As one of the regions most affected by global cli-mate warming,the Tianshan mountains has experienced sev-eral ecological crises,including retreating glaciers and water deficits.Climate warming in these mountains is c...As one of the regions most affected by global cli-mate warming,the Tianshan mountains has experienced sev-eral ecological crises,including retreating glaciers and water deficits.Climate warming in these mountains is considered mainly to be caused by increases in minimum temperatures and winter temperatures,while the influence of maximum temperatures is unclear.In this study,a 300-year tree-ring chronology developed from the Western Tianshan Moun-tains was used to reconstruct the summer(June-August)maximum temperature(T_(max6-8))variations from 1718 to 2017.The reconstruction explained 53.1% of the variance in the observed T_(max6-8).Over the past 300 years,the T_(max6-8)reconstruction showed clear interannual and decadal vari-abilities.There was a significant warming trend(0.18°C/decade)after the 1950s,which was close to the increasing rates of the minimum and mean temperatures.The increase in maximum temperature was also present over the whole Tianshan mountains and its impact on climate warming has increased.The T_(max6-8) variations in the Western Tianshan mountains were influenced by frequent volcanic eruptions combined with the influence of solar activity and the sum-mer North Atlantic Oscillation.This study reveals that cli-mate warming is significantly influenced by the increase in maximum temperatures and clarifies possible driving mech-anisms of temperature variations in the Western Tianshan mountains which should aid climate predictions.展开更多
As one of the regions most affected by global cli-mate warming,the Tianshan mountains has experienced sev-eral ecological crises,including retreating glaciers and water deficits.Climate warming in these mountains is c...As one of the regions most affected by global cli-mate warming,the Tianshan mountains has experienced sev-eral ecological crises,including retreating glaciers and water deficits.Climate warming in these mountains is considered mainly to be caused by increases in minimum temperatures and winter temperatures,while the influence of maximum temperatures is unclear.In this study,a 300-year tree-ring chronology developed from the Western Tianshan Moun-tains was used to reconstruct the summer(June–August)maximum temperature(T_(max6–8))variations from 1718 to 2017.The reconstruction explained 53.1%of the variance in the observed Tmax6–8.Over the past 300 years,the T_(max6–8)Project funding:This study was supported by the Second Tibetan Plateau Scientific Expedition and Research(2019QZKK0101);the China Desert Meteorological Science Research Foundation(Sqj2022012);the Natural Science Basic Research Program of Shaanxi Province(2023-JC-QN-0307);the National Natural Science Foundation of China(42361144712);the Chinese Academy of Sciences(XDB40010300);and the State Key Laboratory of Loess and Quaternary Geology,Institute of Earth Environment,CAS(SKLLQG2022).reconstruction showed clear interannual and decadal vari-abilities.There was a significant warming trend(0.18°C/decade)after the 1950s,which was close to the increasing rates of the minimum and mean temperatures.The increase in maximum temperature was also present over the whole Tianshan mountains and its impact on climate warming has increased.The Tmax6-8 variations in the Western Tianshan mountains were influenced by frequent volcanic eruptions combined with the influence of solar activity and the sum-mer North Atlantic Oscillation.This study reveals that cli-mate warming is significantly influenced by the increase in maximum temperatures and clarifies possible driving mech-anisms of temperature variations in the Western Tianshan mountains which should aid climate predictions.展开更多
Purpose–This study aims to analyze the impact mechanism of typical environments in China’s western mountainous areas on the durability of railway concrete and propose measures to improve durability.Design/methodolog...Purpose–This study aims to analyze the impact mechanism of typical environments in China’s western mountainous areas on the durability of railway concrete and propose measures to improve durability.Design/methodology/approach–With the continuous promotion of infrastructure construction,the focus of China’s railway construction has gradually shifted to the western region.The four typical environments of large temperature differences,strong winds and dryness,high cold and low air pressure unique to the western mountainous areas of China have adverse effects on the durability of typical railway structure concrete(bridges,ballastless tracks and tunnels).This study identified the characteristics of four typical environments in the western mountainous areas of China through on-site research.The impact mechanism of the four typical environments on the durability of concrete in different structural parts of railways has been explored through theoretical analysis and experimental research;Finally,a strategy for improving the durability of railway concrete suitable for the western mountainous areas of China was proposed.Findings–The daily temperature difference in the western mountainous areas of China is more than twice that of the plain region,which will lead to significant temperature deformation and stress in the multi-layered structure of railway ballastless tracks.It will result in cracking.The wind speed in the western plateau region is about 2.5 to 3 times that of the plain region,and the average annual rainfall is only 1/5 of that in the plain region.The drying effect on the surface of casting concrete will significantly accelerate its cracking process,leading to serious durability problems.The environmental temperature in the western mountainous areas of China is generally low,and there are more freeze-thaw cycles,which will increase the risk of freeze-thaw damage to railway concrete.The environmental air pressure in the western plateau region is only 60%of that in the plain region.The moisture inside the concrete is more likely to diffuse into the surrounding environment under the pressure difference,resulting in greater water loss and shrinkage deformation of the concrete in the plateau region.The above four issues will collectively lead to the rapid deterioration of concrete durability in the western plateau region.The corresponding durability improvement suggestions from theoretical research,new technology development and standard system was proposed in this paper.Originality/value–The research can provide the mechanism of durability degradation of railway concrete in the western mountainous areas of China and corresponding improvement strategies.展开更多
The study of land surface temperature(LST)is of great significance for ecosystem monitoring and ecological environmental protection in the Qinling Mountains of China.In view of the contradicting spatial and temporal r...The study of land surface temperature(LST)is of great significance for ecosystem monitoring and ecological environmental protection in the Qinling Mountains of China.In view of the contradicting spatial and temporal resolutions in extracting LST from satellite remote sensing(RS)data,the areas with complex landforms of the Eastern Qinling Mountains were selected as the research targets to establish the correlation between the normalized difference vegetation index(NDVI)and LST.Detailed information on the surface features and temporal changes in the land surface was provided by Sentinel-2 and Sentinel-3,respectively.Based on the statistically downscaling method,the spatial scale could be decreased from 1000 m to 10 m,and LST with a Sentinel-3 temporal resolution and a 10 m spatial resolution could be retrieved.Comparing the 1 km resolution Sentinel-3 LST with the downscaling results,the 10 m LST downscaling data could accurately reflect the spatial distribution of the thermal characteristics of the original LST image.Moreover,the surface temperature data with a 10 m high spatial resolution had clear texture and obvious geomorphic features that could depict the detailed information of the ground features.The results showed that the average error was 5 K on April 16,2019 and 2.6 K on July 15,2019.The smaller error values indicated the higher vegetation coverage of summer downscaling result with the highest level on July 15.展开更多
