In an effort to investigate and quantify the patterns of local scour,researchers embarked on an in-depth study using a systematic experimental approach.The research focused on the effects of local scour around a set o...In an effort to investigate and quantify the patterns of local scour,researchers embarked on an in-depth study using a systematic experimental approach.The research focused on the effects of local scour around a set of four piles,each subjected to different hydromechanical conditions.In particular,this study aimed to determine how different attack angles—the angles at which the water flow impinges on the piles,and gap ratios—the ratios of the spacing between the piles to their diameters,influence the extent and nature of scour.A comprehensive series of 35 carefully designed experiments were orchestrated,each designed to dissect the nuances in how the gap ratio and attack angle might contribute to changes in the local scour observed at the base of pile groups.During these experimental trials,a wealth of local scour data were collected to support the analysis.These data included precise topographic profiles of the sediment bed around the pile groups,as well as detailed scour time histories showing the evolution of scour at strategic feature points throughout the test procedure.The analysis of the experimental data provided interesting insights.The study revealed that the interplay between the gap ratio and the attack angle had a pronounced influence on the scouring dynamics of the pile groups.One of the key observations was that the initial phases of scour,particularly within the first hour of water flow exposure,were characterized by a sharp increase in the scour depth occurring immediately in front of the piles.After this initial rapid development,the scour depth transitioned to a more gradual change rate.In contrast,the scour topography around the piles continuously evolved.This suggests that sediment displacement and the associated sculpting of the seabed around pile foundations are sustained and progressive processes,altering the underwater landscape over time.The results of this empirical investigation have significant implications for the design and construction of offshore multi-pile foundations,providing a critical reference for engineers and designers to estimate the expected scour depth around such structures,which is an integral part of decisions regarding foundation design,selection of structural materials,and implementation of scour protection measures.展开更多
Biomimetic design has recently received widespread attention.Inspired by the Terebridae structure,this paper provides a structural form for suppressing vortex-induced vibration(VIV)response.Four different structural f...Biomimetic design has recently received widespread attention.Inspired by the Terebridae structure,this paper provides a structural form for suppressing vortex-induced vibration(VIV)response.Four different structural forms are shown,including the traditional smooth cylinder(P0),and the Terebridae-inspired cylinder with the helical angle of 30°(P_(30)),60°(P_(60)),and 90°(P_(90)).Computational fluid dynamics(CFD)method is adopted to solve the flow pass the Terebridae-inspired structures,and the vibration equation is solved using the Newmark-βmethod.The results show that for P_(30),P_(60) and P_(90),the VIV responses are effectively suppressed in the lock-in region,and P_(60) showed the best VIV suppression performance.The transverse amplitude and the downstream amplitude can be reduced by 82.67%and 91.43%respectively for P_(60) compared with that for P0,and the peak of the mean-drag coefficient is suppressed by 53.33%.The Q-criterion vortices of P_(30),P_(60),and P_(90) are destroyed,with irregular vortices shedding.It is also found that the boundary layer separation is located on the Terebridae-inspired ribs.The twisted ribs cause the separation point to constantly change along the spanwise direction,resulting in the development of the boundary layer separation being completely destroyed.The strength of the wake flow is significantly weakened for the Terebridae-inspired cylinder.展开更多
BACKGROUND Determination of platybasia and basilar kyphosis are significant parts of routine cranial magnetic resonance(MR)interpretations.These situations may explain a patient’s symptoms or may be associated with o...BACKGROUND Determination of platybasia and basilar kyphosis are significant parts of routine cranial magnetic resonance(MR)interpretations.These situations may explain a patient’s symptoms or may be associated with other anomalies.AIM To indicate the interobserver and intraobserver reliability of the skull base angles(SBA)(Koenigsberg standard)and modified SBA(mSBA)measurement techniques.METHODS In total,391 patients who had undergone cranial MR imaging were re-assessed regarding the SBA measurements.The SBA and mSBA techniques were used on MR images.Two reviewers independently measured the same angles twice within a 15-day interval,using different monitors.Intraclass correlation coefficient(ICC)was calculated to reveal the intraobserver and interobserver agreements.RESULTS There was an excellent agreement between reviewers regarding both angle measurements(ICC was 0.998 for SBA and mSBA).Excellent agreement levels were also observed for intraobserver measurements.ICC was 0.998 for SBA and 0.999 for mSBA for reviewer 1.ICC was 0.997 for SBA and 0.999 for mSBA according to the measurement results of reviewer 2.Higher SBA and mSBA values were observed for females compared to males.There was no correlation between SBA and age for SBA.However,a negative and low-level correlation was observed between mSBA values and age for both reviewers.CONCLUSION SBA and mSBA measurements indicated excellent agreement regarding interobserver and intraobserver differences.The study results showed that SBA angles were reliable measurement techniques to be used on MR images.展开更多
A terminal ballistic analysis of the effects of 7.62 mm × 51 AP P80 rounds on inclined high-strength armor steel plates is the focus of the presented study.The findings of an instrumented ballistic testing combin...A terminal ballistic analysis of the effects of 7.62 mm × 51 AP P80 rounds on inclined high-strength armor steel plates is the focus of the presented study.The findings of an instrumented ballistic testing combined with 3D advanced numerical simulations performed using the IMPETUS Afea? software yielded the conclusions.The experimental verification proved that slight differences in the pitch-andyaw angles of a projectile upon an impact caused different damage types to the projectile’s core.The residual velocities predicted numerically were close to the experimental values and the calculated core deviations were in satisfactory agreement with the experimental results.An extended matrix of the core deviation angles with combinations of pitch-and-yaw upon impact angles was subsequently built on the basis of the numerical study.The presented experimental and numerical investigation examined thoroughly the influence of the initial pitch and yaw angles on the after-perforation projectile’s performance.展开更多
Modeling of unsteady aerodynamic loads at high angles of attack using a small amount of experimental or simulation data to construct predictive models for unknown states can greatly improve the efficiency of aircraft ...Modeling of unsteady aerodynamic loads at high angles of attack using a small amount of experimental or simulation data to construct predictive models for unknown states can greatly improve the efficiency of aircraft unsteady aerodynamic design and flight dynamics analysis.In this paper,aiming at the problems of poor generalization of traditional aerodynamic models and intelligent models,an intelligent aerodynamic modeling method based on gated neural units is proposed.The time memory characteristics of the gated neural unit is fully utilized,thus the nonlinear flow field characterization ability of the learning and training process is enhanced,and the generalization ability of the whole prediction model is improved.The prediction and verification of the model are carried out under the maneuvering flight condition of NACA0015 airfoil.The results show that the model has good adaptability.In the interpolation prediction,the maximum prediction error of the lift and drag coefficients and the moment coefficient does not exceed 10%,which can basically represent the variation characteristics of the entire flow field.In the construction of extrapolation models,the training model based on the strong nonlinear data has good accuracy for weak nonlinear prediction.Furthermore,the error is larger,even exceeding 20%,which indicates that the extrapolation and generalization capabilities need to be further optimized by integrating physical models.Compared with the conventional state space equation model,the proposed method can improve the extrapolation accuracy and efficiency by 78%and 60%,respectively,which demonstrates the applied potential of this method in aerodynamic modeling.展开更多
