期刊文献+
共找到89,541篇文章
< 1 2 250 >
每页显示 20 50 100
The effect of the wave-induced mixing on the upper ocean temperature in a climate model 被引量:5
1
作者 HUANG Chuanjiang QIAO Fangli SONG Zhenya 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2008年第3期104-111,共8页
The significant underestimation of sea surface temperature (SST) and the temperature in the upper ocean is one of common problems in present climate models. The influence of the wave-induced mixing on SST and the te... The significant underestimation of sea surface temperature (SST) and the temperature in the upper ocean is one of common problems in present climate models. The influence of the wave-induced mixing on SST and the temperature in the upper ocean was examined based on a global climate model. The results from the model coupled with wave-induced mixing showed a significant improvement in the simulation of SST and the temperature in the upper ocean compared with those of the original model without wave effects. Although there has still a cold bias, the new simulation is much closer to the climatology, especially in the northern ocean and tropical ocean. This study indicates that some important physical processes in the accurate simulation of the ocean may be ignored in present climate models, and the wave-induced mixing is one of those factors. Thus, the wave-induced mixing ( or the effect of surface waves) should be incorporated properly into climate models in order to simulate or forecast the ocean, then climate system, more accurately. 展开更多
关键词 surface wave vertical mixing SST upper ocean temperature climate model
下载PDF
Evaluation of Nonbreaking Wave-Induced Mixing Parameterization Schemes Based on a One-Dimensional Ocean Model
2
作者 TANG Ran HUANG Chuanjiang +1 位作者 DAI Dejun WANG Gang 《Journal of Ocean University of China》 SCIE CAS CSCD 2024年第3期567-576,共10页
Surface waves have a considerable effect on vertical mixing in the upper ocean.In the past two decades,the vertical mixing induced through nonbreaking surface waves has been used in ocean and climate models to improve... Surface waves have a considerable effect on vertical mixing in the upper ocean.In the past two decades,the vertical mixing induced through nonbreaking surface waves has been used in ocean and climate models to improve the simulation of the upper ocean.Thus far,several nonbreaking wave-induced mixing parameterization schemes have been proposed;however,no quantitative comparison has been performed among them.In this paper,a one-dimensional ocean model was used to compare the performances of five schemes,including those of Qiao et al.(Q),Hu and Wang(HW),Huang and Qiao(HQ),Pleskachevsky et al.(P),and Ghantous and Babanin(GB).Similar to previous studies,all of these schemes can decrease the simulated sea surface temperature(SST),increase the subsurface temperature,and deepen the mixed layer,thereby alleviating the common thermal deviation problem of the ocean model for upper ocean simulation.Among these schemes,the HQ scheme exhibited the weakest wave-induced mixing effect,and the HW scheme exhibited the strongest effect;the other three schemes exhibited roughly the same effect.In particular,the Q and P schemes exhibited nearly the same effect.In the simulation based on observations from the Ocean Weather Station Papa,the HQ scheme exhibited the best performance,followed by the Q scheme.In the experiment with the HQ scheme,the root-mean-square deviation of the simulated SST from the observations was 0.43℃,and the mixed layer depth(MLD)was 2.0 m.As a contrast,the deviations of the SST and MLD reached 1.25℃ and 8.4 m,respectively,in the experiment without wave-induced mixing. 展开更多
关键词 wave-induced mixing surface waves sea surface temperature mixed layer depth General Ocean Turbulence Model
下载PDF
Effect of aspect ratio of elliptical stirred vessel on mixing time and flow field characteristics in the absence of baffles
3
作者 Yuan Yao Peiqiao Liu +5 位作者 Qian Zhang Zequan Li Benjun Xi Changyuan Tao Yundong Wang Zuohua Liu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第1期63-74,共12页