DEAR EDITOR,Combining location data, species distribution modeling(Max Ent), and major conservation events, we analyzed historical distribution changes in golden snub-nosed monkeys(Rhinopithecus roxellana) in the Qinl...DEAR EDITOR,Combining location data, species distribution modeling(Max Ent), and major conservation events, we analyzed historical distribution changes in golden snub-nosed monkeys(Rhinopithecus roxellana) in the Qinling Mountains of China.展开更多
The winter diet and morphological structure of the gastrointestinal tract of the Golden Pheasant(Chrysolophus pictus) was investigated in the Qinling Mountains,Shaanxi Province in 2002/2003.Individual food items in cr...The winter diet and morphological structure of the gastrointestinal tract of the Golden Pheasant(Chrysolophus pictus) was investigated in the Qinling Mountains,Shaanxi Province in 2002/2003.Individual food items in crops were identified by species,where possible,using standard taxonomic methods.The Golden Pheasant consumes exclusively vegetarian foods in the winter,of at least 14 plant species,such as crops and other vegetable species.The digestive tract of the Golden Pheasant is composed of an oesophagus,a stomach,a relatively long intestine measuring 3.4 × standard body length,two fully-developed caeca and a relatively short colon,typical for herbivorous birds.Pebbles of different sizes(0.5-3 mm in diameter) were very frequent in the gizzard.The average dry weight of the pebbles was 10.4±2.5 g and was positively correlated with the weight of digesta in the gizzard(Pearson r = 0.747,p < 0.01,n = 37).The mucosa surface pH of the digestive tract of the Golden Pheasant was slightly acidic,but higher in the crop and gizzard.展开更多
The Shicaogou granite has been identified as a magnesian (Fe-number=0.71-0.76), calcic to calc-alkalic (MALI=3.84-5.76) and peraluminous (ASI=1.06-1.13) granite of the syn-collisional S-type, with high SiO2(>71%), ...The Shicaogou granite has been identified as a magnesian (Fe-number=0.71-0.76), calcic to calc-alkalic (MALI=3.84-5.76) and peraluminous (ASI=1.06-1.13) granite of the syn-collisional S-type, with high SiO2(>71%), A12O3 (>13%) and Na2O+K2O (6.28%-7.33%, equal for NaO2 and K2O). Trace element and REE analyses show that the granite is rich in LILE such as of Rb, Sr, Ba and Th, and poor in HFSE like Yb, Y, Zr and Hf. Its Rb/Sr ratio is greater than 1; the contents of Nb and Ta, and the ratio of Nb/Ta as well as the REE geochemical features (e.g. REE abundance, visible fractionation of LREE and HREE and medium to pronounced negative Eu anomalies) are all similar to those of crust-origin, continent-continent syn-collisional granite. Moreover, the granite exhibits almost the same pattern as that of the typical continent-continent syn-collisional granite on the spider diagram and all samples fall within the syn-collisional granite field.The cathodoluminescence (CL) investigations have revealed that the zircon from the Shicaogou granite represents a typical magmatic product characterized by its colorless, transparent and euhedral crystals, and distinct zoning of oscillatory bands. Residual cores of irregular zircon can be found in a few enhedral grains. Trace element studies of the zircon grains, with high contents of P, Y, Hf, Th, U and REE and high ratios of Th/U, obviously positive Ce anomalies and HREE enrichment compared to LREE, also result in the same conclusion.The LA-ICP-MS U-Pb isotopic data from 24 spots of 21 zircon grains demonstrate that 20 spots in the oscillatory zone yield an average weighted 206Pb/238U age of 925±11 Ma, indicating that the Shicaogou granite was formed in the Neoproterozoic. Combined with other Neoproterozoic syn-collisional granites found in the study area, the present geochronological determination can further reveal that collision-amalgamation events could have occurred among some continental blocks in the Qinling orogenic belt during the Neoproterozoic. This in turn provides an accurate chronological constraint on the Neoproterozoic break-up and convergence in the belt.展开更多
Silurian, Devonian and Carboniferous geological bodies in the Mianxian-Lueyang (Mian-Lue) collisional belt (MLB) and its neighbouring areas, southern Qinling Mountains, China, show similar characteristics of having un...Silurian, Devonian and Carboniferous geological bodies in the Mianxian-Lueyang (Mian-Lue) collisional belt (MLB) and its neighbouring areas, southern Qinling Mountains, China, show similar characteristics of having undergone deformation of two stages. The earlier one, which is inferred to be related to collisional orogeny between the Yangtze and Sino-Korean palaeocontinents based on previous geological data, is responsible for large-scale, north-verging recumbent folds and overthrusts, and associated with low greenschist fades metamorphism. 40Ar/39Ar dating of three muscovite samples taken from different localities yields plateau ages of 226.9±0.9 and 219.5±1.4 Ma and an apparent age of 194.5±3.0 Ma. Thus, the late Triassic collision between the Yangtze and Sino-Korean palaeocontinents has been constrained.展开更多
The Beizhan large iron deposit located in the east part of the Awulale metallogenic belt in the western Tianshan Mountains is hosted in the Unit 2 of the Dahalajunshan Formation as lens, veinlets and stratoid, and bot...The Beizhan large iron deposit located in the east part of the Awulale metallogenic belt in the western Tianshan Mountains is hosted in the Unit 2 of the Dahalajunshan Formation as lens, veinlets and stratoid, and both of the hanging wall and footwall are quartz-monzonite; the dip is to the north with thick and high-grade ore bodies downwards. Ore minerals are mainly magnetite with minor sulfides, such as pyrite, pyrrhotite, chalcopyrite and sphalerite. Skarnization is widespread around the ore bodies, and garnet, diopside, wollastonite, actinolite, epidote, uralite, tourmaline sericite and calcite are ubiquitous as gangues. Radiating outwards from the center of the ore body the deposit can be classified into skarn, calcite, serpentinite and marble zones. LA-ICP-MS zircon U-Pb dating of the rhyolite and dacite from the Dahalajunshan Formation indicates that they were formed at 301.3±0.8 Ma and 303.7±0.9 Ma, respectively, which might have been related to the continental arc magmatism during the late stage of subduction in the western Tianshan Mountains. Iron formation is genetically related with volcanic eruption during this interval. The Dahalajunshan Formation and the quartz-monzonite intrusion jointly control the distribution of ore bodies. Both ore textures and wall rock alteration indicate that the Beizhan iron deposit is probably skarn type.展开更多
A GIS-based method was used to assess land suitability in the Qinling Mountains, Shaanxi Province of China through simultaneous consideration of physical features and current land use. Through interpretation of Landsa...A GIS-based method was used to assess land suitability in the Qinling Mountains, Shaanxi Province of China through simultaneous consideration of physical features and current land use. Through interpretation of Landsat TM images and extensive field visits the area was modeled into 40 land types in five altitudinal zones (valleys and gullies, hillsides and terraces, foothills, mid-mountain, and sub-alpine mountain). Then, a suitability score was assigned to five physical factors (climate, hydrology, topography, soil, and vegetation). Next, their integrated overall suitability value scores were compared with the observed land cover to determine whether it should be reallocated a new use. Results showed that the five suitability classes of agriculture, forest, grassland, farmland-woodland, and scrub-pasture had altitudinal stratification and a total of 1151 km2 (8.89%) of lands on the northern slopes of the Qinling Mountains had to be reallocated. To achieve this reallocation, 657 km2 of arable land should be reduced, and forest, grassland and scrub-pasture increased by 615 km2, 131 km2 and 405 km2, respectively. Implementation of these recommended land reallocations should help achieve suitable use of land resources and prevent land degradation.展开更多
