Experience of operating reactor facilities (RF) with lead-bismuth coolant (LBC) has revealed that it is possible to perform safe refueling in short terms if the whole core is replaced and a kit of the special refuelin...Experience of operating reactor facilities (RF) with lead-bismuth coolant (LBC) has revealed that it is possible to perform safe refueling in short terms if the whole core is replaced and a kit of the special refueling equipment is used. However, comparing with RFs of nuclear submarines (NS), in which at the moment of performance of refueling the residual heat release is small, at RF SVBR-100 in a month after the reactor has been shut down, at the moment of performance of refueling the residual heat release is about 500 kW. Therefore, it is required to place the spent removable unit (SRU) with spent fuel subassemblies (SFSA) into the temporal storage tank (TST) filled with liquid LBC, in which the conditions for coolant natural circulation (NC) and heat removal via the tank vessel to the water cooling system are provided. After the residual heat release has been lowered to the level allowing transportation of the TST with SRU in the transporting-package container (TPC), it is proposed to consider a variant of TPCs transportation to the special site. On that site after the SRU has been reloaded into the long storage tank (LST) filled with quickly solidifying liquid lead, the TPCs can be stored during the necessary period. Thus, the controlled storage of LSTs is realized during several decades untill the time when SNF reprocessing and NFC closing are becoming economically expedient. On that storage, the four safety barriers are formed on the way of the release of radioactive products into the environment, namely: fuel matrix, fuel element cladding, solid lead and steel casing of the LST.展开更多
Nuclear power is a powerful and effective energy branch in Ukraine. There are currently 4 active nuclear power stations (NPS) and 13 operational VVER energy units, producing a total power of 11880 MW, in the country...Nuclear power is a powerful and effective energy branch in Ukraine. There are currently 4 active nuclear power stations (NPS) and 13 operational VVER energy units, producing a total power of 11880 MW, in the country. According to the data collected from the International Agency of Nuclear-Power Energy, Ukraine is in seventh place for the largest supply of uranium on the planet. The use of nuclear power in Ukraine includes: extraction and processing uranium ore, production of UF6, production of zirconia rental and purveyances from a zirconia alloy, production of heat-radiating collections, storage of exhaust nuclear fuel and nuclear wastes. The realisation of uranium isotopic enrichment is the main problem in the structure of organisation in nuclear fuel production in Ukraine. This country has a unique station, non-operative Chemobyl NPS, where different types of wastes are located. Two factories are currently being built there in order to process the liquid and solid radio-active wastes. In perspective, Ukrainian nuclear-power energy will be enriched with new nuclear-power units and security systems to ensure safe manufacturing.展开更多
The corrosion behavior of a titanium-5% tantalum alloy (Ti-STa) in hot nitric acid condensate was investigated to understand aging behavior ofreprocessing equipments. On the basis of long-term immersion tests, it wa...The corrosion behavior of a titanium-5% tantalum alloy (Ti-STa) in hot nitric acid condensate was investigated to understand aging behavior ofreprocessing equipments. On the basis of long-term immersion tests, it was determined that the corrosion of Ti-STa in nitric acid condensate is accelerated with an increase in the concentration. The corrosion rate was nearly constant during the immersion test and the coupons suffered from uniform corrosion. In addition, it is important to note that the nitric acid concentration in the condensate increased on addition of metal salts to the heated nitric acid solution. The larger valence of metal ions was contributed to the increase in the concentration of nitric acid condensate. Consequently, the metal salt in the heated nitric acid solution accelerates the corrosion of Ti-STa in the condensate. Therefore, the nitric acid condensate condition should be carefully considered for the corrosion environment of titanium and its alloys.展开更多
This work investigates an accident during the pyrochemical extraction of Uranium and Plutonium from PWR spent fuel in an argon atmosphere hot cell. In the accident, the heavy metals (U and Pu) being extracted are acci...This work investigates an accident during the pyrochemical extraction of Uranium and Plutonium from PWR spent fuel in an argon atmosphere hot cell. In the accident, the heavy metals (U and Pu) being extracted are accidently exposed to air from a leaky instrument penetration which goes through the cell walls. The extracted pin size pieces of U and Pu metal readily burn when exposed to air. Technicians perform the electrochemical extraction using manipulators through a 4 foot thick hot cell concrete wall which protects them from the radioactivity of the spent fuel. Four foot thick windows placed in the wall allow the technicians to visually control the manipulators. These windows would be exposed to the heat of the metal fire. This analysis determines if the thermal stress caused by the fire would crack the windows and if the heat would degrade the window seals allowing radioactivity to escape from the cell.展开更多
