Let d μ=ψ d ν be a complex valued measure where ν is a non negative measure and ψ is a complex valued function which satisfies b + p or b + ∞∩a 1 condition. We prove some basic martingale i...Let d μ=ψ d ν be a complex valued measure where ν is a non negative measure and ψ is a complex valued function which satisfies b + p or b + ∞∩a 1 condition. We prove some basic martingale inequalities such as B G inequalities, weak ( p,p) and strong (p,p) type inequalities for Banach space valued martingale with respect to complex measure μ .展开更多
In this paper, the so-called(p,Ф)-Carleson measure is introduced and the rela-tionship between vector-valued martingales in the general Campanato spaces Lp,Ф(X) and the (p, Ф)-Carleson measures is investigate...In this paper, the so-called(p,Ф)-Carleson measure is introduced and the rela-tionship between vector-valued martingales in the general Campanato spaces Lp,Ф(X) and the (p, Ф)-Carleson measures is investigated. Specifically, it is proved that for q ∈ [2, ∞), the measure d# :-=││ dfk││^qdP dm is a (q, Ф)-Carleson measure on Ω × N for every f ∈ Lq,Ф(X) if and only if X has an equivalent norm which is q-uniformly convex; while for p C (1, 2], the measure dμ :=││dfk││^pP dm is a (p, Ф)-Carleson measure on Ω ×N implies that f ∈ Lp,Ф(X) if and only if X admits an equivalent norm which is p-uniformly smooth. This result extends an earlier result in the literature from BMO spaces to general Campanato spaces.展开更多
In this paper,we consider the measure determined by a fractional OrnsteinUhlenbeck process.For such a measure,we establish an explicit form of the martingale representation theorem and consequently obtain an explicit ...In this paper,we consider the measure determined by a fractional OrnsteinUhlenbeck process.For such a measure,we establish an explicit form of the martingale representation theorem and consequently obtain an explicit form of the Logarithmic-Sobolev inequality.To this end,we also present the integration by parts formula for such a measure,which is obtained via its pull back formula and the Bismut method.展开更多
The mean correcting martingale measure for the stochastic process defined as the exponential of an additive process is constructed. Necessary and sufficient conditions for the existence of mean correcting martingale a...The mean correcting martingale measure for the stochastic process defined as the exponential of an additive process is constructed. Necessary and sufficient conditions for the existence of mean correcting martingale are also obtained. The investigation of this paper will establish a unified way that is applicable both to the case of Ldvy processes and that of the sums of independent random variables. As an application, we present the necessary and sufficient conditions that the discounted stock price process is a martingale.展开更多
In the paper, the martingales and super-martingales relative to a convex set of equivalent measures are systematically studied. The notion of local regular super-martingale relative to a convex set of equivalent measu...In the paper, the martingales and super-martingales relative to a convex set of equivalent measures are systematically studied. The notion of local regular super-martingale relative to a convex set of equivalent measures is introduced and the necessary and sufficient conditions of the local regularity of it in the discrete case are founded. The description of all local regular super-martingales relative to a convex set of equivalent measures is presented. The notion of the complete set of equivalent measures is introduced. We prove that every bounded in some sense super-martingale relative to the complete set of equivalent measures is local regular. A new definition of the fair price of contingent claim in an incomplete market is given and the formula for the fair price of Standard Option of European type is found. The proved Theorems are the generalization of the famous Doob decomposition for super-martingale onto the case of super-martingales relative to a convex set of equivalent measures.展开更多
In this paper we prove the existence of conditional expectations in the noncom- mutative Lp(M, Ф)-spaces associated with center-valued traces. Moreover, their description is also provided. As an application of the ...In this paper we prove the existence of conditional expectations in the noncom- mutative Lp(M, Ф)-spaces associated with center-valued traces. Moreover, their description is also provided. As an application of the obtained results, we establish the norm convergence of weighted averages of martingales in noncommutative Lp(M, Ф)-spaces.展开更多
In this article, we construct an exponential martingale for the compound Poisson process with latent variable. With the help of this exponential martingale, we provide an asymptotic behavior of the coherent entropic r...In this article, we construct an exponential martingale for the compound Poisson process with latent variable. With the help of this exponential martingale, we provide an asymptotic behavior of the coherent entropic risk measure for the compound Poisson process and a deviation inequality for the ruin probability of the partly shifted risk process.展开更多
In this article, we give a description of measure-valued processes with interactive stochastic flows. It is a unified construction for superprocesses with dependent spatial motion constructed by Dawson, LI, Wang and s...In this article, we give a description of measure-valued processes with interactive stochastic flows. It is a unified construction for superprocesses with dependent spatial motion constructed by Dawson, LI, Wang and superprocesses of stochastic flows constructed by Ma and Xiang.展开更多
The Moore-Penrose inverse is an important tool in algebra.This paper shows that the MoorePenrose inverse is also an effcient technique in determining the minimal martingale measure if a security price follows a semi-m...The Moore-Penrose inverse is an important tool in algebra.This paper shows that the MoorePenrose inverse is also an effcient technique in determining the minimal martingale measure if a security price follows a semi-martingale which satisfies some structure condition.We extend a result of Dzhaparidze and Spreij concerning the Moore-Penrose inverse to the case that the Moore-Penrose inverse of any matrix-valued predictable process is still predictable.Furthermore,we obtain an explicit formula of the minimal martingale measure by employing the Moore-Penrose inverse.Specifically,the minimal martingale measure in a generalized Black-Scholes model is found.展开更多
In this note, we give a characterization of the minimal martingale measure for a general discrete-time incomplete financial market. Then we concretely work out the minimal martingale measure for a specific discrete-ti...In this note, we give a characterization of the minimal martingale measure for a general discrete-time incomplete financial market. Then we concretely work out the minimal martingale measure for a specific discrete-time market model in which the assets' returns in different times are independent.展开更多
文摘Let d μ=ψ d ν be a complex valued measure where ν is a non negative measure and ψ is a complex valued function which satisfies b + p or b + ∞∩a 1 condition. We prove some basic martingale inequalities such as B G inequalities, weak ( p,p) and strong (p,p) type inequalities for Banach space valued martingale with respect to complex measure μ .
