gaussian noise,It is proved that the test statistic follows central or noncentral F distribution,It is also pointed out that the test statistic is nearly identical to central or noncentral chi-squared distribution because the processing samples are large enough to be considered as infinite in GPS acquisition problem.It is also proved that the probability of false alarm,the probability of detection and the threshold are affected largely when the hypothesis testing refers to the full pseudorandom noise(PRN) code phase and Doppler frequency search space cells instead of each individual cell.The performance of the test statistic is also given with combining the noncoherent integration.
文摘Vehicle turning movement data from signalized intersections is utilized for numerous applications in the field of transportation. Such applications include real-time adaptive signal control, dynamic traffic assignment, and traffic demand estimation. However, it is very time consuming and costly to obtain vehicle turning movement information manually. Previous efforts to simplify this process were focused on solving the problem using an O-D matrix, but this method proved to be inaccurate and unreliable with the existing data acquisition system. Another study involved the identification of vehicle turning movements from the detector information, but the presence of shared lanes led to uncertainties in vehicle matching, thus limiting application of the method only to intersections without shared lanes. In light of those unsuccessful attempts, this paper develops and tests a system called the Automatic Turning Movement Identification System (ATMIS), which estimates vehicle turning movements at a signalized intersection in real time, regardless of its geometry. The results from lab experiments as well as a field test show that the algorithm is very promising and may potentially be expanded for field applications.
文摘This paper describes a new method of small moving target detection and analyzes the performance of this algorithm. The method is based on multi-level threshold decision-making and sliding trajectory confidence testing technology. The parameters of the algorithm are also given. Experiments have been conducted, the results show that the algorithm has advantages of high detection probability, simple structure, and excellent real-time performance.
文摘Receiver Autonomous Integrity Monitoring (RAIM) is a software algorithm available in some GPS receivers which gives an indication if the position solution given by the GPS receiver is suitable to use. The detail algorithm of the parity space method of RAIM technique is presented. Using FDI and FDE methods, the simulations of RAIM performance have been done in three different phases independently with respect to the bias of the fault satellite. Case study of simulation results is discussed and each performance of RAIM is analyzed. According to the analysis of simulation results, the parity space method of RAIM can meet the integrity requirements for nonprecision, terminal and enroute flight phase. It also indicates that the results of performance of FDE are better than that of FDI.