Elliptical tanks were used as an alternative to circular tanks in order to improve mixing efficiency and reduce mixing time in unbaffled stirred tanks(USTs). Five different aspect ratios of elliptical vessels were des... Elliptical tanks were used as an alternative to circular tanks in order to improve mixing efficiency and reduce mixing time in unbaffled stirred tanks(USTs). Five different aspect ratios of elliptical vessels were designed to compare their mixing time and flow field. Computational fluid dynamics(CFD) simulations were performed using the k–ε model to calculate the mixing time and simulate turbulent flow field features, such as streamline shape, velocity distribution, vortex core region distribution, and turbulent kinetic energy(TKE) transfer. Visualization was also carried out to track the tinctorial evolution of the liquid phase. Results reveal that elliptical stirred tanks can significantly improve mixing performance in USTs. Specifically, the mixing time at an aspect ratio of 2.00 is only 45.3% of the one of a circular stirred tank. Furthermore, the secondary flow is strengthened and the vortex core region increases with the increase of aspect ratio. The axial velocity is more sensitive to the aspect ratio than the circumferential and radial velocity. Additionally, the TKE transfer in elliptical vessels is altered. These findings suggest that elliptical vessels offer a promising alternative to circular vessels for enhancing mixing performance in USTs. 展开更多
关键词 mixing time CFD Stirred tank Secondary flow mixing performance
下载PDF
Comparison of isotope-based linear and Bayesian mixing models in determining moisture recycling ratio
4
作者 XIAO Yanqiong WANG Liwei +5 位作者 WANG Shengjie Kei YOSHIMURA SHI Yudong LI Xiaofei Athanassios A ARGIRIOU ZHANG Mingjun 《Journal of Arid Land》 SCIE CSCD 2024年第6期739-751,共13页
Stable water isotopes are natural tracers quantifying the contribution of moisture recycling to local precipitation,i.e.,the moisture recycling ratio,but various isotope-based models usually lead to different results,... Stable water isotopes are natural tracers quantifying the contribution of moisture recycling to local precipitation,i.e.,the moisture recycling ratio,but various isotope-based models usually lead to different results,which affects the accuracy of local moisture recycling.In this study,a total of 18 stations from four typical areas in China were selected to compare the performance of isotope-based linear and Bayesian mixing models and to determine local moisture recycling ratio.Among the three vapor sources including advection,transpiration,and surface evaporation,the advection vapor usually played a dominant role,and the contribution of surface evaporation was less than that of transpiration.When the abnormal values were ignored,the arithmetic averages of differences between isotope-based linear and the Bayesian mixing models were 0.9%for transpiration,0.2%for surface evaporation,and–1.1%for advection,respectively,and the medians were 0.5%,0.2%,and–0.8%,respectively.The importance of transpiration was slightly less for most cases when the Bayesian mixing model was applied,and the contribution of advection was relatively larger.The Bayesian mixing model was found to perform better in determining an efficient solution since linear model sometimes resulted in negative contribution ratios.Sensitivity test with two isotope scenarios indicated that the Bayesian model had a relatively low sensitivity to the changes in isotope input,and it was important to accurately estimate the isotopes in precipitation vapor.Generally,the Bayesian mixing model should be recommended instead of a linear model.The findings are useful for understanding the performance of isotope-based linear and Bayesian mixing models under various climate backgrounds. 展开更多
关键词 moisture recycling stable water isotope linear mixing model Bayesian mixing model China
下载PDF
Experimental study on secondary air mixing along the bed height in a circulating fluidized bed with a multitracer-gas method
5
作者 Qingyu Zhang Leming Cheng +3 位作者 Kun Li Qixun Kang Qiang Guo Chaogang Wu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第6期54-62,共9页
A multitracer-gas method was proposed to study the secondary air(SA)mixing along the bed height in a circulating fluidized bed(CFB)using carbon monoxide(CO),oxygen(O_(2)),and carbon dioxide(CO_(2))as tracer gases.Expe... A multitracer-gas method was proposed to study the secondary air(SA)mixing along the bed height in a circulating fluidized bed(CFB)using carbon monoxide(CO),oxygen(O_(2)),and carbon dioxide(CO_(2))as tracer gases.Experiments were carried out on a cold CFB test rig with a cross-section of 0.42 m×0.73 m and a height of 5.50 m.The effects of superficial velocity,SA ratio,bed inventory,and particle diameter on the SA mixing were investigated.The results indicate that there are some differences in the measurement results obtained using different tracer gases,wherein the deviation between CO and CO_(2) ranges from 42%to 66%and that between O_(2) and CO_(2) ranges from 45%to 71%in the lower part of the fluidized bed.However,these differences became less pronounced as the bed height increased.Besides,the high solid concentration and fine particle diameter in the CFB may weaken the difference.The measurement results of different tracer gases show the same trends under the variation of operating parameters.Increasing superficial velocity and SA ratio and decreasing particle diameter result in better mixing of the SA.The effect of bed inventory on SA mixing is not monotonic. 展开更多