The Tongbai-East Qinling Mountains, an important part of the Central orogenic belt, is one of the most important metallogenic belts in China and contains lots of orogenic-type and VMS-type (Volcanogenic Massive Sulfi...The Tongbai-East Qinling Mountains, an important part of the Central orogenic belt, is one of the most important metallogenic belts in China and contains lots of orogenic-type and VMS-type (Volcanogenic Massive Sulfide type) metallogenic systems. The Dahe and Shuidongling VMS-type Cu-Zn deposits, located in the Erlangping Group in Tongbai and East Qinling Mountains, respectively, show similar geological and geochemical features. The Huoshenmiao Formation in the East Qinling region and the Liushanyan Formation in the Tongbai region are spilite-keratophyre sequences occurring in the western and eastern sides of the Nanyang Basin, respectively, and are interpreted to be equivalent to each other. The orogenic-type Au-Ag deposits can be subdivided into two styles; namely, fault- or structure-controlled (e.g. Yindonggou) and stratabound (e.g. Poshan). The Poshan and Yindongpo orogenic-type Au-Ag deposits, whose ore bodies are strictly hosted in carbonaceous strata in the Tongbai Mountains, show obvious stratabound characteristics. Their ore-fluids are enriched in K^+ and SO^2-4 and are regarded as K^+-SO^2-4 types. The Pb-isotope ratios of sulfides of the ores are extremely uniform and significantly different from those of the tectonostratigraphic terranes of the Qinling orogens except for the ore-hosting strata of the Waitoushan Formation. The Yindonggou and Xuyaogou orogenic Au-Ag deposits in the East Qinling Mountains, whose ore bodies are hosted in the faults cutting the hosting strata or granite body, show fault-controlled characteristics. Their ore-fluids belong to the Na^+-Cl^- type. The Pb-isotope ratios of sulfides of ores are similar to those of the northern Qinling orogenic belt. The Waitoushan Formation, dominated by carbonaceous sericite-rich schists and only occurring in Tongbai region, should be detached from the Erlangping Group, which occurs both in the western and eastern sides of the Nanyang Basin. Future ore exploration in the Tongbai-East Qinling Mountains should focus on fault-controlled Au-Ag lodes.展开更多
The superlarge Baguamiao, large Liba and Xiaogouli gold deposits represent three typical gold deposits different from the Carlin type in the western Qinling Orogenic Belt. Based on Ar-Ar dating of quartz from ores, U-...The superlarge Baguamiao, large Liba and Xiaogouli gold deposits represent three typical gold deposits different from the Carlin type in the western Qinling Orogenic Belt. Based on Ar-Ar dating of quartz from ores, U-Pb dating of single zircon from granite, tracing of H and O isotopes and studies on the mineralogy and texture of spots and bleached alteration developed in wall rocks, this paper focuses the relations between gold deposits and granite to clarify the origin of gold deposits and the metallogenesis in the tectonic evolution of the Qinling Orogenic Belt. The comprehensive studies show that the age of the granite (148.1-244 Ma) is identical with that of the gold deposits (131.91-232.56 Ma). It is suggested that the granite has close temporal, spatial and genetic relationship with the gold deposits. The granite provides a heat source, water source and considerable amount of ore-forming material. Finally, it is concluded that the orogeny by collision, emplacement of the granite and positioning of the gold deposits represent a successive process. Both the granite and gold deposits resulted from the syn-orogeny and post-orogeny tectonic evolution.展开更多
The Aiketik Group, distributed at the western end of the South TianshanMountains, China, is an important lithostratigraphic unit involved in the South Tianshan orogen. Itis separated from the adjacent rocks by faults....The Aiketik Group, distributed at the western end of the South TianshanMountains, China, is an important lithostratigraphic unit involved in the South Tianshan orogen. Itis separated from the adjacent rocks by faults. Generally, the geologists ascribed it to the UpperCarboniferous according to Pseudostaffella sp., Profusulinella sp. and Fusulinella sp. found fromthe limestone and sandy limestone of Aiketik. Our radiolarian fossils were obtained from the chertsamples collected from the Haladaok section located at the upper Tuoshihan River. The fossils mainlyinclude Albaillella undulata Deflandre, Albaillella paradoxa Deflandre, Albaillella sp. aff. A.paradoxa Deflandre, Albaillella sp. cf. A. deflandrei Gourmelon, Albaillella sp., Albaillellaexcelsa Ishiga, Kito and Imoto (?), Belowea variabilis (Ormiston et Lane), Callella cf. C.parvispinosa Won, Entactinia cf. E. tortispina Ormiston et Lane, Entactinia aff. E. tortispinaOrmiston et Lane, Entactinia variospina Won, Entactinia sp., Eostylodictya rota (Won),Latentifistula impella (Ormistone et Lane) (?), Latentifistula turgita Omiston et Lane,Latentifistulidae gen. et. sp. indet. and Polyentactinia cf. aranea Gourmelon. Among them,Albaillella excelsa Ishiga, Kito and Imoto (?) is a Late Permian species with some elementsuncertain as there is only one poorly-preserved fossil of this species found so far. And tworadiolarian assemblages can be identified from the other fossils. One is the early EarlyCarboniferous assemblage represented by Albaillella undulata Deflandre, Albaillella paradoxa andAlbaillella sp. cf. A. deflandrei Gourmelon. And the other is the late Early Carboniferousassemblage represented by Eostylodictya rota (Won). This is the first discovery of radiolarianfossils in the Aiketik Group, also the first discovery of Late Permian radiolarian fossils in theSouth Tianshan Mountains. Meanwhile, this is the current westernmost sampling site of radiolarianfossils in the South Tianshan Mountains.展开更多
Stratabound gold deposits in the western Qinling Mountains occur in Cambrian chert formation composed of carbonaceous chert and carbonaceous slate. The distinctive chert formation provides important grounds for the mi...Stratabound gold deposits in the western Qinling Mountains occur in Cambrian chert formation composed of carbonaceous chert and carbonaceous slate. The distinctive chert formation provides important grounds for the mineralization and controls on the formation of gold deposits. Study shows that Se is exceptionally higher in both host rocks and gold orebodies. It may be recovered as a valuable component in ores for total utilization, and in some localities even independent Se orebodies (which are mined exclusively for Se) may be delineated. In gold ore Se mainly occurs as independent minerals or in the isomorphous form in sulphides and there is a positive correlation between Se and Au.展开更多
Natural seedling regeneration and tree establishment are affected by various environmental factors. In this study, we established eight, eight, six, and four independent forest stands (each stand was further divided ...Natural seedling regeneration and tree establishment are affected by various environmental factors. In this study, we established eight, eight, six, and four independent forest stands (each stand was further divided into five subplots) respectively based on the altitudinal gradient, stand density, slope location, and slope aspect to investigate the effects of environmental factors on tree seedling regeneration in a pine-oak mixed forest. The results indicated that the seedling density was significantly higher at altitudes of 1,283 m to 1,665 m, whereas the sapling density did not differ with altitudes. The seedling and sapling density decreased significantly at 1,835 m. The seedling densities on the upper slopes were much higher than those on the middle and lower slopes, whereas the sapling density had no difference. The sapling density decreased southwest (20°-75°) whereas gradually from the it increased on the shady slopes to the northeast (40°). The seedling density increased from southwest (20°) to northeast (40°The seedling and sapling densities increased with the stand density (850 trees ha-1 to 1,525 trees ha-1) whereas the sapling density was significantly lower in stands (1,9oo trees ha-O. Principal components analysis showed that the slope aspect and stand density had more important roles in tree regeneration in this study region compared with the other two factors. Therefore, our findings suggest that it will be beneficial to keep stands at a moderate density on shady slopes. Appropriate thinning of higher density stands is also expected to promote the natural regeneration of pine-oak mixed forest.展开更多
