Discontinuous lining is a special form of support in underground excavation. Based on the method of plastic limit analysis, it is found the upper and the lower bound solution of the pressure of circular discontinuous ...Discontinuous lining is a special form of support in underground excavation. Based on the method of plastic limit analysis, it is found the upper and the lower bound solution of the pressure of circular discontinuous lining and discussed support parameter of discontinuous lining and its applicable conditions , which provides theoretical basis for the design and calculation of discontinuous lining.展开更多
In this paper,we discuss quantum uncertainty relations of Tsallis relative α entropy coherence for a single qubit system based on three mutually unbiased bases.For α∈[1/2,1)U(1,2],the upper and lower bounds of sums...In this paper,we discuss quantum uncertainty relations of Tsallis relative α entropy coherence for a single qubit system based on three mutually unbiased bases.For α∈[1/2,1)U(1,2],the upper and lower bounds of sums of coherence are obtained.However,the above results cannot be verified directly for any α∈(0,1/2).Hence,we only consider the special case of α=1/n+1,where n is a positive integer,and we obtain the upper and lower bounds.By comparing the upper and lower bounds,we find that the upper bound is equal to the lower bound for the special α=1/2,and the differences between the upper and the lower bounds will increase as α increases.Furthermore,we discuss the tendency of the sum of coherence,and find that it has the same tendency with respect to the different θ or φ,which is opposite to the uncertainty relations based on the Rényi entropy and Tsallis entropy.展开更多
文摘Discontinuous lining is a special form of support in underground excavation. Based on the method of plastic limit analysis, it is found the upper and the lower bound solution of the pressure of circular discontinuous lining and discussed support parameter of discontinuous lining and its applicable conditions , which provides theoretical basis for the design and calculation of discontinuous lining.
基金This paper is supported by Startup Foundation for Doctors of Nanchang Hangkong University(No.EA201907210).
文摘In this paper,we discuss quantum uncertainty relations of Tsallis relative α entropy coherence for a single qubit system based on three mutually unbiased bases.For α∈[1/2,1)U(1,2],the upper and lower bounds of sums of coherence are obtained.However,the above results cannot be verified directly for any α∈(0,1/2).Hence,we only consider the special case of α=1/n+1,where n is a positive integer,and we obtain the upper and lower bounds.By comparing the upper and lower bounds,we find that the upper bound is equal to the lower bound for the special α=1/2,and the differences between the upper and the lower bounds will increase as α increases.Furthermore,we discuss the tendency of the sum of coherence,and find that it has the same tendency with respect to the different θ or φ,which is opposite to the uncertainty relations based on the Rényi entropy and Tsallis entropy.