期刊文献+
共找到17,399篇文章
< 1 2 250 >
每页显示 20 50 100
Time series prediction of reservoir bank landslide failure probability considering the spatial variability of soil properties 被引量:2
1
作者 Luqi Wang Lin Wang +3 位作者 Wengang Zhang Xuanyu Meng Songlin Liu Chun Zhu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第10期3951-3960,共10页
Historically,landslides have been the primary type of geological disaster worldwide.Generally,the stability of reservoir banks is primarily affected by rainfall and reservoir water level fluctuations.Moreover,the stab... Historically,landslides have been the primary type of geological disaster worldwide.Generally,the stability of reservoir banks is primarily affected by rainfall and reservoir water level fluctuations.Moreover,the stability of reservoir banks changes with the long-term dynamics of external disastercausing factors.Thus,assessing the time-varying reliability of reservoir landslides remains a challenge.In this paper,a machine learning(ML)based approach is proposed to analyze the long-term reliability of reservoir bank landslides in spatially variable soils through time series prediction.This study systematically investigated the prediction performances of three ML algorithms,i.e.multilayer perceptron(MLP),convolutional neural network(CNN),and long short-term memory(LSTM).Additionally,the effects of the data quantity and data ratio on the predictive power of deep learning models are considered.The results show that all three ML models can accurately depict the changes in the time-varying failure probability of reservoir landslides.The CNN model outperforms both the MLP and LSTM models in predicting the failure probability.Furthermore,selecting the right data ratio can improve the prediction accuracy of the failure probability obtained by ML models. 展开更多
关键词 Machine learning(ML) Reservoir bank landslide Spatial variability time series prediction Failure probability
下载PDF
Deep Learning for Financial Time Series Prediction:A State-of-the-Art Review of Standalone and HybridModels
2
作者 Weisi Chen Walayat Hussain +1 位作者 Francesco Cauteruccio Xu Zhang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第4期187-224,共38页
Financial time series prediction,whether for classification or regression,has been a heated research topic over the last decade.While traditional machine learning algorithms have experienced mediocre results,deep lear... Financial time series prediction,whether for classification or regression,has been a heated research topic over the last decade.While traditional machine learning algorithms have experienced mediocre results,deep learning has largely contributed to the elevation of the prediction performance.Currently,the most up-to-date review of advanced machine learning techniques for financial time series prediction is still lacking,making it challenging for finance domain experts and relevant practitioners to determine which model potentially performs better,what techniques and components are involved,and how themodel can be designed and implemented.This review article provides an overview of techniques,components and frameworks for financial time series prediction,with an emphasis on state-of-the-art deep learning models in the literature from2015 to 2023,including standalonemodels like convolutional neural networks(CNN)that are capable of extracting spatial dependencies within data,and long short-term memory(LSTM)that is designed for handling temporal dependencies;and hybrid models integrating CNN,LSTM,attention mechanism(AM)and other techniques.For illustration and comparison purposes,models proposed in recent studies are mapped to relevant elements of a generalized framework comprised of input,output,feature extraction,prediction,and related processes.Among the state-of-the-artmodels,hybrid models like CNNLSTMand CNN-LSTM-AM in general have been reported superior in performance to stand-alone models like the CNN-only model.Some remaining challenges have been discussed,including non-friendliness for finance domain experts,delayed prediction,domain knowledge negligence,lack of standards,and inability of real-time and highfrequency predictions.The principal contributions of this paper are to provide a one-stop guide for both academia and industry to review,compare and summarize technologies and recent advances in this area,to facilitate smooth and informed implementation,and to highlight future research directions. 展开更多
关键词 Financial time series prediction convolutional neural network long short-term memory deep learning attention mechanism FINANCE
下载PDF
Prediction of three-dimensional ocean temperature in the South China Sea based on time series gridded data and a dynamic spatiotemporal graph neural network
3
作者 Feng Nan Zhuolin Li +3 位作者 Jie Yu Suixiang Shi Xinrong Wu Lingyu Xu 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2024年第7期26-39,共14页