It is important to study the effect of hydrate production on the physical and mechanical properties of low-permeability clayey–silty reservoirs for the largescale exploitation of hydrate reservoirs in the South China...It is important to study the effect of hydrate production on the physical and mechanical properties of low-permeability clayey–silty reservoirs for the largescale exploitation of hydrate reservoirs in the South China Sea.In this study,a multiphysical-field coupling model,combined with actual exploration drilling data and the mechanical experimental data of hydrate cores in the laboratory,was established to investigate the physical and mechanical properties of low-permeability reservoirs with different slope angles during 5-year hydrate production by the depressurization method via a horizontal well.The result shows that the permeability of reservoirs severely affects gas production rate,and the maximum gas production amount of a 20-m-long horizontal well can reach186.8 m3/day during the 5-year hydrate production.Reservoirs with smaller slope angles show higher gas production rates.The depressurization propagation and hydrate dissociation mainly develop along the direction parallel to the slope.Besides,the mean effective stress of reservoirs is concentrated in the near-wellbore area with the on-going hydrate production,and gradually decreases with the increase of the slope angle.Different from the effective stress distribution law,the total reservoir settlement amount first decreases and then increases with the increase of the slope angle.The maximum settlement of reservoirs with a 0°slope angle is up to 3.4 m,and the displacement in the near-wellbore area is as high as2.2 m after 5 years of hydrate production.It is concluded that the pore pressure drop region of low-permeability reservoirs in the South China Sea is limited,and various slope angles further lead to differences in effective stress and strain of reservoirs during hydrate production,resulting in severe uneven settlement of reservoirs.展开更多
Aiming at the influence of blade pitch Angle on aerodynamic noise of wind turbines, the sound field and flow field distribution at 0˚, 5˚, 10˚ and 15˚ are calculated by numerical simulation. Then, through the distribu...Aiming at the influence of blade pitch Angle on aerodynamic noise of wind turbines, the sound field and flow field distribution at 0˚, 5˚, 10˚ and 15˚ are calculated by numerical simulation. Then, through the distribution of pressure field and velocity field calculated by flow field, the influence of different pitch angles on wind turbine blade aerodynamic noise and the reasons for its influence are analyzed. The results show that when the pitch Angle increases within 0˚ - 10˚, the aerodynamic noise pressure level of the blade decreases. However, the sound pressure level of aerodynamic noise increases in the range of 10˚ - 15˚. The changes of static pressure gradient and pressure pulsation on the blade surface make the aerodynamic noise change, and the changes of the two are positively correlated. At the same time, the fluid velocity and fluid motion state on the blade surface are closely related to the aerodynamic noise of the blade. The greater the fluid velocity, the more complex the fluid motion state and the greater the turbulent kinetic energy of the wind turbine blade, and the aerodynamic noise of the wind turbine blade will also increase.展开更多
The orchards usually have rough terrain,dense tree canopy and weeds.It is hard to use GNSS for autonomous navigation in orchard due to signal occlusion,multipath effect,and radio frequency interference.To achieve auto...The orchards usually have rough terrain,dense tree canopy and weeds.It is hard to use GNSS for autonomous navigation in orchard due to signal occlusion,multipath effect,and radio frequency interference.To achieve autonomous navigation in orchard,a visual navigation method based on multiple images at different shooting angles is proposed in this paper.A dynamic image capturing device is designed for camera installation and multiple images can be shot at different angles.Firstly,the obtained orchard images are classified into sky and soil detection stage.Each image is transformed to HSV space and initially segmented into sky,canopy and soil regions by median filtering and morphological processing.Secondly,the sky and soil regions are extracted by the maximum connected region algorithm,and the region edges are detected and filtered by the Canny operator.Thirdly,the navigation line in the current frame is extracted by fitting the region coordinate points.Then the dynamic weighted filtering algorithm is used to extract the navigation line for the soil and sky detection stage,respectively,and the navigation line for the sky detection stage is mirrored to the soil region.Finally,the Kalman filter algorithm is used to fuse and extract the final navigation path.The test results on 200 images show that the accuracy of visual navigation path fitting is 95.5%,and single frame image processing costs 60 ms,which meets the real-time and robustness requirements of navigation.The visual navigation experiments in Camellia oleifera orchard show that when the driving speed is 0.6 m/s,the maximum tracking offset of visual navigation in weed-free and weedy environments is 0.14 m and 0.24 m,respectively,and the RMSE is 30 mm and 55 mm,respectively.展开更多
This paper considers the regularity of solutions to mixed boundary value problems in small-angle regions for elliptic equations. By constructing a specific barrier function, we proved that under the assumption of suff...This paper considers the regularity of solutions to mixed boundary value problems in small-angle regions for elliptic equations. By constructing a specific barrier function, we proved that under the assumption of sufficient regularity of boundary conditions and coefficients, as long as the angle is sufficiently small, the regularity of the solution to the mixed boundary value problem of the second-order elliptic equation can reach any order.展开更多
The Euler angle estimation is a calibration method for vector data measured by the magnetometer on a satellite.It is used to find the relative rotation between the coordinate system of the magnetometer and the satelli...The Euler angle estimation is a calibration method for vector data measured by the magnetometer on a satellite.It is used to find the relative rotation between the coordinate system of the magnetometer and the satellite(usually determined by Star Imagers).Before launch of the low-orbit,low-inclination Macao Science Satellite-1(known as MSS-1),we simulated the estimation of Euler angles by using the magnetic measurements of the in-orbit Swarm and China Seismo-Electromagnetic Satellite(noted as CSES),with various data combinations.In this study,11 data sets were designed to analyze the estimation results for the MSS-1 orbit by using a joint estimation method of the geomagnetic field model parameters and Euler angles.For the model results,we found that all the spatial power spectral lines showed behavior consistent with that of the CHAOS-7.8 model at low degrees(corresponding to large-scale magnetic signals).The spectra of models without global data coverage deviated much more(by a maximum of~10^(4) nT^(2))from those of the CHAOS-7.8 model at higher degrees.For models with global data coverage and with various data combinations,the spectral lines were distributed similarly.Moreover,the models with accordant power spectral distributions demonstrated different Euler angle estimations.As more vector data at higher latitudes were included,the estimated Euler angles varied monotonically in all three directions.The models with vector data in the same latitude range showed similar Euler angle results,regardless of whether the poleward scalar data were included.The largest value difference was found between the models using vector data within±40°latitudes and those using vector data within±60°latitudes,which reached to~28″.Therefore,we concluded that the inversion of the spherical harmonic Gauss coefficients in our tests was mainly affected by the spatial coverage range of the data,whereas the estimation of Euler angles largely depended on the latitude range where the vector data could be obtained.These results can be used for future in-flight data testing.We expect the estimation of Euler angles to improve as other methods are adopted.展开更多