Because of the unique geographical location and important ecological effect of the Qinling Mountains, reconstruction of its vegetation and climate needs comprehensive research. We need to consider a multiple-proxy app...Because of the unique geographical location and important ecological effect of the Qinling Mountains, reconstruction of its vegetation and climate needs comprehensive research. We need to consider a multiple-proxy approach to gain more information on recovering the paleovegetation and climate in the Qinling Mountains. Black carbon (BC) is produced by the incomplete combustion of vegetation and fossil fuels, and is a good proxy, recording paleoenvironmental information. However, in the Qinling Mountains, what are the characteristics of the BC, and whether BC stable carbon isotope (δ^13CBc) can be used as a new proxy to study ancient vegetation, still need further study. In order to establish a sound basis for studying paleoenvironmental by BC proxy in the Qinling Mountains, we carried out systematic and detailed study on modern process of BC on the northern slope of the mountains. We analyzed stable carbon isotopes and carbon concentration of organic carbon (% SOC, δ^13Csoc) and BC (%BC, δ^13CBc), and identified the pollen assemblages from systematically sampled surface soil. The results show that the calculated ratio of C4 plants in the vegetation (%C4) based on the δ13Csoc data reflects a similar distribution of C4 plants in the surface vegetation and the pollen assemblage. The δ^13Cac values have a strong positive correlation with δ13Csoc values, and their difference (△13CSOC-BC) is in the low range. These data indicate that δ^13CBC and δ^13CSOC have very similar characteristics. Surface soil δ13BC values can indicate surface vegetation as effectively as δ^13Csoc values, and the δ^13CBC proxy can be used effectively in paleovegetational research in the northern slope of Qinling Mountains.展开更多
Tree-ring width chronologies of Larix chinensis were developed from the northern and southern slopes of the Qinling Mountains in Shaanxi Province,and climatic factors affecting the tree-ring widths of L.chinensis were...Tree-ring width chronologies of Larix chinensis were developed from the northern and southern slopes of the Qinling Mountains in Shaanxi Province,and climatic factors affecting the tree-ring widths of L.chinensis were examined.Correlation analysis showed that similar correlations between tree-ring width chronologies and climatic factors demonstrated that radial growth responded to climate change on both slopes.The radial growth of L.chinensis was mainly limited by temperature,especially the growing season.In contrast,both chronologies were negatively correlated with precipitation in May of the previous year and April of the current year.Spatial climate-correlation analyses with gridded land-surface climate data revealed that our tree-ring width chronologies contained a strong regional temperature signal over much of northcentral and eastern China.Spatial correlation with seasurface temperature fields highlights the influence of the Pacific Ocean,Indian Ocean,and North Atlantic Ocean.Wavelet coherence analysis indicated the existence of some decadal and interannual cycles in the two tree-ring width chronologies.This may suggest the influences of El Nin˜o-Southern Oscillation and solar activity on tree growth in the Qinling Mountains.These findings will help us understand the growth response of L.chinensis to climate change in the Qinling region,and they provide critical information for future climate reconstructions based on this species in semi-humid regions.展开更多
Coexistence mechanisms for species with similar ecological traits and overlapping geographic distributions are basic questions in ecology and evolutionary biology. Specific habitat requirements often limit distributio...Coexistence mechanisms for species with similar ecological traits and overlapping geographic distributions are basic questions in ecology and evolutionary biology. Specific habitat requirements often limit distribution range as well as facilitate partitioning resource utilization in ecological similar species. Understanding niche segregation and differences in microhabitat utilization can contribute to identifying coexistence mechanisms between parapatric species. Feirana quadranus and F. taihangnica are two closely related frog species with parapatric geographic ranges and an elongated contact zone within the Qinling Mountains, which is an important watershed for East Asia. Here, we analysed the difference in microhabitat utilization between the two frog species and explored the key ecological factors that induced their microhabitat differentiation based on quadrats sampled in the contact zone. Our comparison of twenty environmental variables showed that both species used microhabitats with alkalescent warm water and gentle slope conditions. The principal component analysis indicated that climate-related variables, vegetation conditions, and river width were the important factors for microhabitat utilization of these species. These findings contribute to our understanding on the coexistence mechanisms of these two related and parapatric Asian mountain frog species. This study can also be helpful for identifying target habitats to conduct conservation actions and management strategies effectively in the face of environmental changes.展开更多
Orogenically-derived gold deposits of the Zhongchuan area in the western Qinling are distributed in the exo-contact thermal metamorphic zone. The country rocks hosting the deposits are predominantly of Devonian age wi...Orogenically-derived gold deposits of the Zhongchuan area in the western Qinling are distributed in the exo-contact thermal metamorphic zone. The country rocks hosting the deposits are predominantly of Devonian age with low-grade metamorphism and strong deformation with the ore deposits directly controlled by multi-level tectonic systems. Three types of inclusions from these deposits have been recognized: CO2-H2O, CO2-rich, and aqueous. The ore-forming fluids were mainly CO2-NaCl-H2O type characterized by rich CO2, low salinity, high temperature and immiscibility. Incorporated with earlier isotopic data, the regional geological setting and features of diagenesis and metallogeny, it can be concluded that the ore-forming fluids were derived from deep magma and mixed with meteoric and metamorphic water. The deposits formed during an intra-continent collisional orogeny, and some of the materials derived from the deep might have been involved in the ore-forming process.展开更多
Based on field geological survey, stratigraphic section measurement and indoor comprehensive investigation, the Zanda Basin's tectonic location in the Himalaya Plate was ascertained, and the formation and evolution o...Based on field geological survey, stratigraphic section measurement and indoor comprehensive investigation, the Zanda Basin's tectonic location in the Himalaya Plate was ascertained, and the formation and evolution of the Zanda Basin during the Pliocene to Early Pleistocene was classified as six stages: (a) primary rift-faulting stage, (b) quick rift-faulting Stage, (c) intensive rift-faulting stage, (d) stasis stage, (e) secondary rift-faulting stage, and (f) secondary quick rift-faulting stage. Based on this six-staged formation-evolution theory of the Zanda Basin, the upwelling process of the Western Himalaya Mountains from the Pliocene to Early Pleistocene was classified as the following five stages: (a) slow upwelling stage (5.4-4.4 Ma), (b) mid-velocity upwelling stage (4.4-3.5 Ma), (c) quick upwelling stage (3.5-3.2 Ma), (d) upwelling-ceasing stage (3.2-2.7 Ma), and (e) quick upwelling stage (2.7 Ma). Research has shown that in the duration from the Early Pliocene (4.7 Ma) to the End of Pliocene (2.67 Ma), which lasted 2.03 million years, the Himalaya Mountains had uplifted 1500 m at a velocity of 0.74 mm/a; this belongs to a mid-velocity upwening. During the 1.31 million years in the Early Stage of the Early Pleistocene, the Himalaya Mountains had risen up another 1500 m at a velocity of 1.15 mm/a; this is a rather quick upwelling. All of these data have shown that the upwelling of the Western Himalaya Mountains is along a complicated process with multi-stages, multi-velocities, and non-uniformitarian features.展开更多
基金This study was supported by the Second Tibetan Plateau Scientific Expedition and Research(2019QZKK0101)the China Desert Meteorological Science Research Foundation(Sqj2022012)+3 种基金the Natural Science Basic Research Program of Shaanxi Province(2023-JC-QN-0307)the National Natural Science Foundation of China(42361144712)the Chinese Academy of Sciences(XDB40010300)the State Key Laboratory of Loess and Quaternary Geology,Institute of Earth Environment,CAS(SKLLQG2022).