Ocean temperature is an important physical variable in marine ecosystems,and ocean temperature prediction is an important research objective in ocean-related fields.Currently,one of the commonly used methods for ocean... Ocean temperature is an important physical variable in marine ecosystems,and ocean temperature prediction is an important research objective in ocean-related fields.Currently,one of the commonly used methods for ocean temperature prediction is based on data-driven,but research on this method is mostly limited to the sea surface,with few studies on the prediction of internal ocean temperature.Existing graph neural network-based methods usually use predefined graphs or learned static graphs,which cannot capture the dynamic associations among data.In this study,we propose a novel dynamic spatiotemporal graph neural network(DSTGN)to predict threedimensional ocean temperature(3D-OT),which combines static graph learning and dynamic graph learning to automatically mine two unknown dependencies between sequences based on the original 3D-OT data without prior knowledge.Temporal and spatial dependencies in the time series were then captured using temporal and graph convolutions.We also integrated dynamic graph learning,static graph learning,graph convolution,and temporal convolution into an end-to-end framework for 3D-OT prediction using time-series grid data.In this study,we conducted prediction experiments using high-resolution 3D-OT from the Copernicus global ocean physical reanalysis,with data covering the vertical variation of temperature from the sea surface to 1000 m below the sea surface.We compared five mainstream models that are commonly used for ocean temperature prediction,and the results showed that the method achieved the best prediction results at all prediction scales. 展开更多
关键词 dynamic associations three-dimensional ocean temperature prediction graph neural network time series gridded data
下载PDF
Finite-Time Thermodynamic Simulation of Circulating Direct Condensation Heat Recovery on Chillers
4
作者 Zhixin Yang Feihu Chen +1 位作者 Liping Wang Guangcai Gong 《Journal of Power and Energy Engineering》 2024年第1期1-14,共14页
A time series model is used in this paper to describe the progress of circulating direct condensation heat recovery of the compound condensing process (CCP) which is made of two water cooling condensing processes in s... A time series model is used in this paper to describe the progress of circulating direct condensation heat recovery of the compound condensing process (CCP) which is made of two water cooling condensing processes in series for a centrifugal chiller in the paper. A finite-time thermodynamics method is used to set up the time series simulation model. As a result, an upper bound of recoverable condensation heat for the compound condensing process is obtained which is in good agreement with experimental result. And the result is valuable and useful to optimization design of condensing heat recovery. 展开更多
关键词 Condensation Heat Recovery Compound Condensing Process time series Finite-time thermodynamics
下载PDF
Analysis of coordinate time series of DORIS stations on Eurasian plate and the plate motion based on SSA and FFT 被引量:1
5
作者 Qiaoli Kong Linggang Zhang +3 位作者 Jingwei Han Changsong Li Wenhao Fang Tianfa Wang 《Geodesy and Geodynamics》 CSCD 2023年第1期90-97,共8页
This study focuses on analyzing the time series of DORIS beacon stations and plate motion of the Eurasian plate by applying Singular Spectrum Analysis(SSA)and Fast Fourier Transform(FFT).First,the rend terms and perio... This study focuses on analyzing the time series of DORIS beacon stations and plate motion of the Eurasian plate by applying Singular Spectrum Analysis(SSA)and Fast Fourier Transform(FFT).First,the rend terms and periodic signals are accurately separated by SSA,then,the periodic seasonal signals are detected using SSA,and finally,the main components of the time series are reconstructed successfully.The test results show that the nonlinear trends and seasonal signals of DORIS stations are detected successfully.The periods of the seasonal signals detected are year,half-year,and 59 days,etc.The contribution rates and slopes in E,N,and U directions of the trend items of each beacon station after reconstruction are obtained by least-square fitting.The velocities of these stations are compared with those provided by the GEODVEL2010 model,and it is found that they are in good agreement except the DIOB,MANB,and PDMB stations.Based on the DORIS coordinate time series,the velocity field on the Eurasian plate is constructed,and the test shows that the Eurasian plate moves eastward as a whole with an average velocity of 24.19±0.11 mm/y in the horizontal direction,and the average velocity of it is1.74±0.07 mm/y in the vertical direction. 展开更多
关键词 DORIS SSA FFT Coordinate time series Plate motion
下载PDF
Eucalyptus carbon stock estimation in subtropical regions with the modeling strategy of sample plots–airborne LiDAR–Landsat time series data 被引量:1
6
作者 Xiandie Jiang Dengqiu Li +1 位作者 Guiying Li Dengsheng Lu 《Forest Ecosystems》 SCIE CSCD 2023年第6期700-716,共17页
