In this paper, a bundle modification strategy is proposed for nonsmooth convex constrained min- imization problems. As a result, a new feasible point bundle method is presented by applying this strategy. Whenever the ...In this paper, a bundle modification strategy is proposed for nonsmooth convex constrained min- imization problems. As a result, a new feasible point bundle method is presented by applying this strategy. Whenever the stability center is updated, some points in the bundle will be substituted by new ones which have lower objective values and/or constraint values, aiming at getting a better bundle. The method generates feasible serious iterates on which the objective function is monotonically decreasing. Global convergence of the algorithm is established, and some preliminary numerical results show that our method performs better than the standard feasible point bundle method.展开更多
基金Project supported by the National Natural Science Foundation of China(11761013,11771383)Guangxi Natural Science Foundation(2013GXNSFAA019013,2014GXNSFFA118001,2016GXNSFDA380019)the Open Project of Guangxi Colleges and Universities Key Laboratory of Complex System Optimization and Big Data Processing(2016CSOBDP0203)
文摘In this paper, a bundle modification strategy is proposed for nonsmooth convex constrained min- imization problems. As a result, a new feasible point bundle method is presented by applying this strategy. Whenever the stability center is updated, some points in the bundle will be substituted by new ones which have lower objective values and/or constraint values, aiming at getting a better bundle. The method generates feasible serious iterates on which the objective function is monotonically decreasing. Global convergence of the algorithm is established, and some preliminary numerical results show that our method performs better than the standard feasible point bundle method.