BACKGROUND The femoral neck dynamic intersection system(FNS)is mechanically more stable than other internal fixation techniques.Current studies have confirmed that the structural design of FNS has good biomechanical p...BACKGROUND The femoral neck dynamic intersection system(FNS)is mechanically more stable than other internal fixation techniques.Current studies have confirmed that the structural design of FNS has good biomechanical properties in European and American populations.However,whether the suitability of the FNS's 130°main nail angle design for Asian populations has been thoroughly investigated remains unclear.AIM To compare the biomechanical stability differences among different main nail angles of the FNS in the treatment of femoral neck fractures in Asian populations.METHODS Computed tomography data of the femur of healthy adult male volunteers were imported into Mimics software to create a three-dimensional model of the femur.The model was adapted to the curve using Geomagic software and imported into Solidworks software to construct the Pauwels I femoral neck fracture model and design the FNS internal fixation model using different main nail angles.Afterward,the models were assembled with the FNS fracture model and meshed using the preprocessing Hypermesh software.Subsequently,they were imported into Abaqus software to analyze and evaluate the biomechanical effects of different angles of the FNS main nail on the treatment of femoral neck fractures.RESULTS The peak displacement of the proximal femur under different angles of FNS fixation under stress was 7.446 millimeters in the 120°group and 7.416 millimeters in the 125°group;in the 130°,135°,and 140°FNS fixation groups,the peak displacement was 7.324 millimeters,8.138 millimeters,and 8.246 millimeters,respectively.In the 120°and 125°FNS fixation groups,the maximum stresses were concentrated at the main nail and the anti-rotation screw,which intersected the fracture line of the femur neck,resulting in peak stresses of 200.7 MPa and 138.8 MPa,respectively.Peak stresses of 208.8 MPa,219.8 MPa,and 239.3 MPa were observed on the angular locking plate distal to the locking screw in the 130°,135°,and 140°fixation groups.CONCLUSION FNS has significant stress distribution properties,a minimal proximal femoral displacement,and an optimal stability for treating femoral neck fractures in Asian populations when performed with a 130°main nail angle.展开更多
The 3D reconstruction and quantitative characterization of drainage channels and coarse tailings particles in a bed were conducted in this study.The influence of variations in the azimuthal angle(θ)and polar angle(φ...The 3D reconstruction and quantitative characterization of drainage channels and coarse tailings particles in a bed were conducted in this study.The influence of variations in the azimuthal angle(θ)and polar angle(φ)of coarse particles on drainage channel structure was analyzed,and the drainage mechanism of the bed was studied.Results showed that water discharge in the bed reduced the size of pores and throat channels,increasing slurry concentration.The throat channel structure was a key component of the drainage process.Theφandθof particles changed predominantly along the length direction.The changes inφhad a cumulative plugging effect on the drainage channel and increased the difficulty of water discharge.The rake and rod formed a shear ring in the tailings bed with shear,and theθdistribution of particles changed from disorderly to orderly during the rotation process.The drainage channel was squeezed during the shearing process with the change inθ,which broke the channel structure,encouraged water discharge in the bed,and facilitated a further increase in slurry concentration.The findings of this work are expected to offer theoretical guidance for preparing high-concentration underflow in the tailings thickening process.展开更多
Background: The burden of cataract and glaucoma has been increasing. Primary angle closure occurs as a result of crowded anterior segment anatomy causing appositional contact between peripheral iris and trabecular mes...Background: The burden of cataract and glaucoma has been increasing. Primary angle closure occurs as a result of crowded anterior segment anatomy causing appositional contact between peripheral iris and trabecular meshwork. Lens extraction has been proposed as a method of deepening anterior chamber and managing intraocular pressure. Purpose: To assess changes in anterior chamber depth after phacoemulsification with intraocular lens implantation in narrow angle eyes. Design: Prospective controlled trial (before-after) study. Method: The study was conducted from March 2015 to August 2017 among the patients of department of Ophthalmology of BSMMU who were diagnosed as cataract with narrow angles. Anterior chamber angle grading of 2 or less (Shaffer grading) in 3 or more quadrants was considered narrow angle (NA). The purposive type sampling technique was applied to collect sample from the study population, as per inclusion and exclusion criteria. Complete clinical evaluation including history, physical examination, relevant ocular examinations and systemic examinations were performed. In this prospective study, subjects underwent phacoemulsification with foldable lens implantation. A scan ultrasonography was performed preoperatively and 10<sup>th</sup> and 30<sup>th</sup> postoperative days of surgery. Results: Thirty eyes of 29 patients included in the study, male: female ratio was 1:1, with an overall mean age of 62.03 ± 8.95 years. The mean preoperative central ACD was 2.95 ± 0.35 mm. At 10<sup>th</sup> and 30<sup>th</sup> POD mean central ACD were 3.94 ± 0.32, and 3.92 ± 0.28 mm respectively. Mean of increase in central ACD at final follow-up was 0.96 mm (p Conclusion: Phacoemulsification with posterior chamber in bag lens implantation can deepen the anterior chamber depth in patients with narrow angles. Based on these findings, it is concluded that phacoemulsification with foldable intraocular lens implantation is an effective tool in deepening the anterior chamber.展开更多
In grain crops such as maize(Zea mays),leaf angle(LA)is a key agronomic trait affecting light interception and thus planting density and yield.Nitrogen(N)affects LA in plants,but we lack a good understanding of how N ...In grain crops such as maize(Zea mays),leaf angle(LA)is a key agronomic trait affecting light interception and thus planting density and yield.Nitrogen(N)affects LA in plants,but we lack a good understanding of how N regulates LA.Here,we report that N deficiency enhanced lignin deposition in the ligular region of maize seedlings.In situ hybridization showed that the bZIP transcription factor gene ZmbZIP27 is mainly expressed in the phloem of maize vascular bundles.Under N-sufficient conditions,transgenic maize overexpressing ZmbZIP27 showed significantly smaller LA compared with wild type(WT).By contrast,zmbzip27_(ems)mutant showed larger LA under both N-deficient and N-sufficient conditions compared with WT.Overexpression of ZmbZIP27 enhanced lignin deposition in the ligular region of maize in the field.We further demonstrated that ZmbZIP27 could directly bind the promoters of the microRNA genes ZmMIR528a and ZmMIR528b and negatively regulate the expression levels of ZmmiR528.ZmmiR528 knockdown transgenic maize displayed erect architecture in the field by increasing lignin content in the ligular region of maize.Taken together,these results indicate that ZmbZIP27 regulates N-mediated LA size by regulating the expression of ZmmiR528 and modulating lignin deposition in maize.展开更多