关键词 CIRCULATING fluidized BED SECONDARY air injection GAS mixing Multitracer-gas method
下载PDF
Assessing mixing uniformity in microreactors via in-line spectroscopy
6
作者 Shusaku Asano Shinji Kudo +3 位作者 Taisuke Maki Yosuke Muranaka Kazuhiro Mae Jun-ichiro Hayashi 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第2期119-124,共6页
Mixing behavior is critical for enhancing the selectivity of fast chemical reactions in microreactors.A high Reynolds number(Re)improves the mixing rate and selectivity of the reactions,but some exceptions of increasi... Mixing behavior is critical for enhancing the selectivity of fast chemical reactions in microreactors.A high Reynolds number(Re)improves the mixing rate and selectivity of the reactions,but some exceptions of increasing side product yield with the higher Re have been reported.This study investigated the mixing uniformity in microreactors with in-line UV-vis spectroscopy to clarify the relationship between reaction selectivity and chaotic mixing with the higher Re.A colorization experiment of thymolphthalein in an acidic solution was conducted with an excess acid amount to the base to indicate a non-uniformly mixed region.Non-uniformity significantly increased with Re.At the same time,the degree of mixing,which was measured by a usual decolorization experiment,showed that the mixing rate increased with Re.The in-line analysis of the Villermaux-Dushman reaction during the mixing clarified that side product yield significantly increased with Re at around 300 and then decreased at around 1100.These results suggest the compensation effect between the mixing uniformity and mixing rate on the selectivity of the mixing-sensitive reactions.Faster mixing,characterized by a larger Re,can disturb mixing uniformity and,in some cases,decrease reaction selectivity. 展开更多
关键词 MICROREACTOR Villermaux-Dushman reaction In-line analysis mixing Mass transfer UNIFORMITY
下载PDF
Mineral Chemistry,Trace Elements,Isotopic Analysis and Zircon U-Pb Dating in the Hesar Pluton,Northern UDMA,Iran:Implications for Pre-Collisional Magma Mixing
7
作者 Kazem KAZEMI Soroush MODABBERI +3 位作者 Parisa GHARIBNEJAD XIAO Yilin Fatemeh SARJOUGHIAN Ali KANANIAN 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2024年第3期657-678,共22页
The Hesar pluton in the northern Urumieh-Dokhtar magmatic arc hosts numerous mafic-microgranular enclaves(MMEs).Whole rock geochemistry,mineral chemistry,zircon U-Pb and Sr-Nd isotopes were measured.It is suggested th... The Hesar pluton in the northern Urumieh-Dokhtar magmatic arc hosts numerous mafic-microgranular enclaves(MMEs).Whole rock geochemistry,mineral chemistry,zircon U-Pb and Sr-Nd isotopes were measured.It is suggested that the rocks are metaluminous(A/CNK=1.32-1.45),subduction-related I-type calc-alkaline gabbro to diorite with similar mineral assemblages and geochemical signatures.The host rocks yielded an U-Pb crystallization age of 37.3±0.4 Ma for gabbro-diorite.MMEs have relatively low SiO_(2) contents(52.9-56.6 wt%)and high Mg^(#)(49.8-58.7),probably reflecting a mantle-derived origin.Chondrite-and mantle-normalized trace element patterns are characterized by LREE and LILE enrichment,HREE and HFSE depletion with slight negative Eu anomalies(Eu/Eu^(*)=0.86-1.03).The host rocks yield(^(87)Sr/^(86)Sr)_(i) ratios of 0.70492-0.70510,positive ε_(Nd)(t)values of+1.55-+2.06 and T_(DM2)of 707-736 Ma,which is consistent with the associated mafic microgranular enclaves((^(87)Sr/^(86)Sr)_(i)=0.705014,ε_(Nd)(t)=+1.75,T_(DM2)=729 Ma).All data suggest magma-mixing for enclave and host rock formation,showing a complete equilibration between mixed-mafic and felsic magmas,followed by rapid diffusion.The T_(DM1)(Nd)and T_(DM2)(Nd)model ages and U-Pb dating indicate that the host pluton was produced by partial melting of the lower continental crust and subsequent mixing with injected lithospheric mantlederived magmas in a pre-collisional setting of Arabian-Eurasian plates.Clinopyroxene composition indicates a crystallization temperature of~1000℃ and a depth of~9 km. 展开更多
关键词 ENCLAVE magma mixing zircon U-Pb dating Urumieh-Dokhtar magmatic arc
下载PDF
Effectively modulating spatial vortex four-wave mixing in a diamond atomic system
8
作者 巴诺 姜明奇 +4 位作者 费金友 王丹 蒋海林 王磊 王海华 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期473-478,共6页