Updating eucalyptus carbon stock data in a timely manner is essential for better understanding and quantifying its effects on ecological and hydrological processes.At present,there are no suitable methods to accuratel... Updating eucalyptus carbon stock data in a timely manner is essential for better understanding and quantifying its effects on ecological and hydrological processes.At present,there are no suitable methods to accurately estimate the eucalyptus carbon stock in a large area.This research aimed to explore the transferability of the eucalyptus carbon stock estimation model at temporal and spatial scales and assess modeling performance through the strategy of combining sample plots,airborne LiDAR and Landsat time series data in subtropical regions of China.Specifically,eucalyptus carbon stock estimates in typical sites were obtained by applying the developed models with the combination of airborne LiDAR and field measurement data;the eucalyptus plantation ages were estimated using the random localization segmentation approach from Landsat time series data;and regional models were developed by linking LiDAR-derived eucalyptus carbon stock and vegetation age(e.g.,months or years).To examine the models’robustness,the developed models at the regional scale were transferred to estimate carbon stocks at the spatial and temporal scales,and the modeling results were evaluated using validation samples accordingly.The results showed that carbon stock can be successfully estimated using the age-based models(both age variables in months and years as predictor variables),but the month-based models produced better estimates with a root mean square error(RMSE)of 6.51 t⋅ha1 for Yunxiao County,Fujian Province,and 6.33 t⋅ha1 for Gaofeng Forest Farm,Guangxi Zhuang Autonomous Region.Particularly,the month-based models were superior for estimating the carbon stocks of young eucalyptus plantations of less than two years.The model transferability analyses showed that the month-based models had higher transferability than the year-based models at the temporal scale,indicating their possibility for analysis of carbon stock change.However,both the month-based and year-based models expressed relatively poor transferability at a spatial scale.This study provides new insights for cost-effective monitoring of carbon stock change in intensively managed plantation forests. 展开更多
关键词 Forest carbon stock Eucalyptus plantation Airborne LiDAR Landsat time series Forest age
下载PDF
A new decomposition model of sea level variability for the sea level anomaly time series prediction
7
作者 Qinting SUN Jianhua WAN +2 位作者 Shanwei LIU Jinghui JIANG Yasir MUHAMMAD 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2023年第5期1629-1642,共14页
Rising sea level is of great significance to coastal societies;predicting sea level extent in coastal regions is critical.When carrying out predictions,the subsequences obtained using decomposition methods may exhibit... Rising sea level is of great significance to coastal societies;predicting sea level extent in coastal regions is critical.When carrying out predictions,the subsequences obtained using decomposition methods may exhibit a certain regularity and therefore can provide multidimensional information that can be used to improve prediction models.Traditional decomposition methods such as seasonal and trend decomposition using Loess(STL)focus mostly on the fluctuating trend of time series and ignore its impact on prediction.Methods in the signal decomposition domain,such as variational mode decomposition(VMD),have no physical significance.In response to the above problems,a new decomposition method for sea level anomaly time series prediction(DMSLAP)is proposed.With this method,the trend term in a time series can be isolated and the effects of abnormal sea level change behaviors can be attenuated.We decompose multiperiod characteristics using this method while maintaining the smoothness of the analyzed series.Satellite altimetry data from 1993 to 2020 are used in experiments conducted in the study area.The results are then compared with predictions obtained using existing decomposition methods such as the STL and VMD methods and time varying filtering based on empirical mode decomposition(TVF-EMD).The performance of DMSLAP combined with a prediction method resulted in optimal sea level anomaly(SLA)predictions,with a minimum root mean square error(RMSE)of 1.40 cm and a maximum determination coefficient(R^(2))of 0.93 during 2020.The DMSLAP method was more accurate when predicting 1-year data and 3-year data.The TVF-EMD and DMSLAP methods had comparable accuracies,and the periodic term decomposed by the DMSLAP method was more in line with the actual law than that derived using the TVF-EMD method.Thus,DMSLAP can decompose SLA time series better than existing methods and is an effective tool for obtaining short-term SLA prediction. 展开更多
关键词 time series decomposition satellite altimetry China Sea and its vicinity sea level change
下载PDF
Research on Short-Term Load Forecasting of Distribution Stations Based on the Clustering Improvement Fuzzy Time Series Algorithm
8
作者 Jipeng Gu Weijie Zhang +5 位作者 Youbing Zhang Binjie Wang Wei Lou Mingkang Ye Linhai Wang Tao Liu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第9期2221-2236,共16页