文摘Experience of operating reactor facilities (RF) with lead-bismuth coolant (LBC) has revealed that it is possible to perform safe refueling in short terms if the whole core is replaced and a kit of the special refueling equipment is used. However, comparing with RFs of nuclear submarines (NS), in which at the moment of performance of refueling the residual heat release is small, at RF SVBR-100 in a month after the reactor has been shut down, at the moment of performance of refueling the residual heat release is about 500 kW. Therefore, it is required to place the spent removable unit (SRU) with spent fuel subassemblies (SFSA) into the temporal storage tank (TST) filled with liquid LBC, in which the conditions for coolant natural circulation (NC) and heat removal via the tank vessel to the water cooling system are provided. After the residual heat release has been lowered to the level allowing transportation of the TST with SRU in the transporting-package container (TPC), it is proposed to consider a variant of TPCs transportation to the special site. On that site after the SRU has been reloaded into the long storage tank (LST) filled with quickly solidifying liquid lead, the TPCs can be stored during the necessary period. Thus, the controlled storage of LSTs is realized during several decades untill the time when SNF reprocessing and NFC closing are becoming economically expedient. On that storage, the four safety barriers are formed on the way of the release of radioactive products into the environment, namely: fuel matrix, fuel element cladding, solid lead and steel casing of the LST.
文摘Nuclear power is a powerful and effective energy branch in Ukraine. There are currently 4 active nuclear power stations (NPS) and 13 operational VVER energy units, producing a total power of 11880 MW, in the country. According to the data collected from the International Agency of Nuclear-Power Energy, Ukraine is in seventh place for the largest supply of uranium on the planet. The use of nuclear power in Ukraine includes: extraction and processing uranium ore, production of UF6, production of zirconia rental and purveyances from a zirconia alloy, production of heat-radiating collections, storage of exhaust nuclear fuel and nuclear wastes. The realisation of uranium isotopic enrichment is the main problem in the structure of organisation in nuclear fuel production in Ukraine. This country has a unique station, non-operative Chemobyl NPS, where different types of wastes are located. Two factories are currently being built there in order to process the liquid and solid radio-active wastes. In perspective, Ukrainian nuclear-power energy will be enriched with new nuclear-power units and security systems to ensure safe manufacturing.
文摘The corrosion behavior of a titanium-5% tantalum alloy (Ti-STa) in hot nitric acid condensate was investigated to understand aging behavior ofreprocessing equipments. On the basis of long-term immersion tests, it was determined that the corrosion of Ti-STa in nitric acid condensate is accelerated with an increase in the concentration. The corrosion rate was nearly constant during the immersion test and the coupons suffered from uniform corrosion. In addition, it is important to note that the nitric acid concentration in the condensate increased on addition of metal salts to the heated nitric acid solution. The larger valence of metal ions was contributed to the increase in the concentration of nitric acid condensate. Consequently, the metal salt in the heated nitric acid solution accelerates the corrosion of Ti-STa in the condensate. Therefore, the nitric acid condensate condition should be carefully considered for the corrosion environment of titanium and its alloys.
文摘This work investigates an accident during the pyrochemical extraction of Uranium and Plutonium from PWR spent fuel in an argon atmosphere hot cell. In the accident, the heavy metals (U and Pu) being extracted are accidently exposed to air from a leaky instrument penetration which goes through the cell walls. The extracted pin size pieces of U and Pu metal readily burn when exposed to air. Technicians perform the electrochemical extraction using manipulators through a 4 foot thick hot cell concrete wall which protects them from the radioactivity of the spent fuel. Four foot thick windows placed in the wall allow the technicians to visually control the manipulators. These windows would be exposed to the heat of the metal fire. This analysis determines if the thermal stress caused by the fire would crack the windows and if the heat would degrade the window seals allowing radioactivity to escape from the cell.