The propagation mechanism of microcracks in nanocrystalline single crystal systems under uniaxial dynamic and static tension is investigated using the phase-field-crystal method.Both dynamic and static stretching resu...The propagation mechanism of microcracks in nanocrystalline single crystal systems under uniaxial dynamic and static tension is investigated using the phase-field-crystal method.Both dynamic and static stretching results show that different orientation angles can induce the crack propagation mode,microscopic morphology,the free energy,crack area change,and causing fracture failure.Crack propagation mode depends on the dislocation activity near the crack tip.Brittle propagation of the crack occurs due to dislocation always at crack tip.Dislocation is emitted at the front end of the crack tip and plastic deformation occurs,which belongs to ductile propagation.The orientation angles of 9°and 14°are brittleductile mixed propagation,while the orientation angles of 19°and 30°are brittle propagation and no dislocation is formed under dynamic tension.The vacancy and vacancy connectivity phenomenon would appear when the orientation angle is14°under static tension,and the crack would be ductile propagation.While the orientation angle is 19°and 30°,the crack propagates in a certain direction,which is a kind of brittle propagation.This work has some practical significance in preventing material fracture failure and improving material performance.展开更多
BACKGROUND The data obtained on the anatomical knowledge of the tracheobronchial system can be used for diagnosis,treatment and interventional interventions in areas such as anesthesia,thoracic surgery,pulmonary physi...BACKGROUND The data obtained on the anatomical knowledge of the tracheobronchial system can be used for diagnosis,treatment and interventional interventions in areas such as anesthesia,thoracic surgery,pulmonary physiology.AIM To determine the tracheobronchial branching angles in pediatric and adult populations by using the multislice computed tomography(CT)and minimum intensity projection(MinIP)technique,which is a non-invasive method.METHODS Our study was carried out retrospectively.Patients who underwent contrast and non-contrast CT examination,whose anatomically and pathophysiologically good tracheobronchial system and lung parenchyma images were obtained,were included in the study.Measurements were made in the coronal plane of the lung parenchyma.In the coronal plane,right main bronchus-left main bronchus angle,right upper lobe bronchus-intermedius bronchus angle,right middle lobe bronchus-right lower lobe bronchus angle,left upper lobe bronchus-left lower lobe bronchus angle were measured.RESULTS The study population consisted of 1511 patients,753 pediatric(mean age:13.4±4.3;range:1-18 years)and 758 adults(mean age:54.3±17.3;range:19-94 years).In our study,tracheal bifurcation angle was found to be 73.3°±13.7°(59.6°-87°)in the whole population.In the pediatric group,the right-left main coronal level was found to be higher in boys compared to girls(74.6°±12.9°vs 71.2°±13.9°,P=0.001).In the adult group,the right-left main coronal level was found to be lower in males compared to females(71.9°±12.9°vs 75.8°±14.7°,P<0.001).CONCLUSIONS Our study,with the number of 1511 patients,is the first study in the literature with the largest number of patient populations including pediatric and adult demographic data,measuring the angle values of the tracheobronchial system using multislice CT and MinIP technique.Study data will not only be a guide during invasive procedures,but it can also guide studies to be done with imaging methods.展开更多
With the help of digital image processing technology, an automatic measurement method for the three-phase contact angles in the pore throats of the microfluidic model was established using the microfluidic water flood...With the help of digital image processing technology, an automatic measurement method for the three-phase contact angles in the pore throats of the microfluidic model was established using the microfluidic water flooding experiment videos as the data source. The results of the new method were verified through comparing with the manual measurement data.On this basis, the dynamic changes of the three-phase contact angles under flow conditions were clarified by the contact angles probability density curve and mean value change curve. The results show that, for water-wetting rocks, the mean value of the contact angles is acute angle during the early stage of the water flooding process, and it increases with the displacement time and becomes obtuse angle in the middle-late stage of displacement as the dominant force of oil phase gradually changes from viscous force to capillary force. The droplet flow in the remaining oil occurs in the central part of the pore throats, without three-phase contact angle. The contact angles for the porous flow and the columnar flow change slightly during the displacement and present as obtuse angles in view of mean values, which makes the remaining oil poorly movable and thus hard to be recovered. The mean value of the contact angle for the cluster flow tends to increase in the flooding process, which makes the remaining oil more difficult to be recovered. The contact angles for the membrane flow are mainly obtuse angles and reach the highest mean value in the late stage of displacement, which makes the remaining oil most difficult to be recovered. After displacement, the remaining oils under different flow regimes are just subjected to capillary force, with obtuse contact angles, and the wettability of the pore throat walls in the microfluidic model tends to be oil-wet under the action of crude oil.展开更多
Loop Heat Pipe(LHP)is an efficient two-phase heat transfer device,which can be used in waste heat recovery,electronics cooling,aerospace and other fields.The wick,the core component of LHP,plays an important role in i...Loop Heat Pipe(LHP)is an efficient two-phase heat transfer device,which can be used in waste heat recovery,electronics cooling,aerospace and other fields.The wick,the core component of LHP,plays an important role in its start-up and operation.In this paper,the wick fabricated by 3D printing technology had uniform and interconnected pores.In the experiment,the position of the parallel vapor removal grooves was always fixed towards the vapor outlet.When the cylindrical wick was placed in the evaporator,the rotation angle relative to its central axis could be changed,thus changing the number and shape of the pores facing the vapor removal grooves.The wick deflection angle represented its change in spatial position relative to the fixed vapor removal grooves.The effect of the wick deflection angles on the heat transfer characteristics of the flat LHP was experimentally investigated.It was found that with the change of deflection angle,the number of pores in the evaporation-oriented zone would also change,which had a significant impact on the start-up process and heat transfer performance of LHP.When the deflection angle was 30°,LHP could start fastest at a low heat load of 20 W and operate stable at a high heat load of 180 W.展开更多
Objective: The measurement of phase angles is an important monitoring parameter and supplementation with omega-3 could promote benefits by modulating the electrical potential of membranes and increasing body cell mass...Objective: The measurement of phase angles is an important monitoring parameter and supplementation with omega-3 could promote benefits by modulating the electrical potential of membranes and increasing body cell mass. This study aimed to evaluate the effectiveness of omega-3 fatty acid supplementation on the phase angle of people living with HIV/AIDS. Methods: In this study, 63 individuals of all genders who were undergoing outpatient follow-up and showed lipodystrophy due to highly active antiretroviral therapy were analyzed. Our sample consisted of two groups, one that received supplementation containing 2550 mg of omega-3/day (1080 mg of eicosapentaenoic acid and 720 mg of docosahexaenoic acid) for three months (n = 32) and another that underwent nutrition guidance (n = 31). Phase angle and body cell mass were assessed for both groups and compared at the beginning of research (T0) and after our intervention (T1) for each group separately. Results: Phase angle averaged 6.45° ± 1.06 SD. The comparison between T0 and T1 showed a significant increase in phase angle and body cell mass, whereas the guidance group showed a decrease in body cell mass at T1 in relation to T0, with a significant p-value. Variance in phase angle between moments showed significant values between T0 and T1 in the supplementation group for all genders. Conclusion: Omega-3 positively modulated patients phase angle and body cell mass, but we emphasize the need for other studies that can solidify knowledge about supplementation dosage and intervention time.展开更多
Plant architecture is a collection of major agronomic traits that determines rice grain production,and it is mainly influenced by tillering,tiller angle,plant height and panicle morphology(Wang and Li 2006).Tiller ang...Plant architecture is a collection of major agronomic traits that determines rice grain production,and it is mainly influenced by tillering,tiller angle,plant height and panicle morphology(Wang and Li 2006).Tiller angle is one of the critical components that determines rice plant architecture,which in turn influences grain yield mainly due to its large impact on plant density(Wang et al.2022).展开更多