An improved fuzzy time series algorithmbased on clustering is designed in this paper.The algorithm is successfully applied to short-term load forecasting in the distribution stations.Firstly,the K-means clustering met... An improved fuzzy time series algorithmbased on clustering is designed in this paper.The algorithm is successfully applied to short-term load forecasting in the distribution stations.Firstly,the K-means clustering method is used to cluster the data,and the midpoint of two adjacent clustering centers is taken as the dividing point of domain division.On this basis,the data is fuzzed to form a fuzzy time series.Secondly,a high-order fuzzy relation with multiple antecedents is established according to the main measurement indexes of power load,which is used to predict the short-term trend change of load in the distribution stations.Matlab/Simulink simulation results show that the load forecasting errors of the typical fuzzy time series on the time scale of one day and one week are[−50,20]and[−50,30],while the load forecasting errors of the improved fuzzy time series on the time scale of one day and one week are[−20,15]and[−20,25].It shows that the fuzzy time series algorithm improved by clustering improves the prediction accuracy and can effectively predict the short-term load trend of distribution stations. 展开更多
关键词 Short-term load forecasting fuzzy time series K-means clustering distribution stations
下载PDF
Examine the Reliability of Econometrics Software: An Empirical Comparison of Time Series Modelling
9
作者 Wickramasinghage M. A. Wickramasinghe Parana P. A. W. Athukorala +1 位作者 Siththara G. J. Senarathne Yapa P. R. D. Yapa 《Open Journal of Statistics》 2023年第1期25-45,共21页
Researchers must understand that naively relying on the reliability of statistical software packages may result in suboptimal, biased, or erroneous results, which affects applied economic theory and the conclusions an... Researchers must understand that naively relying on the reliability of statistical software packages may result in suboptimal, biased, or erroneous results, which affects applied economic theory and the conclusions and policy recommendations drawn from it. To create confidence in a result, several software packages should be applied to the same estimation problem. This study examines the results of three software packages (EViews, R, and Stata) in the analysis of time-series econometric data. The time-series data analysis which presents the determinants of macroeconomic growth of Sri Lanka from 1978 to 2020 has been used. The study focuses on testing for stationarity, cointegration, and significant relationships among the variables. The Augmented Dickey-Fuller and Phillips Perron tests were employed in this study to test for stationarity, while the Johansen cointegration test was utilized to test for cointegration. The study employs the vector error correction model to assess the short-run and long-term dynamics of the variables in an attempt to determine the relationship between them. Finally, the Granger Causality test is employed in order to examine the linear causation between the concerned variables. The study revealed that the results produced by three software packages for the same dataset and the same lag order vary significantly. This implies that time series econometrics results are sensitive to the software that is used by the researchers while providing different policy implications even for the same dataset. The present study highlights the necessity of further analysis to investigate the impact of software packages in time series analysis of economic scenarios. 展开更多
关键词 ECONOMETRICS Macroeconomic Determinants Software Packages time series Modelling
下载PDF
Determining the planting year of navel orange trees in mountainous and hilly areas of southern China:a remote sensing based method
10
作者 LEI Juncheng WANG Sha +1 位作者 WANG Yuandong LUO Wei 《Journal of Mountain Science》 SCIE CSCD 2024年第10期3293-3305,共13页
Remote sensing has demonstrated validity in determining the planting year of deciduous fruit trees;however,its effectiveness in ascertaining the planting year of evergreen fruit trees remains unverified.Furthermore,th... Remote sensing has demonstrated validity in determining the planting year of deciduous fruit trees;however,its effectiveness in ascertaining the planting year of evergreen fruit trees remains unverified.Furthermore,the sources of error associated with using remote sensing to determine the planting year of fruit trees remain unclear.This study investigates several cultivated sweet orange(Citrus sinensis)varieties,which are extensively cultivated throughout subtropical China.We analyzed Landsat time series data from 132 navel orange orchards in Gannan,covering the period from 1993 to 2021.For each orchard,Google Earth Engine was employed to extract three vegetation indices—Enhanced Vegetation Index(EVI),Normalized Difference Vegetation Index(NDVI),and Normalized Burn Ratio(NBR)—for each available date,thereby generating three distinct vegetation index time series.The planting year of navel orange trees was identified based on abrupt changes observed in these time series.The principal sources of error in determining the planting year were investigated using the Wilcoxon signed-rank test,Spearman's correlation analysis,and Kruskal-Wallis H test.Key findings include:(1)Following the planting of navel orange trees,EVI,NDVI,and NBR exhibited fluctuations and a gradual increase over time,peaking approximately 10 to 15 years later.(2)The vegetation index time series derived from Landsat imagery effectively determined the planting year of evergreen navel orange trees in orchards,even within highly fragmented landscapes.Among these indices,NDVI and NBR time series outperformed the EVI time series.Specifically,the average determination errors for EVI,NDVI,and NBR time series were 6.4,1.8,and 2.8 years,respectively.(3)Major sources of error included the methods used to construct the time series,the selection of vegetation indices,and the orchard management practices.Overall,this study provides a viable method for determining the planting year of evergreen navel orange trees in fragmented landscapes and offers insights into factors contributing to uncertainty in planting year determination. 展开更多