Due to the spatial characteristics of orbital angular momentum,vortex fields can be applied in the fields of quantum storage and quantum information.We study the realization of spatially modulated vortex fields based ... Due to the spatial characteristics of orbital angular momentum,vortex fields can be applied in the fields of quantum storage and quantum information.We study the realization of spatially modulated vortex fields based on four-wave mixing in a four-level atomic system with a diamond structure.The intensity and spiral phase of the vortex field are effectively transferred to the generated four-wave mixing field.By changing the detuning of the probe field,the phase and intensity of the generated vertex four-wave mixing field can be changed.When the probe field takes a large detuning value,the spatial distribution of the intensity and phase of the vertex four-wave mixing field can be effectively tuned by adjusting the Rabi frequency or detuning value of the coupled field.At the same time,we also provide a detailed explanation based on the dispersion relationship,and the results agree well with our simulation results. 展开更多
关键词 coherent optical effects four-wave mixing orbital angular momentum
下载PDF
Cooperative structure of Li/Ni mixing and stacking faults for achieving high-capacity Co-free Li-rich oxides
9
作者 Zhen Wu Yu-Han Zhang +9 位作者 Hao Wang Zewen Liu Xudong Zhang Xin Dai Kunyang Zou Xiaoming Lou Xuechen Hu Lijing Ma Yan Liu Yongning Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第8期315-324,I0007,共11页
Co-free Li-rich layered oxides(LLOs)are emerging as promising cathode materials for Li-ion batteries due to their low cost and high capacity.However,they commonly face severe structural instability and poor electroche... Co-free Li-rich layered oxides(LLOs)are emerging as promising cathode materials for Li-ion batteries due to their low cost and high capacity.However,they commonly face severe structural instability and poor electrochemical activity,leading to diminished capacity and voltage performance.Herein,we introduce a Co-free LLO,Li_(1.167)Ni_(0.222)Mn_(0.611)O_(2)(Cf-L1),which features a cooperative structure of Li/Ni mixing and stacking faults.This structure regulates the crystal and electronic structures,resulting in a higher discharge capacity of 300.6 mA h g^(-1)and enhanced rate capability compared to the typical Co-free LLO,Li_(1.2)Ni_(0.2)Mn_(0.6)O_(2)(Cf-Ls).Density functional theory(DFT)indicates that Li/Ni mixing in LLOs leads to increased Li-O-Li configurations and higher anionic redox activities,while stacking faults further optimize the electronic interactions of transition metal(TM)3d and non-bonding O 2p orbitals.Moreover,stacking faults accommodate lattice strain,improving electrochemical reversibility during charge/discharge cycles,as demonstrated by the in situ XRD of Cf-L1 showing less lattice evolution than Cf-Ls.This study offers a structured approach to developing Co-free LLOs with enhanced capacity,voltage,rate capability,and cyclability,significantly impacting the advancement of the next-generation Li-ion batteries. 展开更多
关键词 Co-free Li-rich oxides Li/Ni mixing Stacking faults Electronic structure
下载PDF
A strategy for strengthening chaotic mixing of dual shaft eccentric mixers by changing non-Newtonian fluids kinetic energy distribution
10
作者 Songsong Wang Tong Meng +4 位作者 Qian Zhang Changyuan Tao Yundong Wang Zequan Li Zuohua Liu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第5期122-134,共13页
Efficiently modulating the velocity distribution and flow pattern of non-Newtonian fluids is a critical challenge in the context of dual shaft eccentric mixers for process intensification,posing a significant barrier ... Efficiently modulating the velocity distribution and flow pattern of non-Newtonian fluids is a critical challenge in the context of dual shaft eccentric mixers for process intensification,posing a significant barrier for the existing technologies.Accordingly,this work reports a convenient strategy that changes the kinetic energy to controllably regulate the flow patterns from radial flow to axial flow.Results showed that the desired velocity distribution and flow patterns could be effectively obtained by varying the number and structure of baffles to change kinetic energy,and a more uniform velocity distribution,which could not be reached normally in standard baffle dual shaft mixers,was easily obtained.Furthermore,a comparative analysis of velocity and shear rate distributions is employed to elucidate the mechanism behind the generation of flow patterns in various dual-shaft eccentric mixers.Importantly,there is little difference in the power number of the laminar flow at the same Reynolds number,meaning that the baffle type has no effect on the power consumption,while the power number of both unbaffle and U-shaped baffle mixing systems decreases compared with the standard baffle mixing system in the transition flow.Finally,at the same rotational condition,the dimensionless mixing time of the U-shaped baffle mixing system is 15.3%and 7.9%shorter than that of the standard baffle and the unbaffle mixing system,respectively,which shows the advantage of the U-shaped baffle in stirring rate. 展开更多