基金financially supported by the National Natural Science Foundation of China(Grant No.51890913)the Natural Science Foundation of Sichuan Province of China(Grant No.2023YFQ0111)。
文摘In an effort to investigate and quantify the patterns of local scour,researchers embarked on an in-depth study using a systematic experimental approach.The research focused on the effects of local scour around a set of four piles,each subjected to different hydromechanical conditions.In particular,this study aimed to determine how different attack angles—the angles at which the water flow impinges on the piles,and gap ratios—the ratios of the spacing between the piles to their diameters,influence the extent and nature of scour.A comprehensive series of 35 carefully designed experiments were orchestrated,each designed to dissect the nuances in how the gap ratio and attack angle might contribute to changes in the local scour observed at the base of pile groups.During these experimental trials,a wealth of local scour data were collected to support the analysis.These data included precise topographic profiles of the sediment bed around the pile groups,as well as detailed scour time histories showing the evolution of scour at strategic feature points throughout the test procedure.The analysis of the experimental data provided interesting insights.The study revealed that the interplay between the gap ratio and the attack angle had a pronounced influence on the scouring dynamics of the pile groups.One of the key observations was that the initial phases of scour,particularly within the first hour of water flow exposure,were characterized by a sharp increase in the scour depth occurring immediately in front of the piles.After this initial rapid development,the scour depth transitioned to a more gradual change rate.In contrast,the scour topography around the piles continuously evolved.This suggests that sediment displacement and the associated sculpting of the seabed around pile foundations are sustained and progressive processes,altering the underwater landscape over time.The results of this empirical investigation have significant implications for the design and construction of offshore multi-pile foundations,providing a critical reference for engineers and designers to estimate the expected scour depth around such structures,which is an integral part of decisions regarding foundation design,selection of structural materials,and implementation of scour protection measures.
基金supported by the Joint Postdoc Scheme with Non-local Institutions of the Hong Kong Polytechnic University(Grant No.1-YY4P).
文摘Biomimetic design has recently received widespread attention.Inspired by the Terebridae structure,this paper provides a structural form for suppressing vortex-induced vibration(VIV)response.Four different structural forms are shown,including the traditional smooth cylinder(P0),and the Terebridae-inspired cylinder with the helical angle of 30°(P_(30)),60°(P_(60)),and 90°(P_(90)).Computational fluid dynamics(CFD)method is adopted to solve the flow pass the Terebridae-inspired structures,and the vibration equation is solved using the Newmark-βmethod.The results show that for P_(30),P_(60) and P_(90),the VIV responses are effectively suppressed in the lock-in region,and P_(60) showed the best VIV suppression performance.The transverse amplitude and the downstream amplitude can be reduced by 82.67%and 91.43%respectively for P_(60) compared with that for P0,and the peak of the mean-drag coefficient is suppressed by 53.33%.The Q-criterion vortices of P_(30),P_(60),and P_(90) are destroyed,with irregular vortices shedding.It is also found that the boundary layer separation is located on the Terebridae-inspired ribs.The twisted ribs cause the separation point to constantly change along the spanwise direction,resulting in the development of the boundary layer separation being completely destroyed.The strength of the wake flow is significantly weakened for the Terebridae-inspired cylinder.
文摘BACKGROUND Determination of platybasia and basilar kyphosis are significant parts of routine cranial magnetic resonance(MR)interpretations.These situations may explain a patient’s symptoms or may be associated with other anomalies.AIM To indicate the interobserver and intraobserver reliability of the skull base angles(SBA)(Koenigsberg standard)and modified SBA(mSBA)measurement techniques.METHODS In total,391 patients who had undergone cranial MR imaging were re-assessed regarding the SBA measurements.The SBA and mSBA techniques were used on MR images.Two reviewers independently measured the same angles twice within a 15-day interval,using different monitors.Intraclass correlation coefficient(ICC)was calculated to reveal the intraobserver and interobserver agreements.RESULTS There was an excellent agreement between reviewers regarding both angle measurements(ICC was 0.998 for SBA and mSBA).Excellent agreement levels were also observed for intraobserver measurements.ICC was 0.998 for SBA and 0.999 for mSBA for reviewer 1.ICC was 0.997 for SBA and 0.999 for mSBA according to the measurement results of reviewer 2.Higher SBA and mSBA values were observed for females compared to males.There was no correlation between SBA and age for SBA.However,a negative and low-level correlation was observed between mSBA values and age for both reviewers.CONCLUSION SBA and mSBA measurements indicated excellent agreement regarding interobserver and intraobserver differences.The study results showed that SBA angles were reliable measurement techniques to be used on MR images.
文摘A terminal ballistic analysis of the effects of 7.62 mm × 51 AP P80 rounds on inclined high-strength armor steel plates is the focus of the presented study.The findings of an instrumented ballistic testing combined with 3D advanced numerical simulations performed using the IMPETUS Afea? software yielded the conclusions.The experimental verification proved that slight differences in the pitch-andyaw angles of a projectile upon an impact caused different damage types to the projectile’s core.The residual velocities predicted numerically were close to the experimental values and the calculated core deviations were in satisfactory agreement with the experimental results.An extended matrix of the core deviation angles with combinations of pitch-and-yaw upon impact angles was subsequently built on the basis of the numerical study.The presented experimental and numerical investigation examined thoroughly the influence of the initial pitch and yaw angles on the after-perforation projectile’s performance.
基金supported in part by the National Natural Science Foundation of China (No. 12202363)。
文摘Modeling of unsteady aerodynamic loads at high angles of attack using a small amount of experimental or simulation data to construct predictive models for unknown states can greatly improve the efficiency of aircraft unsteady aerodynamic design and flight dynamics analysis.In this paper,aiming at the problems of poor generalization of traditional aerodynamic models and intelligent models,an intelligent aerodynamic modeling method based on gated neural units is proposed.The time memory characteristics of the gated neural unit is fully utilized,thus the nonlinear flow field characterization ability of the learning and training process is enhanced,and the generalization ability of the whole prediction model is improved.The prediction and verification of the model are carried out under the maneuvering flight condition of NACA0015 airfoil.The results show that the model has good adaptability.In the interpolation prediction,the maximum prediction error of the lift and drag coefficients and the moment coefficient does not exceed 10%,which can basically represent the variation characteristics of the entire flow field.In the construction of extrapolation models,the training model based on the strong nonlinear data has good accuracy for weak nonlinear prediction.Furthermore,the error is larger,even exceeding 20%,which indicates that the extrapolation and generalization capabilities need to be further optimized by integrating physical models.Compared with the conventional state space equation model,the proposed method can improve the extrapolation accuracy and efficiency by 78%and 60%,respectively,which demonstrates the applied potential of this method in aerodynamic modeling.