基金supported by National Natural Science Foundation of China(11601267)
文摘In this paper, the so-called(p,Ф)-Carleson measure is introduced and the rela-tionship between vector-valued martingales in the general Campanato spaces Lp,Ф(X) and the (p, Ф)-Carleson measures is investigated. Specifically, it is proved that for q ∈ [2, ∞), the measure d# :-=││ dfk││^qdP dm is a (q, Ф)-Carleson measure on Ω × N for every f ∈ Lq,Ф(X) if and only if X has an equivalent norm which is q-uniformly convex; while for p C (1, 2], the measure dμ :=││dfk││^pP dm is a (p, Ф)-Carleson measure on Ω ×N implies that f ∈ Lp,Ф(X) if and only if X admits an equivalent norm which is p-uniformly smooth. This result extends an earlier result in the literature from BMO spaces to general Campanato spaces.
基金supported by the National Natural Science Foundation of China(11801064)。
文摘In this paper,we consider the measure determined by a fractional OrnsteinUhlenbeck process.For such a measure,we establish an explicit form of the martingale representation theorem and consequently obtain an explicit form of the Logarithmic-Sobolev inequality.To this end,we also present the integration by parts formula for such a measure,which is obtained via its pull back formula and the Bismut method.
基金Supported by the Foundation for Innovative Research Groups of the National Natural Science Foundation of China(71221061)National Natural Science Foundation of China(11171101)+3 种基金National Social Science Fund of China(11BTJ01115BJY122)Social Sciences Foundation of Ministry of Education of China(12YJAZH173)Aid program for Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Province
文摘The mean correcting martingale measure for the stochastic process defined as the exponential of an additive process is constructed. Necessary and sufficient conditions for the existence of mean correcting martingale are also obtained. The investigation of this paper will establish a unified way that is applicable both to the case of Ldvy processes and that of the sums of independent random variables. As an application, we present the necessary and sufficient conditions that the discounted stock price process is a martingale.
文摘In the paper, the martingales and super-martingales relative to a convex set of equivalent measures are systematically studied. The notion of local regular super-martingale relative to a convex set of equivalent measures is introduced and the necessary and sufficient conditions of the local regularity of it in the discrete case are founded. The description of all local regular super-martingales relative to a convex set of equivalent measures is presented. The notion of the complete set of equivalent measures is introduced. We prove that every bounded in some sense super-martingale relative to the complete set of equivalent measures is local regular. A new definition of the fair price of contingent claim in an incomplete market is given and the formula for the fair price of Standard Option of European type is found. The proved Theorems are the generalization of the famous Doob decomposition for super-martingale onto the case of super-martingales relative to a convex set of equivalent measures.
文摘In this paper we prove the existence of conditional expectations in the noncom- mutative Lp(M, Ф)-spaces associated with center-valued traces. Moreover, their description is also provided. As an application of the obtained results, we establish the norm convergence of weighted averages of martingales in noncommutative Lp(M, Ф)-spaces.
基金Supported by National Natural Science Foundation of China(11301461)Natural Science Foundation of Jiangsu Province(BK20130435)University Natural Science Foundation of Jiangsu Province(13KJB110031)
文摘In this article, we construct an exponential martingale for the compound Poisson process with latent variable. With the help of this exponential martingale, we provide an asymptotic behavior of the coherent entropic risk measure for the compound Poisson process and a deviation inequality for the ruin probability of the partly shifted risk process.
基金Foundation item: Support by the Natural Science Foundation of Henan Province(2004601018)
文摘In this article, we give a description of measure-valued processes with interactive stochastic flows. It is a unified construction for superprocesses with dependent spatial motion constructed by Dawson, LI, Wang and superprocesses of stochastic flows constructed by Ma and Xiang.
基金Supported by the National Natural Science Foundation of China (No.10871064)the Key Laboratory of Computational and Stochastic Mathematics and It's Applications,Universities of Hunan Province,Hunan Normal University and the Soft Scientific Research Funds of Hunan Provincial Science & Technology Department of China (No.2009ZK4021)
文摘The Moore-Penrose inverse is an important tool in algebra.This paper shows that the MoorePenrose inverse is also an effcient technique in determining the minimal martingale measure if a security price follows a semi-martingale which satisfies some structure condition.We extend a result of Dzhaparidze and Spreij concerning the Moore-Penrose inverse to the case that the Moore-Penrose inverse of any matrix-valued predictable process is still predictable.Furthermore,we obtain an explicit formula of the minimal martingale measure by employing the Moore-Penrose inverse.Specifically,the minimal martingale measure in a generalized Black-Scholes model is found.
文摘In this note, we give a characterization of the minimal martingale measure for a general discrete-time incomplete financial market. Then we concretely work out the minimal martingale measure for a specific discrete-time market model in which the assets' returns in different times are independent.