关键词 time series Remote sensing Google Earth Engine Gannan SUBTROPICS
下载PDF
Phenology of different types of vegetation and their response to climate change in the Qilian Mountains,China
11
作者 ZHAO Kaixin LI Xuemei +1 位作者 ZHANG Zhengrong LIU Xinyu 《Journal of Mountain Science》 SCIE CSCD 2024年第2期511-525,共15页
The Qilian Mountains(QM)possess a delicate vegetation ecosystem,amplifying the evident response of vegetation phenology to climate change.The relationship between changes in vegetation growth and climate remains compl... The Qilian Mountains(QM)possess a delicate vegetation ecosystem,amplifying the evident response of vegetation phenology to climate change.The relationship between changes in vegetation growth and climate remains complex.To this end,we used MODIS NDVI data to extract the phenological parameters of the vegetation including meadow(MDW),grassland(GSD),and alpine vegetation(ALV))in the QM from 2002 to 2021.Then,we employed path analysis to reveal the direct and indirect impacts of seasonal climate change on vegetation phenology.Additionally,we decomposed the vegetation phenology in a time series using the trigonometric seasonality,Box-Cox transformation,ARMA errors,and Trend Seasonal components model(TBATS).The findings showed a distinct pattern in the vegetation phenology of the QM,characterized by a progressive shift towards an earlier start of the growing season(SOS),a delayed end of the growing season(EOS),and an extended length of the growing season(LOS).The growth cycle of MDW,GSD,and ALV in the QM species is clearly defined.The SOS for MDW and GSD occurred earlier,mainly between late April and August,while the SOS for ALVs occurred between mid-May and mid-August,a one-month delay compared to the other vegetation.The EOS in MDW and GSD were concentrated between late August and April and early September and early January,respectively.Vegetation phenology exhibits distinct responses to seasonal temperature and precipitation patterns.The advancement and delay of SOS were mainly influenced by the direct effect of spring temperatures and precipitation,which affected 19.59%and 22.17%of the study area,respectively.The advancement and delay of EOS were mainly influenced by the direct effect of fall temperatures and precipitation,which affected 30.18%and 21.17%of the area,respectively.On the contrary,the direct effects of temperature and precipitation in summer and winter on vegetation phenology seem less noticeable and were mainly influenced by indirect effects.The indirect effect of winter precipitation is the main factor affecting the advance or delay of SOS,and the area proportions were 16.29%and 23.42%,respectively.The indirect effects of fall temperatures and precipitation were the main factors affecting the delay and advancement of EOS,respectively,with an area share of 15.80%and 21.60%.This study provides valuable insight into the relationship between vegetation phenology and climate change,which can be of great practical value for the ecological protection of the Qinghai-Tibetan Plateau as well as for the development of GSD ecological animal husbandry in the QM alpine pastoral area. 展开更多
关键词 Vegetation phenology time series decomposition Path Analysis Climate change
下载PDF
Periodic signal extraction of GNSS height time series based on adaptive singular spectrum analysis
12
作者 Chenfeng Li Peibing Yang +1 位作者 Tengxu Zhang Jiachun Guo 《Geodesy and Geodynamics》 EI CSCD 2024年第1期50-60,共11页
Singular spectrum analysis is widely used in geodetic time series analysis.However,when extracting time-varying periodic signals from a large number of Global Navigation Satellite System(GNSS)time series,the selection... Singular spectrum analysis is widely used in geodetic time series analysis.However,when extracting time-varying periodic signals from a large number of Global Navigation Satellite System(GNSS)time series,the selection of appropriate embedding window size and principal components makes this method cumbersome and inefficient.To improve the efficiency and accuracy of singular spectrum analysis,this paper proposes an adaptive singular spectrum analysis method by combining spectrum analysis with a new trace matrix.The running time and correlation analysis indicate that the proposed method can adaptively set the embedding window size to extract the time-varying periodic signals from GNSS time series,and the extraction efficiency of a single time series is six times that of singular spectrum analysis.The method is also accurate and more suitable for time-varying periodic signal analysis of global GNSS sites. 展开更多