文摘As one of the regions most affected by global cli-mate warming,the Tianshan mountains has experienced sev-eral ecological crises,including retreating glaciers and water deficits.Climate warming in these mountains is considered mainly to be caused by increases in minimum temperatures and winter temperatures,while the influence of maximum temperatures is unclear.In this study,a 300-year tree-ring chronology developed from the Western Tianshan Moun-tains was used to reconstruct the summer(June-August)maximum temperature(T_(max6-8))variations from 1718 to 2017.The reconstruction explained 53.1% of the variance in the observed T_(max6-8).Over the past 300 years,the T_(max6-8)reconstruction showed clear interannual and decadal vari-abilities.There was a significant warming trend(0.18°C/decade)after the 1950s,which was close to the increasing rates of the minimum and mean temperatures.The increase in maximum temperature was also present over the whole Tianshan mountains and its impact on climate warming has increased.The T_(max6-8) variations in the Western Tianshan mountains were influenced by frequent volcanic eruptions combined with the influence of solar activity and the sum-mer North Atlantic Oscillation.This study reveals that cli-mate warming is significantly influenced by the increase in maximum temperatures and clarifies possible driving mech-anisms of temperature variations in the Western Tianshan mountains which should aid climate predictions.
基金supported by the Second Tibetan Plateau Scientific Expedition and Research(2019QZKK0101)the China Desert Meteorological Science Research Foundation(Sqj2022012)+3 种基金the Natural Science Basic Research Program of Shaanxi Province(2023-JC-QN-0307)the National Natural Science Foundation of China(42361144712)the Chinese Academy of Sciences(XDB40010300)the State Key Laboratory of Loess and Quaternary Geology,Institute of Earth Environment,CAS(SKLLQG2022).
文摘As one of the regions most affected by global cli-mate warming,the Tianshan mountains has experienced sev-eral ecological crises,including retreating glaciers and water deficits.Climate warming in these mountains is considered mainly to be caused by increases in minimum temperatures and winter temperatures,while the influence of maximum temperatures is unclear.In this study,a 300-year tree-ring chronology developed from the Western Tianshan Moun-tains was used to reconstruct the summer(June–August)maximum temperature(T_(max6–8))variations from 1718 to 2017.The reconstruction explained 53.1%of the variance in the observed Tmax6–8.Over the past 300 years,the T_(max6–8)Project funding:This study was supported by the Second Tibetan Plateau Scientific Expedition and Research(2019QZKK0101);the China Desert Meteorological Science Research Foundation(Sqj2022012);the Natural Science Basic Research Program of Shaanxi Province(2023-JC-QN-0307);the National Natural Science Foundation of China(42361144712);the Chinese Academy of Sciences(XDB40010300);and the State Key Laboratory of Loess and Quaternary Geology,Institute of Earth Environment,CAS(SKLLQG2022).reconstruction showed clear interannual and decadal vari-abilities.There was a significant warming trend(0.18°C/decade)after the 1950s,which was close to the increasing rates of the minimum and mean temperatures.The increase in maximum temperature was also present over the whole Tianshan mountains and its impact on climate warming has increased.The Tmax6-8 variations in the Western Tianshan mountains were influenced by frequent volcanic eruptions combined with the influence of solar activity and the sum-mer North Atlantic Oscillation.This study reveals that cli-mate warming is significantly influenced by the increase in maximum temperatures and clarifies possible driving mech-anisms of temperature variations in the Western Tianshan mountains which should aid climate predictions.
基金the National Science Foundation of China(52478289)National Key Research and Development Program of China(2020YFC1909900)Scientific Research Project of China Academy of Railway Sciences Group Co.,Ltd(2023YJ184).
文摘Purpose–This study aims to analyze the impact mechanism of typical environments in China’s western mountainous areas on the durability of railway concrete and propose measures to improve durability.Design/methodology/approach–With the continuous promotion of infrastructure construction,the focus of China’s railway construction has gradually shifted to the western region.The four typical environments of large temperature differences,strong winds and dryness,high cold and low air pressure unique to the western mountainous areas of China have adverse effects on the durability of typical railway structure concrete(bridges,ballastless tracks and tunnels).This study identified the characteristics of four typical environments in the western mountainous areas of China through on-site research.The impact mechanism of the four typical environments on the durability of concrete in different structural parts of railways has been explored through theoretical analysis and experimental research;Finally,a strategy for improving the durability of railway concrete suitable for the western mountainous areas of China was proposed.Findings–The daily temperature difference in the western mountainous areas of China is more than twice that of the plain region,which will lead to significant temperature deformation and stress in the multi-layered structure of railway ballastless tracks.It will result in cracking.The wind speed in the western plateau region is about 2.5 to 3 times that of the plain region,and the average annual rainfall is only 1/5 of that in the plain region.The drying effect on the surface of casting concrete will significantly accelerate its cracking process,leading to serious durability problems.The environmental temperature in the western mountainous areas of China is generally low,and there are more freeze-thaw cycles,which will increase the risk of freeze-thaw damage to railway concrete.The environmental air pressure in the western plateau region is only 60%of that in the plain region.The moisture inside the concrete is more likely to diffuse into the surrounding environment under the pressure difference,resulting in greater water loss and shrinkage deformation of the concrete in the plateau region.The above four issues will collectively lead to the rapid deterioration of concrete durability in the western plateau region.The corresponding durability improvement suggestions from theoretical research,new technology development and standard system was proposed in this paper.Originality/value–The research can provide the mechanism of durability degradation of railway concrete in the western mountainous areas of China and corresponding improvement strategies.
基金Supported by the National Key R&D Plan(2018YFC1506500)Open Research Fund Project of Key Laboratory of Ecological Environment Meteorology of Qinling Mountains and Loess Plateau of Shaanxi Provincial Meteorological Bureau(2020Y-13)+1 种基金Open Research Fund of Shangluo Key Laboratory of Climate Adaptable City(SLSYS2022007)Shangluo Demonstration Project of Qinling Ecological Monitoring Service System(2020-611002-74-01-006200)。
文摘The study of land surface temperature(LST)is of great significance for ecosystem monitoring and ecological environmental protection in the Qinling Mountains of China.In view of the contradicting spatial and temporal resolutions in extracting LST from satellite remote sensing(RS)data,the areas with complex landforms of the Eastern Qinling Mountains were selected as the research targets to establish the correlation between the normalized difference vegetation index(NDVI)and LST.Detailed information on the surface features and temporal changes in the land surface was provided by Sentinel-2 and Sentinel-3,respectively.Based on the statistically downscaling method,the spatial scale could be decreased from 1000 m to 10 m,and LST with a Sentinel-3 temporal resolution and a 10 m spatial resolution could be retrieved.Comparing the 1 km resolution Sentinel-3 LST with the downscaling results,the 10 m LST downscaling data could accurately reflect the spatial distribution of the thermal characteristics of the original LST image.Moreover,the surface temperature data with a 10 m high spatial resolution had clear texture and obvious geomorphic features that could depict the detailed information of the ground features.The results showed that the average error was 5 K on April 16,2019 and 2.6 K on July 15,2019.The smaller error values indicated the higher vegetation coverage of summer downscaling result with the highest level on July 15.