基金China Postdoctoral Science Foundation,Grant/Award Number:2020M681768Natural Science Foundation of Jiangsu Province,Grant/Award Number:BK20200653+1 种基金Fundamental Research Funds for the Central Universities,Grant/Award Number:2021GJZPY15National Natural Science Foundation of China,Grant/Award Number:42106210。
文摘It is important to study the effect of hydrate production on the physical and mechanical properties of low-permeability clayey–silty reservoirs for the largescale exploitation of hydrate reservoirs in the South China Sea.In this study,a multiphysical-field coupling model,combined with actual exploration drilling data and the mechanical experimental data of hydrate cores in the laboratory,was established to investigate the physical and mechanical properties of low-permeability reservoirs with different slope angles during 5-year hydrate production by the depressurization method via a horizontal well.The result shows that the permeability of reservoirs severely affects gas production rate,and the maximum gas production amount of a 20-m-long horizontal well can reach186.8 m3/day during the 5-year hydrate production.Reservoirs with smaller slope angles show higher gas production rates.The depressurization propagation and hydrate dissociation mainly develop along the direction parallel to the slope.Besides,the mean effective stress of reservoirs is concentrated in the near-wellbore area with the on-going hydrate production,and gradually decreases with the increase of the slope angle.Different from the effective stress distribution law,the total reservoir settlement amount first decreases and then increases with the increase of the slope angle.The maximum settlement of reservoirs with a 0°slope angle is up to 3.4 m,and the displacement in the near-wellbore area is as high as2.2 m after 5 years of hydrate production.It is concluded that the pore pressure drop region of low-permeability reservoirs in the South China Sea is limited,and various slope angles further lead to differences in effective stress and strain of reservoirs during hydrate production,resulting in severe uneven settlement of reservoirs.
文摘Aiming at the influence of blade pitch Angle on aerodynamic noise of wind turbines, the sound field and flow field distribution at 0˚, 5˚, 10˚ and 15˚ are calculated by numerical simulation. Then, through the distribution of pressure field and velocity field calculated by flow field, the influence of different pitch angles on wind turbine blade aerodynamic noise and the reasons for its influence are analyzed. The results show that when the pitch Angle increases within 0˚ - 10˚, the aerodynamic noise pressure level of the blade decreases. However, the sound pressure level of aerodynamic noise increases in the range of 10˚ - 15˚. The changes of static pressure gradient and pressure pulsation on the blade surface make the aerodynamic noise change, and the changes of the two are positively correlated. At the same time, the fluid velocity and fluid motion state on the blade surface are closely related to the aerodynamic noise of the blade. The greater the fluid velocity, the more complex the fluid motion state and the greater the turbulent kinetic energy of the wind turbine blade, and the aerodynamic noise of the wind turbine blade will also increase.
基金National Key Research and Development Program of China(2022YFD2202103)National Natural Science Foundation of China(31971798)+2 种基金Zhejiang Provincial Key Research&Development Plan(2023C02049、2023C02053)SNJF Science and Technology Collaborative Program of Zhejiang Province(2022SNJF017)Hangzhou Agricultural and Social Development Research Project(202203A03)。
文摘The orchards usually have rough terrain,dense tree canopy and weeds.It is hard to use GNSS for autonomous navigation in orchard due to signal occlusion,multipath effect,and radio frequency interference.To achieve autonomous navigation in orchard,a visual navigation method based on multiple images at different shooting angles is proposed in this paper.A dynamic image capturing device is designed for camera installation and multiple images can be shot at different angles.Firstly,the obtained orchard images are classified into sky and soil detection stage.Each image is transformed to HSV space and initially segmented into sky,canopy and soil regions by median filtering and morphological processing.Secondly,the sky and soil regions are extracted by the maximum connected region algorithm,and the region edges are detected and filtered by the Canny operator.Thirdly,the navigation line in the current frame is extracted by fitting the region coordinate points.Then the dynamic weighted filtering algorithm is used to extract the navigation line for the soil and sky detection stage,respectively,and the navigation line for the sky detection stage is mirrored to the soil region.Finally,the Kalman filter algorithm is used to fuse and extract the final navigation path.The test results on 200 images show that the accuracy of visual navigation path fitting is 95.5%,and single frame image processing costs 60 ms,which meets the real-time and robustness requirements of navigation.The visual navigation experiments in Camellia oleifera orchard show that when the driving speed is 0.6 m/s,the maximum tracking offset of visual navigation in weed-free and weedy environments is 0.14 m and 0.24 m,respectively,and the RMSE is 30 mm and 55 mm,respectively.
文摘This paper considers the regularity of solutions to mixed boundary value problems in small-angle regions for elliptic equations. By constructing a specific barrier function, we proved that under the assumption of sufficient regularity of boundary conditions and coefficients, as long as the angle is sufficiently small, the regularity of the solution to the mixed boundary value problem of the second-order elliptic equation can reach any order.
基金funded by the Macao Foundation,the pre-research project of Civil Aerospace Technologies(Nos.D020308 and D020303)funded by the China National Space Administration,Macao Science and Technology Development Fund(FDCT+1 种基金No.0001/2019/A1)the opening fund of the State Key Laboratory of Lunar and Planetary Sciences(Macao University of Science and Technology,Macao FDCT No.119/2017/A3)。
文摘The Euler angle estimation is a calibration method for vector data measured by the magnetometer on a satellite.It is used to find the relative rotation between the coordinate system of the magnetometer and the satellite(usually determined by Star Imagers).Before launch of the low-orbit,low-inclination Macao Science Satellite-1(known as MSS-1),we simulated the estimation of Euler angles by using the magnetic measurements of the in-orbit Swarm and China Seismo-Electromagnetic Satellite(noted as CSES),with various data combinations.In this study,11 data sets were designed to analyze the estimation results for the MSS-1 orbit by using a joint estimation method of the geomagnetic field model parameters and Euler angles.For the model results,we found that all the spatial power spectral lines showed behavior consistent with that of the CHAOS-7.8 model at low degrees(corresponding to large-scale magnetic signals).The spectra of models without global data coverage deviated much more(by a maximum of~10^(4) nT^(2))from those of the CHAOS-7.8 model at higher degrees.For models with global data coverage and with various data combinations,the spectral lines were distributed similarly.Moreover,the models with accordant power spectral distributions demonstrated different Euler angle estimations.As more vector data at higher latitudes were included,the estimated Euler angles varied monotonically in all three directions.The models with vector data in the same latitude range showed similar Euler angle results,regardless of whether the poleward scalar data were included.The largest value difference was found between the models using vector data within±40°latitudes and those using vector data within±60°latitudes,which reached to~28″.Therefore,we concluded that the inversion of the spherical harmonic Gauss coefficients in our tests was mainly affected by the spatial coverage range of the data,whereas the estimation of Euler angles largely depended on the latitude range where the vector data could be obtained.These results can be used for future in-flight data testing.We expect the estimation of Euler angles to improve as other methods are adopted.