关键词 GNSS time series Singular spectrum analysis Trace matrix Periodic signal
下载PDF
Multivariate Time Series Anomaly Detection Based on Spatial-Temporal Network and Transformer in Industrial Internet of Things
13
作者 Mengmeng Zhao Haipeng Peng +1 位作者 Lixiang Li Yeqing Ren 《Computers, Materials & Continua》 SCIE EI 2024年第8期2815-2837,共23页
In the Industrial Internet of Things(IIoT),sensors generate time series data to reflect the working state.When the systems are attacked,timely identification of outliers in time series is critical to ensure security.A... In the Industrial Internet of Things(IIoT),sensors generate time series data to reflect the working state.When the systems are attacked,timely identification of outliers in time series is critical to ensure security.Although many anomaly detection methods have been proposed,the temporal correlation of the time series over the same sensor and the state(spatial)correlation between different sensors are rarely considered simultaneously in these methods.Owing to the superior capability of Transformer in learning time series features.This paper proposes a time series anomaly detection method based on a spatial-temporal network and an improved Transformer.Additionally,the methods based on graph neural networks typically include a graph structure learning module and an anomaly detection module,which are interdependent.However,in the initial phase of training,since neither of the modules has reached an optimal state,their performance may influence each other.This scenario makes the end-to-end training approach hard to effectively direct the learning trajectory of each module.This interdependence between the modules,coupled with the initial instability,may cause the model to find it hard to find the optimal solution during the training process,resulting in unsatisfactory results.We introduce an adaptive graph structure learning method to obtain the optimal model parameters and graph structure.Experiments on two publicly available datasets demonstrate that the proposed method attains higher anomaly detection results than other methods. 展开更多
关键词 Multivariate time series anomaly detection spatial-temporal network TRANSFORMER
下载PDF
A Measurement Study of the Ethereum Underlying P2P Network
14
作者 Mohammad ZMasoud Yousef Jaradat +3 位作者 Ahmad Manasrah Mohammad Alia Khaled Suwais Sally Almanasra 《Computers, Materials & Continua》 SCIE EI 2024年第1期515-532,共18页
This work carried out a measurement study of the Ethereum Peer-to-Peer(P2P)network to gain a better understanding of the underlying nodes.Ethereum was applied because it pioneered distributed applications,smart contra... This work carried out a measurement study of the Ethereum Peer-to-Peer(P2P)network to gain a better understanding of the underlying nodes.Ethereum was applied because it pioneered distributed applications,smart contracts,and Web3.Moreover,its application layer language“Solidity”is widely used in smart contracts across different public and private blockchains.To this end,we wrote a new Ethereum client based on Geth to collect Ethereum node information.Moreover,various web scrapers have been written to collect nodes’historical data fromthe Internet Archive and the Wayback Machine project.The collected data has been compared with two other services that harvest the number of Ethereumnodes.Ourmethod has collectedmore than 30% more than the other services.The data trained a neural network model regarding time series to predict the number of online nodes in the future.Our findings show that there are less than 20% of the same nodes daily,indicating thatmost nodes in the network change frequently.It poses a question of the stability of the network.Furthermore,historical data shows that the top ten countries with Ethereum clients have not changed since 2016.The popular operating system of the underlying nodes has shifted from Windows to Linux over time,increasing node security.The results have also shown that the number of Middle East and North Africa(MENA)Ethereum nodes is neglected compared with nodes recorded from other regions.It opens the door for developing new mechanisms to encourage users from these regions to contribute to this technology.Finally,the model has been trained and demonstrated an accuracy of 92% in predicting the future number of nodes in the Ethereum network. 展开更多
关键词 Ethereum MEASUREMENT ethereum client neural network time series forecasting web-scarping wayback machine blockchain
下载PDF
Using Interrupted Time Series Design to Analyze Changes in Hand, Foot, and Mouth Disease Incidence during the Declining Incidence Periods of 2008-2010 in China 被引量:24
15
作者 YU Shi Cheng HAO Yuan Tao +5 位作者 ZHANG Jing XIAO Ge Xin LIU Zhuang ZHU Qi MA Jia Qi WANG Yu 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 2012年第6期645-652,共8页