基金supported by the National Natural Science Foundation of China (32070457, 32200396, 32000317)Strategic Priority Research Program of the Chinese Academy of Sciences(XDB31020302)+3 种基金Biodiversity Survey and Assessment Project(2019HJ2096001006)Key Cultivation Research Project of Shaanxi Academy of Sciences (2022k-05,2021kp-7,2020k-1,2020K-20)Forestry Reform and Development Foundation of Shaanxi Forestry Bureau (2021)American Society of Primatologists Wild “Saving Primates Where They Live” Partnership Award。
文摘DEAR EDITOR,Combining location data, species distribution modeling(Max Ent), and major conservation events, we analyzed historical distribution changes in golden snub-nosed monkeys(Rhinopithecus roxellana) in the Qinling Mountains of China.
文摘The winter diet and morphological structure of the gastrointestinal tract of the Golden Pheasant(Chrysolophus pictus) was investigated in the Qinling Mountains,Shaanxi Province in 2002/2003.Individual food items in crops were identified by species,where possible,using standard taxonomic methods.The Golden Pheasant consumes exclusively vegetarian foods in the winter,of at least 14 plant species,such as crops and other vegetable species.The digestive tract of the Golden Pheasant is composed of an oesophagus,a stomach,a relatively long intestine measuring 3.4 × standard body length,two fully-developed caeca and a relatively short colon,typical for herbivorous birds.Pebbles of different sizes(0.5-3 mm in diameter) were very frequent in the gizzard.The average dry weight of the pebbles was 10.4±2.5 g and was positively correlated with the weight of digesta in the gizzard(Pearson r = 0.747,p < 0.01,n = 37).The mucosa surface pH of the digestive tract of the Golden Pheasant was slightly acidic,but higher in the crop and gizzard.
基金the National NaturalScience Foundation of China(Grant No.140032010-C,49972063)the National Key Basic Research andDevelopment Project of China(Grant No.G1999075508)+3 种基金the Ministry of Education's Teacher Fund(No.40133020)the Natural Science Foundation of Shaanxi Province(2002D03)the Special Foundation of the Department ofEducation of Shaanxi Province(01JK108) the ScienceFoundation of Northwest University.
文摘The Shicaogou granite has been identified as a magnesian (Fe-number=0.71-0.76), calcic to calc-alkalic (MALI=3.84-5.76) and peraluminous (ASI=1.06-1.13) granite of the syn-collisional S-type, with high SiO2(>71%), A12O3 (>13%) and Na2O+K2O (6.28%-7.33%, equal for NaO2 and K2O). Trace element and REE analyses show that the granite is rich in LILE such as of Rb, Sr, Ba and Th, and poor in HFSE like Yb, Y, Zr and Hf. Its Rb/Sr ratio is greater than 1; the contents of Nb and Ta, and the ratio of Nb/Ta as well as the REE geochemical features (e.g. REE abundance, visible fractionation of LREE and HREE and medium to pronounced negative Eu anomalies) are all similar to those of crust-origin, continent-continent syn-collisional granite. Moreover, the granite exhibits almost the same pattern as that of the typical continent-continent syn-collisional granite on the spider diagram and all samples fall within the syn-collisional granite field.The cathodoluminescence (CL) investigations have revealed that the zircon from the Shicaogou granite represents a typical magmatic product characterized by its colorless, transparent and euhedral crystals, and distinct zoning of oscillatory bands. Residual cores of irregular zircon can be found in a few enhedral grains. Trace element studies of the zircon grains, with high contents of P, Y, Hf, Th, U and REE and high ratios of Th/U, obviously positive Ce anomalies and HREE enrichment compared to LREE, also result in the same conclusion.The LA-ICP-MS U-Pb isotopic data from 24 spots of 21 zircon grains demonstrate that 20 spots in the oscillatory zone yield an average weighted 206Pb/238U age of 925±11 Ma, indicating that the Shicaogou granite was formed in the Neoproterozoic. Combined with other Neoproterozoic syn-collisional granites found in the study area, the present geochronological determination can further reveal that collision-amalgamation events could have occurred among some continental blocks in the Qinling orogenic belt during the Neoproterozoic. This in turn provides an accurate chronological constraint on the Neoproterozoic break-up and convergence in the belt.
文摘Silurian, Devonian and Carboniferous geological bodies in the Mianxian-Lueyang (Mian-Lue) collisional belt (MLB) and its neighbouring areas, southern Qinling Mountains, China, show similar characteristics of having undergone deformation of two stages. The earlier one, which is inferred to be related to collisional orogeny between the Yangtze and Sino-Korean palaeocontinents based on previous geological data, is responsible for large-scale, north-verging recumbent folds and overthrusts, and associated with low greenschist fades metamorphism. 40Ar/39Ar dating of three muscovite samples taken from different localities yields plateau ages of 226.9±0.9 and 219.5±1.4 Ma and an apparent age of 194.5±3.0 Ma. Thus, the late Triassic collision between the Yangtze and Sino-Korean palaeocontinents has been constrained.
基金supported by Project 2012CB416803 of the State Key Fundamental Programthe National Scientific and Technological Supporting Key Projects (#2011BAB06B02)Geological Survey Project No. 1212011085060
文摘The Beizhan large iron deposit located in the east part of the Awulale metallogenic belt in the western Tianshan Mountains is hosted in the Unit 2 of the Dahalajunshan Formation as lens, veinlets and stratoid, and both of the hanging wall and footwall are quartz-monzonite; the dip is to the north with thick and high-grade ore bodies downwards. Ore minerals are mainly magnetite with minor sulfides, such as pyrite, pyrrhotite, chalcopyrite and sphalerite. Skarnization is widespread around the ore bodies, and garnet, diopside, wollastonite, actinolite, epidote, uralite, tourmaline sericite and calcite are ubiquitous as gangues. Radiating outwards from the center of the ore body the deposit can be classified into skarn, calcite, serpentinite and marble zones. LA-ICP-MS zircon U-Pb dating of the rhyolite and dacite from the Dahalajunshan Formation indicates that they were formed at 301.3±0.8 Ma and 303.7±0.9 Ma, respectively, which might have been related to the continental arc magmatism during the late stage of subduction in the western Tianshan Mountains. Iron formation is genetically related with volcanic eruption during this interval. The Dahalajunshan Formation and the quartz-monzonite intrusion jointly control the distribution of ore bodies. Both ore textures and wall rock alteration indicate that the Beizhan iron deposit is probably skarn type.
基金Project supported by the National Basic Research Program of China (No. 2006CB400505)the National Natural Science Foundation of China (No. 40171007).
文摘A GIS-based method was used to assess land suitability in the Qinling Mountains, Shaanxi Province of China through simultaneous consideration of physical features and current land use. Through interpretation of Landsat TM images and extensive field visits the area was modeled into 40 land types in five altitudinal zones (valleys and gullies, hillsides and terraces, foothills, mid-mountain, and sub-alpine mountain). Then, a suitability score was assigned to five physical factors (climate, hydrology, topography, soil, and vegetation). Next, their integrated overall suitability value scores were compared with the observed land cover to determine whether it should be reallocated a new use. Results showed that the five suitability classes of agriculture, forest, grassland, farmland-woodland, and scrub-pasture had altitudinal stratification and a total of 1151 km2 (8.89%) of lands on the northern slopes of the Qinling Mountains had to be reallocated. To achieve this reallocation, 657 km2 of arable land should be reduced, and forest, grassland and scrub-pasture increased by 615 km2, 131 km2 and 405 km2, respectively. Implementation of these recommended land reallocations should help achieve suitable use of land resources and prevent land degradation.