关键词 Dual shaft “U-shaped”baffle Flow pattern mixing time Power demand
下载PDF
Effect of Nozzle Inclination Angle on Fuel-Air Mixing and Combustion in a Heavy Fuel Engine
11
作者 Zhigang Wang Bin Zheng +4 位作者 Peidong Zhao Baoli Wang Fanyan Meng Wenke Xu Jian Meng 《Fluid Dynamics & Materials Processing》 EI 2024年第2期365-382,共18页
Heavy-fuel engines are widely used in UAVs(Unmanned Autonomous Vehicles)because of their reliability and high-power density.In this study,a combustion model for an in-cylinder direct injection engine has been imple-me... Heavy-fuel engines are widely used in UAVs(Unmanned Autonomous Vehicles)because of their reliability and high-power density.In this study,a combustion model for an in-cylinder direct injection engine has been imple-mented using the AVL FIRE software.The effects of the angle of nozzle inclination on fuel evaporation,mixture distribution,and combustion in the engine cylinder have been systematically studied at 5500 r/min and consider-ing full load cruise conditions.According to the results,as the angle of nozzle inclination increases,the maximum combustion explosion pressure in the cylinderfirst increases and then it decreases.When the angle of nozzle incli-nation is less than 45°,the quality of the mixture in the cylinder and the combustion performance can be improved by increasing the angle.When the angle of nozzle inclination is greater than 45°,however,the mixture unevenness increases slightly with the angle,leading to a deterioration of the combustion performances.When the angle of nozzle inclination is between 35°and 55°,the overall combustion performance of the engine is rela-tively good.When the angle of nozzle inclination is 45°,the combustion chamber’s geometry and the cylinder’s airflow are well matched with the fuel spray,and the mixture quality is the best.Compared with 25°,the peak heat release rate increases by 20%,and the maximum combustion burst pressure increases by 5.5%. 展开更多
关键词 Aviation heavy fuel piston engine nozzle inclination angle COMBUSTION fuel-air mixing
下载PDF
Accurate estimation of Li/Ni mixing degree of lithium nickel oxide cathode materials
12
作者 陈鹏浩 徐磊 +1 位作者 禹习谦 李泓 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第5期631-635,共5页
Li/Ni mixing negatively influences the discharge capacity of lithium nickel oxide and high-nickel ternary cathode materials.However,accurately measuring the Li/Ni mixing degree is difficult due to the preferred orient... Li/Ni mixing negatively influences the discharge capacity of lithium nickel oxide and high-nickel ternary cathode materials.However,accurately measuring the Li/Ni mixing degree is difficult due to the preferred orientation of labbased XRD measurements using Bragg–Brentano geometry.Here,we find that employing spherical harmonics in Rietveld refinement to eliminate the preferred orientation can significantly decrease the measurement error of the Li/Ni mixing ratio.The Li/Ni mixing ratio obtained from Rietveld refinement with spherical harmonics shows a strong correlation with discharge capacity,which means the electrochemical capacity of lithium nickel oxide and high-nickel ternary cathode can be estimated by the Li/Ni mixing degree.Our findings provide a simple and accurate method to estimate the Li/Ni mixing degree,which is valuable to the structural analysis and screening of the synthesis conditions of lithium nickel oxide and high-nickel ternary cathode materials. 展开更多
关键词 lithium nickel oxide high-nickel ternary cathode Li/Ni mixing spherical harmonics function discharge capacity
下载PDF
Effect of droplet characteristics on liquid-phase distribution in spray zone of internal mixing air-mist nozzle
13
作者 Wei-li Wu Chang-gui Cheng +2 位作者 Yang Li Shi-fa Wei De-li Chen 《China Foundry》 SCIE EI CAS CSCD 2024年第2期185-196,共12页