Objective To identify patterns of hand, foot and mouth disease (HFMD) incidence in China during declining incidence periods of 2008, 2009, and 2010. Methods Reported HFMD cases over a period of 25 months were extrac... Objective To identify patterns of hand, foot and mouth disease (HFMD) incidence in China during declining incidence periods of 2008, 2009, and 2010. Methods Reported HFMD cases over a period of 25 months were extracted from the National Disease Reporting System (NDRS) and analyzed. An interrupted time series (ITS) technique was used to detect changes in HFMD incidence rates in terms of level and slope between declining incidence periods of the three years. Results Over 3.58 million HFMD cases younger than 5 years were reported to the NDRS between May 1, 2008, and May 31, 2011. Males comprised 63.4% of the cases. ITS analyses demonstrated a significant increase in incidence rate level (P〈0.0001) when comparing the current period with the previous period. There were significant changes in declining slopes when comparing 2010 to 2009, and 2010 to 2008 (all P〈O.O05), but not 2009 to 2008. Conclusion Incremental changes in incidence rate level during the declining incidence periods of 2009 and 2010 can potentially be attributed to a few factors. The more steeply declining slope in 2010 compared with previous years could be ascribed to the implementation of more effective interventions and preventive strategies in 2010. Further investigation is required to examine this possibility. 展开更多
关键词 Hand foot and mouth disease EPIDEMIC Infectious disease Disease surveillance Interrupted time series analysis
下载PDF
Forecasting the number of zoonotic cutaneous leishmaniasis cases in south of Fars province, Iran using seasonal ARIMA time series method 被引量:9
16
作者 Mehdi Sharafi Haleh Ghaem +1 位作者 Hamid Reza Tabatabaee Hossein Faramarzi 《Asian Pacific Journal of Tropical Medicine》 SCIE CAS 2017年第1期77-83,共7页
Objective: To predict the trend of cutaneous leishmaniasis and assess the relationship between the disease trend and weather variables in south of Fars province using Seasonal Autoregressive Integrated Moving Average(... Objective: To predict the trend of cutaneous leishmaniasis and assess the relationship between the disease trend and weather variables in south of Fars province using Seasonal Autoregressive Integrated Moving Average(SARIMA) model,Methods: The trend of cutaneous leishmaniasis was predicted using Mini tab software and SARIMA model,Besides,information about the disease and weather conditions was collected monthly based on time series design during January 2010 to March 2016,Moreover,various SARIMA models were assessed and the best one was selected,Then,the model's fitness was evaluated based on normality of the residuals' distribution,correspondence between the fitted and real amounts,and calculation of Akaike Information Criteria(AIC) and Bayesian Information Criteria(BIC),Results: The study results indicated that SARIMA model(4,1,4)(0,1,0)(12) in general and SARIMA model(4,1,4)(0,1,1)(12) in below and above 15 years age groups could appropriately predict the disease trend in the study area,Moreover,temperature with a three-month delay(lag3) increased the disease trend,rainfall with a four-month delay(lag4) decreased the disease trend,and rainfall with a nine-month delay(lag9) increased the disease trend,Conclusions: Based on the results,leishmaniasis follows a descending trend in the study area in case drought condition continues,SARIMA models can suitably measure the disease trend,and the disease follows a seasonal trend. 展开更多
关键词 SARIMA model Zoonotic cutaneous leishmaniasis time series analysis
下载PDF
Impacts of Reference Time Series on the Homogenization of Radiosonde Temperature 被引量:3
17
作者 郭艳君 丁一汇 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2011年第5期1011-1022,共12页
Using radiosonde temperatures of 92 selected stations in China,the uncertainties in homogenization processes caused by different reference series,including nighttime temperature,the NCEP (National Centers for Environ... Using radiosonde temperatures of 92 selected stations in China,the uncertainties in homogenization processes caused by different reference series,including nighttime temperature,the NCEP (National Centers for Environmental Prediction) and ERA-40 (European Centre for Medium-Range Weather Forecasts) forecasting background,are examined via a two-phase regression approach.Although the results showed limited consistency in the temporal and spatial distribution of identified break points (BPs) in the context of metadata events of instrument model change and correction method,significant uncertainties still existed in BP identification,adjustment,and impact on the estimated trend.Reanalysis reference series generally led to more BP identification in homogenization.However,those differences were parts of global climatic shifts,which may have confused the BP calculations.Discontinuities also existed in the reanalysis series due to changes in the satellite input.The adjustment values deduced from the reanalysis series ranged widely and were larger than those from the nighttime series and,therefore,impacted the estimated temperature trend. 展开更多
关键词 China radiosonde temperature HOMOGENIZATION UNCERTAINTY reference time series
下载PDF
Regular nonlinear response of the driven Duffng oscillator to chaotic time series 被引量:3
18
作者 袁野 李月 +1 位作者 Danilo P.Mandic 杨宝俊 《Chinese Physics B》 SCIE EI CAS CSCD 2009年第3期958-968,共11页