基金supported by the"973"project (2006CB403500),NSFC(Nos.40502012,40730421 and 40425006)the 111 Project(No.B07011).
文摘The Tongbai-East Qinling Mountains, an important part of the Central orogenic belt, is one of the most important metallogenic belts in China and contains lots of orogenic-type and VMS-type (Volcanogenic Massive Sulfide type) metallogenic systems. The Dahe and Shuidongling VMS-type Cu-Zn deposits, located in the Erlangping Group in Tongbai and East Qinling Mountains, respectively, show similar geological and geochemical features. The Huoshenmiao Formation in the East Qinling region and the Liushanyan Formation in the Tongbai region are spilite-keratophyre sequences occurring in the western and eastern sides of the Nanyang Basin, respectively, and are interpreted to be equivalent to each other. The orogenic-type Au-Ag deposits can be subdivided into two styles; namely, fault- or structure-controlled (e.g. Yindonggou) and stratabound (e.g. Poshan). The Poshan and Yindongpo orogenic-type Au-Ag deposits, whose ore bodies are strictly hosted in carbonaceous strata in the Tongbai Mountains, show obvious stratabound characteristics. Their ore-fluids are enriched in K^+ and SO^2-4 and are regarded as K^+-SO^2-4 types. The Pb-isotope ratios of sulfides of the ores are extremely uniform and significantly different from those of the tectonostratigraphic terranes of the Qinling orogens except for the ore-hosting strata of the Waitoushan Formation. The Yindonggou and Xuyaogou orogenic Au-Ag deposits in the East Qinling Mountains, whose ore bodies are hosted in the faults cutting the hosting strata or granite body, show fault-controlled characteristics. Their ore-fluids belong to the Na^+-Cl^- type. The Pb-isotope ratios of sulfides of ores are similar to those of the northern Qinling orogenic belt. The Waitoushan Formation, dominated by carbonaceous sericite-rich schists and only occurring in Tongbai region, should be detached from the Erlangping Group, which occurs both in the western and eastern sides of the Nanyang Basin. Future ore exploration in the Tongbai-East Qinling Mountains should focus on fault-controlled Au-Ag lodes.
文摘The superlarge Baguamiao, large Liba and Xiaogouli gold deposits represent three typical gold deposits different from the Carlin type in the western Qinling Orogenic Belt. Based on Ar-Ar dating of quartz from ores, U-Pb dating of single zircon from granite, tracing of H and O isotopes and studies on the mineralogy and texture of spots and bleached alteration developed in wall rocks, this paper focuses the relations between gold deposits and granite to clarify the origin of gold deposits and the metallogenesis in the tectonic evolution of the Qinling Orogenic Belt. The comprehensive studies show that the age of the granite (148.1-244 Ma) is identical with that of the gold deposits (131.91-232.56 Ma). It is suggested that the granite has close temporal, spatial and genetic relationship with the gold deposits. The granite provides a heat source, water source and considerable amount of ore-forming material. Finally, it is concluded that the orogeny by collision, emplacement of the granite and positioning of the gold deposits represent a successive process. Both the granite and gold deposits resulted from the syn-orogeny and post-orogeny tectonic evolution.
基金the Chinese Nationa1Natural Science Foun dation (Grant 40072077) the Tarim Oil Field Company,Petro China(Grant2098050230).
文摘The Aiketik Group, distributed at the western end of the South TianshanMountains, China, is an important lithostratigraphic unit involved in the South Tianshan orogen. Itis separated from the adjacent rocks by faults. Generally, the geologists ascribed it to the UpperCarboniferous according to Pseudostaffella sp., Profusulinella sp. and Fusulinella sp. found fromthe limestone and sandy limestone of Aiketik. Our radiolarian fossils were obtained from the chertsamples collected from the Haladaok section located at the upper Tuoshihan River. The fossils mainlyinclude Albaillella undulata Deflandre, Albaillella paradoxa Deflandre, Albaillella sp. aff. A.paradoxa Deflandre, Albaillella sp. cf. A. deflandrei Gourmelon, Albaillella sp., Albaillellaexcelsa Ishiga, Kito and Imoto (?), Belowea variabilis (Ormiston et Lane), Callella cf. C.parvispinosa Won, Entactinia cf. E. tortispina Ormiston et Lane, Entactinia aff. E. tortispinaOrmiston et Lane, Entactinia variospina Won, Entactinia sp., Eostylodictya rota (Won),Latentifistula impella (Ormistone et Lane) (?), Latentifistula turgita Omiston et Lane,Latentifistulidae gen. et. sp. indet. and Polyentactinia cf. aranea Gourmelon. Among them,Albaillella excelsa Ishiga, Kito and Imoto (?) is a Late Permian species with some elementsuncertain as there is only one poorly-preserved fossil of this species found so far. And tworadiolarian assemblages can be identified from the other fossils. One is the early EarlyCarboniferous assemblage represented by Albaillella undulata Deflandre, Albaillella paradoxa andAlbaillella sp. cf. A. deflandrei Gourmelon. And the other is the late Early Carboniferousassemblage represented by Eostylodictya rota (Won). This is the first discovery of radiolarianfossils in the Aiketik Group, also the first discovery of Late Permian radiolarian fossils in theSouth Tianshan Mountains. Meanwhile, this is the current westernmost sampling site of radiolarianfossils in the South Tianshan Mountains.
基金This study was supported by the National Natural Science Foundation of China (Grant Nos. 49503048 and 49773197), a Sino-Austrian cooperation project (No. 4880099) and the Postdoctoral Science Foundation of China
文摘Stratabound gold deposits in the western Qinling Mountains occur in Cambrian chert formation composed of carbonaceous chert and carbonaceous slate. The distinctive chert formation provides important grounds for the mineralization and controls on the formation of gold deposits. Study shows that Se is exceptionally higher in both host rocks and gold orebodies. It may be recovered as a valuable component in ores for total utilization, and in some localities even independent Se orebodies (which are mined exclusively for Se) may be delineated. In gold ore Se mainly occurs as independent minerals or in the isomorphous form in sulphides and there is a positive correlation between Se and Au.
基金funded by the Special Research Program for Public-Welfare Forestry of State Forestry Administration of China (Grant No. 20100400206)National Natural Science Funds of China (Grant No. 31070570)CFERN & GENE Award Funds on Ecological Paper
文摘Natural seedling regeneration and tree establishment are affected by various environmental factors. In this study, we established eight, eight, six, and four independent forest stands (each stand was further divided into five subplots) respectively based on the altitudinal gradient, stand density, slope location, and slope aspect to investigate the effects of environmental factors on tree seedling regeneration in a pine-oak mixed forest. The results indicated that the seedling density was significantly higher at altitudes of 1,283 m to 1,665 m, whereas the sapling density did not differ with altitudes. The seedling and sapling density decreased significantly at 1,835 m. The seedling densities on the upper slopes were much higher than those on the middle and lower slopes, whereas the sapling density had no difference. The sapling density decreased southwest (20°-75°) whereas gradually from the it increased on the shady slopes to the northeast (40°). The seedling density increased from southwest (20°) to northeast (40°The seedling and sapling densities increased with the stand density (850 trees ha-1 to 1,525 trees ha-1) whereas the sapling density was significantly lower in stands (1,9oo trees ha-O. Principal components analysis showed that the slope aspect and stand density had more important roles in tree regeneration in this study region compared with the other two factors. Therefore, our findings suggest that it will be beneficial to keep stands at a moderate density on shady slopes. Appropriate thinning of higher density stands is also expected to promote the natural regeneration of pine-oak mixed forest.
