期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
A SINGULAR DIRICHLET PROBLEM FOR THE MONGE-AMPÈRE TYPE EQUATION
1
作者 Zhijun ZHANG Bo ZHANG 《Acta Mathematica Scientia》 SCIE CSCD 2024年第5期1965-1983,共19页
We consider the singular Dirichlet problem for the Monge-Ampère type equation{\rm det}\D^2 u=b(x)g(-u)(1+|\nabla u|^2)^{q/2},\u<0,\x\in\Omega,\u|_{\partial\Omega}=0,whereΩis a strictly convex and bounded smoo... We consider the singular Dirichlet problem for the Monge-Ampère type equation{\rm det}\D^2 u=b(x)g(-u)(1+|\nabla u|^2)^{q/2},\u<0,\x\in\Omega,\u|_{\partial\Omega}=0,whereΩis a strictly convex and bounded smooth domain inℝn,q∈[0,n+1),g∈C∞(0,∞)is positive and strictly decreasing in(0,∞)with\lim\limits_{s\rightarrow 0^+}g(s)=\infty,and b∈C∞(Ω)is positive inΩ.We obtain the existence,nonexistence and global asymptotic behavior of the convex solution to such a problem for more general b and g.Our approach is based on the Karamata regular variation theory and the construction of suitable sub-and super-solutions. 展开更多
关键词 Monge-Ampère equation a singular boundary value problem the unique convex solution global asymptotic behavior
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部