In continuous casting production,droplet characteristics are important parameters for evaluating the nozzle atomization quality,and have a significant impact on the secondary cooling effect and the slab quality.In ord... In continuous casting production,droplet characteristics are important parameters for evaluating the nozzle atomization quality,and have a significant impact on the secondary cooling effect and the slab quality.In order to study the behavior of atomized droplets after reaching the slab surface and to optimize the spray cooling effect,the influence of droplet diameter and droplet velocity on the migration behavior of droplets in the secondary cooling zone was analyzed by FLUENT software.Results show that the droplets in the spray zone and on the slab surface are mainly concentrated in the center,thus,the liquid volume fraction in the center is higher than that of either side.As the droplet diameter increases,the region of high liquid volume fraction on the slab surface becomes wider,and the liquid phase distribution in the slab width direction becomes uneven.Although increasing the droplet velocity at the nozzle exit has little effect on droplet diffusion in the spray zone,the distribution becomes more uneven due to more liquid reaches the slab surface per unit time.A prediction formula of the maximum water flow rate on the slab surface for specific droplet characteristics was proposed based on dimensionless analysis and validated by simulated data.A nozzle spacing of 210 mm was recommended under the working conditions in this study,which ensures effective coverage of the spray water over the slab surface and enhances the distribution uniformity of water flow rate in the transverse direction. 展开更多
关键词 continuous casting secondary cooling zone internal mixing air-mist nozzle droplet characteristics liquid phase distribution water flow rate
下载PDF
Effect of the mixing of s-wave and chiral p-wave pairings on electrical shot noise properties of normal metal/superconductor tunnel junctions
14
作者 胡雨辰 胡梁宾 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第7期538-545,共8页
We study theoretically the electrical shot noise properties of tunnel junctions between a normal metal and a superconductor with the mixture of singlet s-wave and chiral triplet p-wave pairing due to broken inversion ... We study theoretically the electrical shot noise properties of tunnel junctions between a normal metal and a superconductor with the mixture of singlet s-wave and chiral triplet p-wave pairing due to broken inversion symmetry. We investigate how the shot noise properties vary as the relative amplitude between the two parity components in the pairing potential is changed. It is demonstrated that some characteristics of the electrical shot noise properties of such tunnel junctions may depend sensitively on the relative amplitude between the two parity components in the pairing potential, and some significant changes may occur in the electrical shot noise properties when the relative amplitude between the two parity components is varied from the singlet s-wave pairing dominated regime to the chiral triplet p-wave pairing dominated regime. In the chiral triplet p-wave pairing dominated regime, the ratio of noise power to electric current is close to 2e both in the in-gap and in the out-gap region. In the singlet s-wave pairing dominated regime, the value of this ratio is close to 4e in the inner gap region but may reduce to about 2e in the outer gap region as the relative amplitude of the chiral triplet pairing component is increased. The variations of the differential shot noise with the bias voltage also exhibit some significantly different features in different regimes. Such different features can serve as useful diagnostic tools for the determination of the relative magnitude of the two parity components in the pairing potential. 展开更多
关键词 normal metal/superconductor tunnel junctions shot noise mixing of s-wave and chiral p-wave pairing spin–orbit coupling
下载PDF
Persistent mixing bursts in the equatorial Pacific thermocline induced by persistent equatorial waves
15
作者 Jingjing ZHANG Chuanyu LIU +1 位作者 Xiang GONG Fan WANG 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2024年第2期492-510,共19页
A recent study by Liu et al.(2020)suggested that due to the saturation of equatorially trapped planetary waves with different dynamical types,temporal periods,meridional and baroclinic modes,complex layer structures o... A recent study by Liu et al.