基金supported by the National Natural Science Foundation of China(41102106)
文摘Because of the unique geographical location and important ecological effect of the Qinling Mountains, reconstruction of its vegetation and climate needs comprehensive research. We need to consider a multiple-proxy approach to gain more information on recovering the paleovegetation and climate in the Qinling Mountains. Black carbon (BC) is produced by the incomplete combustion of vegetation and fossil fuels, and is a good proxy, recording paleoenvironmental information. However, in the Qinling Mountains, what are the characteristics of the BC, and whether BC stable carbon isotope (δ^13CBc) can be used as a new proxy to study ancient vegetation, still need further study. In order to establish a sound basis for studying paleoenvironmental by BC proxy in the Qinling Mountains, we carried out systematic and detailed study on modern process of BC on the northern slope of the mountains. We analyzed stable carbon isotopes and carbon concentration of organic carbon (% SOC, δ^13Csoc) and BC (%BC, δ^13CBc), and identified the pollen assemblages from systematically sampled surface soil. The results show that the calculated ratio of C4 plants in the vegetation (%C4) based on the δ13Csoc data reflects a similar distribution of C4 plants in the surface vegetation and the pollen assemblage. The δ^13Cac values have a strong positive correlation with δ13Csoc values, and their difference (△13CSOC-BC) is in the low range. These data indicate that δ^13CBC and δ^13CSOC have very similar characteristics. Surface soil δ13BC values can indicate surface vegetation as effectively as δ^13Csoc values, and the δ^13CBC proxy can be used effectively in paleovegetational research in the northern slope of Qinling Mountains.
基金funded by National Natural Science Foundation of China(No.31370587)
文摘Tree-ring width chronologies of Larix chinensis were developed from the northern and southern slopes of the Qinling Mountains in Shaanxi Province,and climatic factors affecting the tree-ring widths of L.chinensis were examined.Correlation analysis showed that similar correlations between tree-ring width chronologies and climatic factors demonstrated that radial growth responded to climate change on both slopes.The radial growth of L.chinensis was mainly limited by temperature,especially the growing season.In contrast,both chronologies were negatively correlated with precipitation in May of the previous year and April of the current year.Spatial climate-correlation analyses with gridded land-surface climate data revealed that our tree-ring width chronologies contained a strong regional temperature signal over much of northcentral and eastern China.Spatial correlation with seasurface temperature fields highlights the influence of the Pacific Ocean,Indian Ocean,and North Atlantic Ocean.Wavelet coherence analysis indicated the existence of some decadal and interannual cycles in the two tree-ring width chronologies.This may suggest the influences of El Nin˜o-Southern Oscillation and solar activity on tree growth in the Qinling Mountains.These findings will help us understand the growth response of L.chinensis to climate change in the Qinling region,and they provide critical information for future climate reconstructions based on this species in semi-humid regions.
基金supported by National Natural Science Foundation of China (31572290, 31770568, and 31770427)Youth Innovation Promotion Association CAS (2015304)+2 种基金National Key Research and Development Plan (2016YFC0503303)China Scholarship Council (No. 201706775008)the project from Qinghai Provincial Communication Department (31118022)
文摘Coexistence mechanisms for species with similar ecological traits and overlapping geographic distributions are basic questions in ecology and evolutionary biology. Specific habitat requirements often limit distribution range as well as facilitate partitioning resource utilization in ecological similar species. Understanding niche segregation and differences in microhabitat utilization can contribute to identifying coexistence mechanisms between parapatric species. Feirana quadranus and F. taihangnica are two closely related frog species with parapatric geographic ranges and an elongated contact zone within the Qinling Mountains, which is an important watershed for East Asia. Here, we analysed the difference in microhabitat utilization between the two frog species and explored the key ecological factors that induced their microhabitat differentiation based on quadrats sampled in the contact zone. Our comparison of twenty environmental variables showed that both species used microhabitats with alkalescent warm water and gentle slope conditions. The principal component analysis indicated that climate-related variables, vegetation conditions, and river width were the important factors for microhabitat utilization of these species. These findings contribute to our understanding on the coexistence mechanisms of these two related and parapatric Asian mountain frog species. This study can also be helpful for identifying target habitats to conduct conservation actions and management strategies effectively in the face of environmental changes.
文摘Orogenically-derived gold deposits of the Zhongchuan area in the western Qinling are distributed in the exo-contact thermal metamorphic zone. The country rocks hosting the deposits are predominantly of Devonian age with low-grade metamorphism and strong deformation with the ore deposits directly controlled by multi-level tectonic systems. Three types of inclusions from these deposits have been recognized: CO2-H2O, CO2-rich, and aqueous. The ore-forming fluids were mainly CO2-NaCl-H2O type characterized by rich CO2, low salinity, high temperature and immiscibility. Incorporated with earlier isotopic data, the regional geological setting and features of diagenesis and metallogeny, it can be concluded that the ore-forming fluids were derived from deep magma and mixed with meteoric and metamorphic water. The deposits formed during an intra-continent collisional orogeny, and some of the materials derived from the deep might have been involved in the ore-forming process.
基金supported by the National Natural Science Foundation Project(Grant No.40572134)the China Geological Survey Projects"The Key Tertiary Ancient Lakes Environmental Evolution Series of China's Qinghai-Tibet Plateau"(Grant No.Science[2005]005-02+2 种基金1212010511902)"The Study of Neotectonics and Late Cenozoic Gigantic Ancient Lakes of China's Qinghai-Tibet Plateau"(Grant No.Basic[2008]Tibet 21-18Grant No. 1212010610108)
文摘Based on field geological survey, stratigraphic section measurement and indoor comprehensive investigation, the Zanda Basin's tectonic location in the Himalaya Plate was ascertained, and the formation and evolution of the Zanda Basin during the Pliocene to Early Pleistocene was classified as six stages: (a) primary rift-faulting stage, (b) quick rift-faulting Stage, (c) intensive rift-faulting stage, (d) stasis stage, (e) secondary rift-faulting stage, and (f) secondary quick rift-faulting stage. Based on this six-staged formation-evolution theory of the Zanda Basin, the upwelling process of the Western Himalaya Mountains from the Pliocene to Early Pleistocene was classified as the following five stages: (a) slow upwelling stage (5.4-4.4 Ma), (b) mid-velocity upwelling stage (4.4-3.5 Ma), (c) quick upwelling stage (3.5-3.2 Ma), (d) upwelling-ceasing stage (3.2-2.7 Ma), and (e) quick upwelling stage (2.7 Ma). Research has shown that in the duration from the Early Pliocene (4.7 Ma) to the End of Pliocene (2.67 Ma), which lasted 2.03 million years, the Himalaya Mountains had uplifted 1500 m at a velocity of 0.74 mm/a; this belongs to a mid-velocity upwening. During the 1.31 million years in the Early Stage of the Early Pleistocene, the Himalaya Mountains had risen up another 1500 m at a velocity of 1.15 mm/a; this is a rather quick upwelling. All of these data have shown that the upwelling of the Western Himalaya Mountains is along a complicated process with multi-stages, multi-velocities, and non-uniformitarian features.