Nonlinear response of the driven Duffing oscillator to periodic or quasi-periodic signals has been well studied. In this paper, we investigate the nonlinear response of the driven Duffing oscillator to non-periodic, m... Nonlinear response of the driven Duffing oscillator to periodic or quasi-periodic signals has been well studied. In this paper, we investigate the nonlinear response of the driven Duffing oscillator to non-periodic, more specifically, chaotic time series. Through numerical simulations, we find that the driven Duffing oscillator can also show regular nonlinear response to the chaotic time series with different degree of chaos as generated by the same chaotic series generating model, and there exists a relationship between the state of the driven Duffing oscillator and the chaoticity of the input signal of the driven Duffing oscillator. One real-world and two artificial chaotic time series are used to verify the new feature of Duffing oscillator. A potential application of the new feature of Duffing oscillator is also indicated. 展开更多
关键词 Duffing oscillator chaotic time series phase plane diagram largest Lyapunov exponent
下载PDF
STUDY ON THE PREDICTION METHOD OF LOW-DIMENSION TIME SERIES THAT ARISE FROM THE INTRINSIC NONLINEAR DYNAMICS 被引量:2
19
作者 MA Junhai(马军海) +1 位作者 CHEN Yushu(陈予恕) 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2001年第5期501-509,共9页
The prediction methods and its applications of the nonlinear dynamic systems determined from chaotic time series of low-dimension are discussed mainly. Based on the work of the foreign researchers, the chaotic time se... The prediction methods and its applications of the nonlinear dynamic systems determined from chaotic time series of low-dimension are discussed mainly. Based on the work of the foreign researchers, the chaotic time series in the phase space adopting one kind of nonlinear chaotic model were reconstructed. At first, the model parameters were estimated by using the improved least square method. Then as the precision was satisfied, the optimization method was used to estimate these parameters. At the end by using the obtained chaotic model, the future data of the chaotic time series in the phase space was predicted. Some representative experimental examples were analyzed to testify the models and the algorithms developed in this paper. ne results show that if the algorithms developed here are adopted, the parameters of the corresponding chaotic model will be easily calculated well and true. Predictions of chaotic series in phase space make the traditional methods change from outer iteration to interpolations. And if the optimal model rank is chosen, the prediction precision will increase notably. Long term superior predictability of nonlinear chaotic models is proved to be irrational and unreasonable. 展开更多
关键词 NONLINEAR chaotic model parameter identification time series prediction
下载PDF
Time Series Models for Short Term Prediction of the Incidence of Japanese Encephalitis in Xianyang City, P R China 被引量:3
20
作者 张荣强 李凤英 +5 位作者 刘军礼 刘美宁 罗文瑞 马婷 马波 张志刚 《Chinese Medical Sciences Journal》 CAS CSCD 2017年第3期152-160,共9页
Objective To construct a model of Seasonal Autoregressive Integrated Moving Average (SARIMA) for forecasting the epidemic of Japanese encephalitis (JE) in Xianyang, Shaanxi, China, and provide valuable reference ... Objective To construct a model of Seasonal Autoregressive Integrated Moving Average (SARIMA) for forecasting the epidemic of Japanese encephalitis (JE) in Xianyang, Shaanxi, China, and provide valuable reference information for JE control and prevention. Methods Theoretically epidemiologic study was employed in the research process. Monthly incidence data on JE for the period from Jan 2005 to Sep 2014 were obtained from a passive surveillance system at the Center for Diseases Prevention and Control in Xianyang, Shaanxi province. An optimal SARIMA model was developed for JE incidence from 2005 to 2013 with the Box and Jenkins approach. This SARIMA model could predict JE incidence for the year 2014 and 2015. Results SARIMA (1, 1, 1) (2, 1, 1)12 was considered to be the best model with the lowest Bayesian information criterion, Akaike information criterion, Mean Absolute Error values, the highest R2, and a lower Mean Absolute Percent Error. SARIMA (1, 1, 1) (2, 1, 1)12 was stationary and accurate for predicting JE incidence in Xianyang. The predicted incidence, around 0.3/100 000 from June to August in 2014 with low errors, was higher compared with the actual incidence. Therefore, SARIMA (1, 1, 1) (2, 1, 1)12 appeared to be reliable and accurate and could be applied to incidence prediction. Conclusions The proposed prediction model could provide clues to early identification of the JE incidence that is increased abnormally (≥0.4/100 000). According to the predicted results in 2014, the JE incidence in Xianyang will decline slightly and reach its peak from June to August.The authors wish to thank the staff from the CDCs from 13 counties of Xianyang, Shaanxi province, China, for their contribution to Japanese encephalitis cases reporting. 展开更多
关键词 Japanese encephalitis time series models INCIDENCE PREDICTION
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部