(2020)suggested that due to the saturation of equatorially trapped planetary waves with different dynamical types,temporal periods,meridional and baroclinic modes,complex layer structures of vertical velocity shear and hence turbulent mixing could frequently occur in the thermocline of the eastern equatorial Pacific.We investigated the occurrence of the interior turbulent mixing as indicated by shear instabilities,above the Equatorial Undercurrent(EUC)core at three equatorial sites along 140°W,170°W,and 165°E,respectively,based mainly on data from the Tropical Atmosphere and Ocean(TAO)mooring array.We found that turbulent mixing bursts persisted in the thermocline of all three sites.Specifically,the interior turbulent mixing layers(ITMLs)could occur in probability of approximately 68%,53%,and 48%at the three sites,respectively.The overall occurrence probability shows obvious and similar biannual variations at 140°W and 170°W,which is higher in boreal from late summer to winter and lower in spring.Vertically,the ITMLs are primarily located above the EUC core and prevail in deeper(shallower)layers from late summer to winter(spring).Most ITMLs(70%)lasted for hours to 3 days,and a few of them(15%)for more than 7 days.The thicknesses of ITMLs were concentrated between 15 and 55 m.At 165°E,the vertical distribution of ITML occurrence probability was different from that at 140°W and 170°W,as it did not show a preference for depths;the durations of ITMLs are short(also from hours to several days)and their thicknesses were between 5 and 25 m.These properties,particularly the high occurrence probability,and short durations demonstrated the persistence of thermocline mixing in the western to eastern equatorial Pacific thermocline and confirmed the generation mechanism by persistent equatorial waves as well. 展开更多
关键词 interior turbulent mixing layer(ITML) weakly sheared layer(WSL) Equatorial Undercurrent(EUC)core occurrence probability SEASONALITY
下载PDF
Parameterization of ocean wave-induced mixing processes for finite water depth 被引量:6
16
作者 YANG Yongzeng ZHAN Run TENG Yong 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2009年第4期16-22,共7页
Three dimensional wave-induced mixing plays an important role in shallow water area. A quite direct approach through the Reynolds average upon characteristic length scale is proposed to parameterize the horizontal and... Three dimensional wave-induced mixing plays an important role in shallow water area. A quite direct approach through the Reynolds average upon characteristic length scale is proposed to parameterize the horizontal and vertical shallow water mixing. Comparison of finite depth case with infinite depth results indicates that the difference of the wave-induced mixing strength is evident. In the shallow water condition, the infinite water depth approximation overestimates the mixing strength in the lower layers. The nonzero horizontal wave-induced mixing presents anisotropic property near the shore. The Prandtl's mixing length theory underestimated the wave-induced mixing in the previous studies. 展开更多
关键词 Reynolds average Characteristic length scale wave-induced mixing parameter
下载PDF
The improvement of the one-dimensional Mellor-Yamada and K-profile parameterization turbulence schemes with the non-breaking surface wave-induced vertical mixing 被引量:2
17
作者 LI Yan QIAO Fangli +2 位作者 YIN Xunqiang SHU Qi MA Hongyu 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2013年第9期62-73,共12页
Both the level 2.5 Mellor-Yamada turbulence closure scheme (MY) and K-profile parameterization (KPP) are popularly used by the ocean modeling community. The MY and the KPP are improved through including the non-br... Both the level 2.5 Mellor-Yamada turbulence closure scheme (MY) and K-profile parameterization (KPP) are popularly used by the ocean modeling community. The MY and the KPP are improved through including the non-breaking surface wave-induced vertical mixing (Bv), and the improved schemes were tested by using continuous data at the Papa ocean weather station (OWS) during 1961-1965. The numerical results showed that the Bv can make the temperature simulations fit much better with the continuous data from Papa Sta- tion. The two improved schemes overcame the shortcomings of predicting too shallow upper mixed layer depth and consequently overheated sea surface temperature during summertime, which are in fact com- mon problems for all turbulence closure models. Statistical analysis showed that the Bv effectively reduced the mean absolute error and root mean square error of the upper layer temperature and increased the corre- lation coefficient between simulation and the observation. Furthermore, the performance of vertical mixing induced by shear instability and the Bv is also compared. Both the temperature structure and its seasonal cycle significantly improved by including the Bv, regardless of whether shear instability was included or not, especially for the KPP mixing scheme, which suggested that Bv played a dominant role in the upper ocean where the mean current was relatively weak, such as at Papa Station. These results may provide a clue to improve ocean circulation models. 展开更多
关键词 non-breaking wave-induced mixing mixed layer numerical modeling Papa Station
下载PDF
Effects of the surface wave-induced mixing on circulation in an isopycnal-coordinate oceanic circulation model 被引量:1
18