基金Supported by Tianjin Science and Technology planning Project,No.21JCQNJC01060Key Project of Tianjin Natural Science Foundation,No.22JCZDJC00340National Key Research and Development Project of China,No.2022YFC3601904.
文摘BACKGROUND The femoral neck dynamic intersection system(FNS)is mechanically more stable than other internal fixation techniques.Current studies have confirmed that the structural design of FNS has good biomechanical properties in European and American populations.However,whether the suitability of the FNS's 130°main nail angle design for Asian populations has been thoroughly investigated remains unclear.AIM To compare the biomechanical stability differences among different main nail angles of the FNS in the treatment of femoral neck fractures in Asian populations.METHODS Computed tomography data of the femur of healthy adult male volunteers were imported into Mimics software to create a three-dimensional model of the femur.The model was adapted to the curve using Geomagic software and imported into Solidworks software to construct the Pauwels I femoral neck fracture model and design the FNS internal fixation model using different main nail angles.Afterward,the models were assembled with the FNS fracture model and meshed using the preprocessing Hypermesh software.Subsequently,they were imported into Abaqus software to analyze and evaluate the biomechanical effects of different angles of the FNS main nail on the treatment of femoral neck fractures.RESULTS The peak displacement of the proximal femur under different angles of FNS fixation under stress was 7.446 millimeters in the 120°group and 7.416 millimeters in the 125°group;in the 130°,135°,and 140°FNS fixation groups,the peak displacement was 7.324 millimeters,8.138 millimeters,and 8.246 millimeters,respectively.In the 120°and 125°FNS fixation groups,the maximum stresses were concentrated at the main nail and the anti-rotation screw,which intersected the fracture line of the femur neck,resulting in peak stresses of 200.7 MPa and 138.8 MPa,respectively.Peak stresses of 208.8 MPa,219.8 MPa,and 239.3 MPa were observed on the angular locking plate distal to the locking screw in the 130°,135°,and 140°fixation groups.CONCLUSION FNS has significant stress distribution properties,a minimal proximal femoral displacement,and an optimal stability for treating femoral neck fractures in Asian populations when performed with a 130°main nail angle.
基金financially supported by the National Key R&D Program of China(No.2022YFC2903803)National Natural Science Foundation of China(No.52130404)+4 种基金Guangdong Basic and Applied Basic Research Foundation(No.2021A1515110161)ANID(Chile)through Fondecyt project 1210610Centro de Modelamiento Matemático(BASAL funds for Centers of Excellence FB210005)CRHIAM project ANID/FONDAP/15130015Anillo project ANID/ACT210030。
文摘The 3D reconstruction and quantitative characterization of drainage channels and coarse tailings particles in a bed were conducted in this study.The influence of variations in the azimuthal angle(θ)and polar angle(φ)of coarse particles on drainage channel structure was analyzed,and the drainage mechanism of the bed was studied.Results showed that water discharge in the bed reduced the size of pores and throat channels,increasing slurry concentration.The throat channel structure was a key component of the drainage process.Theφandθof particles changed predominantly along the length direction.The changes inφhad a cumulative plugging effect on the drainage channel and increased the difficulty of water discharge.The rake and rod formed a shear ring in the tailings bed with shear,and theθdistribution of particles changed from disorderly to orderly during the rotation process.The drainage channel was squeezed during the shearing process with the change inθ,which broke the channel structure,encouraged water discharge in the bed,and facilitated a further increase in slurry concentration.The findings of this work are expected to offer theoretical guidance for preparing high-concentration underflow in the tailings thickening process.
文摘Background: The burden of cataract and glaucoma has been increasing. Primary angle closure occurs as a result of crowded anterior segment anatomy causing appositional contact between peripheral iris and trabecular meshwork. Lens extraction has been proposed as a method of deepening anterior chamber and managing intraocular pressure. Purpose: To assess changes in anterior chamber depth after phacoemulsification with intraocular lens implantation in narrow angle eyes. Design: Prospective controlled trial (before-after) study. Method: The study was conducted from March 2015 to August 2017 among the patients of department of Ophthalmology of BSMMU who were diagnosed as cataract with narrow angles. Anterior chamber angle grading of 2 or less (Shaffer grading) in 3 or more quadrants was considered narrow angle (NA). The purposive type sampling technique was applied to collect sample from the study population, as per inclusion and exclusion criteria. Complete clinical evaluation including history, physical examination, relevant ocular examinations and systemic examinations were performed. In this prospective study, subjects underwent phacoemulsification with foldable lens implantation. A scan ultrasonography was performed preoperatively and 10<sup>th</sup> and 30<sup>th</sup> postoperative days of surgery. Results: Thirty eyes of 29 patients included in the study, male: female ratio was 1:1, with an overall mean age of 62.03 ± 8.95 years. The mean preoperative central ACD was 2.95 ± 0.35 mm. At 10<sup>th</sup> and 30<sup>th</sup> POD mean central ACD were 3.94 ± 0.32, and 3.92 ± 0.28 mm respectively. Mean of increase in central ACD at final follow-up was 0.96 mm (p Conclusion: Phacoemulsification with posterior chamber in bag lens implantation can deepen the anterior chamber depth in patients with narrow angles. Based on these findings, it is concluded that phacoemulsification with foldable intraocular lens implantation is an effective tool in deepening the anterior chamber.
基金supported by the Biological Breeding-National Science and Technology Major Project (2023ZD04072)the Innovation Program of Chinese Academy of Agricultural Sciencesthe Hainan Yazhou Bay Seed Lab (B23YQ1507)。
文摘In grain crops such as maize(Zea mays),leaf angle(LA)is a key agronomic trait affecting light interception and thus planting density and yield.Nitrogen(N)affects LA in plants,but we lack a good understanding of how N regulates LA.Here,we report that N deficiency enhanced lignin deposition in the ligular region of maize seedlings.In situ hybridization showed that the bZIP transcription factor gene ZmbZIP27 is mainly expressed in the phloem of maize vascular bundles.Under N-sufficient conditions,transgenic maize overexpressing ZmbZIP27 showed significantly smaller LA compared with wild type(WT).By contrast,zmbzip27_(ems)mutant showed larger LA under both N-deficient and N-sufficient conditions compared with WT.Overexpression of ZmbZIP27 enhanced lignin deposition in the ligular region of maize in the field.We further demonstrated that ZmbZIP27 could directly bind the promoters of the microRNA genes ZmMIR528a and ZmMIR528b and negatively regulate the expression levels of ZmmiR528.ZmmiR528 knockdown transgenic maize displayed erect architecture in the field by increasing lignin content in the ligular region of maize.Taken together,these results indicate that ZmbZIP27 regulates N-mediated LA size by regulating the expression of ZmmiR528 and modulating lignin deposition in maize.
