The single-machine lot scheduling problem with splittable jobs to minimize the number of tardy jobs has been showed to be weakly NP-hard in the literature.In this paper,we show that a generalized version of this probl...The single-machine lot scheduling problem with splittable jobs to minimize the number of tardy jobs has been showed to be weakly NP-hard in the literature.In this paper,we show that a generalized version of this problem in which jobs have deadlines is strongly NP-hard,and also present the results of some related scheduling problems.展开更多
The number of tardy jobs of the single machine scheduling problem with a variable processing time is studied in accordance with the published instances of traffic transportation management engineering. It is proved ...The number of tardy jobs of the single machine scheduling problem with a variable processing time is studied in accordance with the published instances of traffic transportation management engineering. It is proved by 3 partition problem that if the problem is of ready time and common deadline constrained, its complexity is NP hard in the strong sense. Finally, a polynomial algorithm for solving unit processing time and common deadline problems is proposed.展开更多
基金Supported by National Natural Science Foundation of China(Grant Nos.12071442,11971443,12271491)。
文摘The single-machine lot scheduling problem with splittable jobs to minimize the number of tardy jobs has been showed to be weakly NP-hard in the literature.In this paper,we show that a generalized version of this problem in which jobs have deadlines is strongly NP-hard,and also present the results of some related scheduling problems.
文摘The number of tardy jobs of the single machine scheduling problem with a variable processing time is studied in accordance with the published instances of traffic transportation management engineering. It is proved by 3 partition problem that if the problem is of ready time and common deadline constrained, its complexity is NP hard in the strong sense. Finally, a polynomial algorithm for solving unit processing time and common deadline problems is proposed.