作者 HUANG Chuanjiang QIAO Fangli WEI Zexun 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2013年第5期7-14,共8页
The influence of the nonbreaking surface wave-induced mixing under the mixed layer on the oceanic cir- culation was investigated using an isopycnal-coordinate oceanic circulation model. The effect of the wave- induced... The influence of the nonbreaking surface wave-induced mixing under the mixed layer on the oceanic cir- culation was investigated using an isopycnal-coordinate oceanic circulation model. The effect of the wave- induced mixing within the mixed layer was eliminated via a bulk mixed layer model. The results show that the wave-induced mixing can penetrate through the mixed layer and into the oceanic interior. The wave- induced mixing under the mixed layer has an important effect on the distribution of temperature of the upper ocean at middle and high latitudes in summer, especially the structure of the seasonal thermocline. Moreover, the wave-induced mixing can affect the oceanic circulation, such as western boundary currents and the North Equatorial Currents through changes of sea surface height associated with the variation of the thermal structure of the upper ocean. 展开更多
关键词 wave-induced mixing oceanic interior seasonal thermocline oceanic circulation geostrophicadjustment
下载PDF
Sensitive study of the long and short surface wave-induced vertical mixing in a wave-circulation coupled model
19
作者 ZHAO Chang 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2012年第4期1-10,共10页
The previous studies by the MASNUM research team have shown the effectiveness of the wave- induced mixing (By) in improving the simulation of upper-ocean thermal structure. The mech- anisms of Bv are further investi... The previous studies by the MASNUM research team have shown the effectiveness of the wave- induced mixing (By) in improving the simulation of upper-ocean thermal structure. The mech- anisms of Bv are further investigated by incorporating different Bv products into the MASNUM wave-circulation coupled model. First, experiments were designed to explore the effects of By, which contain the contributions at different wave lengths (l). The results of three experiments, the non-By case, the short-wave case (l 〈300 m), and the long-wave case (l 〉300 m) are compared, and it is found that the long waves are the most important component for By to generate mixing in the upper ocean. As the swell plays dominant role in mixing, the parameterization of Bv into wind may be not a proper way. Second, Bv effects at different time-scales, including daily and monthly, were examined. The results show that the monthly averaged By has larger impact than the daily averaged Bv, especially in summer. 展开更多
关键词 wave-induced mixing wave-circulation coupled model long surface wave-inducedmixing daily mean wave-induced mixing monthly mean wave-induced mixing
下载PDF
Contribution of surface wave-induced vertical mixing to heat content in global upper ocean
20
作者 CHEN Siyu QIAO Fangli +1 位作者 HUANG Chuanjiang SONG Zhenya 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2020年第2期307-313,共7页
Compared with observations,the simulated upper ocean heat content(OHC)determined from climate models shows an underestimation bias.The simulation bias of the average annual water temperature in the upper 300 m is 0.2... Compared with observations,the simulated upper ocean heat content(OHC)determined from climate models shows an underestimation bias.The simulation bias of the average annual water temperature in the upper 300 m is 0.2℃lower than the observational results.The results from our two numerical experiments,using a CMIP5 model,show that the non-breaking surface wave-induced vertical mixing can reduce this bias.The enhanced vertical mixing increases the OHC in the global upper ocean(65°S–65°N).Using non-breaking surface wave-induced vertical mixing reduced the disparity by 30%to 0.14℃.The heat content increase is not directly induced by air-sea heat fluxes during the simulation period,but is the legacy of temperature increases in the first 150 years.During this period,additional vertical mixing was initially included in the climate model.The non-breaking surface wave-induced vertical mixing improves the OHC by increasing the air-sea heat fluxes in the first 150 years.This increase in air-sea heat fluxes warms the upper ocean by 0.05–0.06℃.The results show that the incorporation of vertical mixing induced by nonbreaking surface waves in our experiments can improve the simulation of OHC in the global upper ocean. 展开更多
关键词 surface wave-induced vertical mixing upper ocean heat content air-sea heat fluxes climate model
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部