基金Project supported by the National Natural Science Foundation of China(Grant No.52074246)。
文摘The propagation mechanism of microcracks in nanocrystalline single crystal systems under uniaxial dynamic and static tension is investigated using the phase-field-crystal method.Both dynamic and static stretching results show that different orientation angles can induce the crack propagation mode,microscopic morphology,the free energy,crack area change,and causing fracture failure.Crack propagation mode depends on the dislocation activity near the crack tip.Brittle propagation of the crack occurs due to dislocation always at crack tip.Dislocation is emitted at the front end of the crack tip and plastic deformation occurs,which belongs to ductile propagation.The orientation angles of 9°and 14°are brittleductile mixed propagation,while the orientation angles of 19°and 30°are brittle propagation and no dislocation is formed under dynamic tension.The vacancy and vacancy connectivity phenomenon would appear when the orientation angle is14°under static tension,and the crack would be ductile propagation.While the orientation angle is 19°and 30°,the crack propagates in a certain direction,which is a kind of brittle propagation.This work has some practical significance in preventing material fracture failure and improving material performance.
文摘BACKGROUND The data obtained on the anatomical knowledge of the tracheobronchial system can be used for diagnosis,treatment and interventional interventions in areas such as anesthesia,thoracic surgery,pulmonary physiology.AIM To determine the tracheobronchial branching angles in pediatric and adult populations by using the multislice computed tomography(CT)and minimum intensity projection(MinIP)technique,which is a non-invasive method.METHODS Our study was carried out retrospectively.Patients who underwent contrast and non-contrast CT examination,whose anatomically and pathophysiologically good tracheobronchial system and lung parenchyma images were obtained,were included in the study.Measurements were made in the coronal plane of the lung parenchyma.In the coronal plane,right main bronchus-left main bronchus angle,right upper lobe bronchus-intermedius bronchus angle,right middle lobe bronchus-right lower lobe bronchus angle,left upper lobe bronchus-left lower lobe bronchus angle were measured.RESULTS The study population consisted of 1511 patients,753 pediatric(mean age:13.4±4.3;range:1-18 years)and 758 adults(mean age:54.3±17.3;range:19-94 years).In our study,tracheal bifurcation angle was found to be 73.3°±13.7°(59.6°-87°)in the whole population.In the pediatric group,the right-left main coronal level was found to be higher in boys compared to girls(74.6°±12.9°vs 71.2°±13.9°,P=0.001).In the adult group,the right-left main coronal level was found to be lower in males compared to females(71.9°±12.9°vs 75.8°±14.7°,P<0.001).CONCLUSIONS Our study,with the number of 1511 patients,is the first study in the literature with the largest number of patient populations including pediatric and adult demographic data,measuring the angle values of the tracheobronchial system using multislice CT and MinIP technique.Study data will not only be a guide during invasive procedures,but it can also guide studies to be done with imaging methods.
基金Supported by National Science and Technology Major Project of China (51674271)Major Technical Field Test of PetroChina (2019F-33)。
文摘With the help of digital image processing technology, an automatic measurement method for the three-phase contact angles in the pore throats of the microfluidic model was established using the microfluidic water flooding experiment videos as the data source. The results of the new method were verified through comparing with the manual measurement data.On this basis, the dynamic changes of the three-phase contact angles under flow conditions were clarified by the contact angles probability density curve and mean value change curve. The results show that, for water-wetting rocks, the mean value of the contact angles is acute angle during the early stage of the water flooding process, and it increases with the displacement time and becomes obtuse angle in the middle-late stage of displacement as the dominant force of oil phase gradually changes from viscous force to capillary force. The droplet flow in the remaining oil occurs in the central part of the pore throats, without three-phase contact angle. The contact angles for the porous flow and the columnar flow change slightly during the displacement and present as obtuse angles in view of mean values, which makes the remaining oil poorly movable and thus hard to be recovered. The mean value of the contact angle for the cluster flow tends to increase in the flooding process, which makes the remaining oil more difficult to be recovered. The contact angles for the membrane flow are mainly obtuse angles and reach the highest mean value in the late stage of displacement, which makes the remaining oil most difficult to be recovered. After displacement, the remaining oils under different flow regimes are just subjected to capillary force, with obtuse contact angles, and the wettability of the pore throat walls in the microfluidic model tends to be oil-wet under the action of crude oil.
文摘Loop Heat Pipe(LHP)is an efficient two-phase heat transfer device,which can be used in waste heat recovery,electronics cooling,aerospace and other fields.The wick,the core component of LHP,plays an important role in its start-up and operation.In this paper,the wick fabricated by 3D printing technology had uniform and interconnected pores.In the experiment,the position of the parallel vapor removal grooves was always fixed towards the vapor outlet.When the cylindrical wick was placed in the evaporator,the rotation angle relative to its central axis could be changed,thus changing the number and shape of the pores facing the vapor removal grooves.The wick deflection angle represented its change in spatial position relative to the fixed vapor removal grooves.The effect of the wick deflection angles on the heat transfer characteristics of the flat LHP was experimentally investigated.It was found that with the change of deflection angle,the number of pores in the evaporation-oriented zone would also change,which had a significant impact on the start-up process and heat transfer performance of LHP.When the deflection angle was 30°,LHP could start fastest at a low heat load of 20 W and operate stable at a high heat load of 180 W.
文摘Objective: The measurement of phase angles is an important monitoring parameter and supplementation with omega-3 could promote benefits by modulating the electrical potential of membranes and increasing body cell mass. This study aimed to evaluate the effectiveness of omega-3 fatty acid supplementation on the phase angle of people living with HIV/AIDS. Methods: In this study, 63 individuals of all genders who were undergoing outpatient follow-up and showed lipodystrophy due to highly active antiretroviral therapy were analyzed. Our sample consisted of two groups, one that received supplementation containing 2550 mg of omega-3/day (1080 mg of eicosapentaenoic acid and 720 mg of docosahexaenoic acid) for three months (n = 32) and another that underwent nutrition guidance (n = 31). Phase angle and body cell mass were assessed for both groups and compared at the beginning of research (T0) and after our intervention (T1) for each group separately. Results: Phase angle averaged 6.45° ± 1.06 SD. The comparison between T0 and T1 showed a significant increase in phase angle and body cell mass, whereas the guidance group showed a decrease in body cell mass at T1 in relation to T0, with a significant p-value. Variance in phase angle between moments showed significant values between T0 and T1 in the supplementation group for all genders. Conclusion: Omega-3 positively modulated patients phase angle and body cell mass, but we emphasize the need for other studies that can solidify knowledge about supplementation dosage and intervention time.
基金grants from the Natural Science Foundation of Zhejiang Province,China(LTGN23C130001)the Hainan Provincial Joint Project of Sanya Yazhou Bay Science and Technology City,China(2021JJLH0045)+1 种基金the State Key Laboratory of Rice Biology and Breeding-Independent Project,China(2023ZZKT20304)the China Agriculture Research System(CARS-01-14)。
文摘Plant architecture is a collection of major agronomic traits that determines rice grain production,and it is mainly influenced by tillering,tiller angle,plant height and panicle morphology(Wang and Li 2006).Tiller angle is one of the critical components that determines rice plant architecture,which in turn influences grain yield mainly due to its large impact on plant density(Wang et al.2022).