Three recent breakthroughs due to AI in arts and science serve as motivation:An award winning digital image,protein folding,fast matrix multiplication.Many recent developments in artificial neural networks,particularl...Three recent breakthroughs due to AI in arts and science serve as motivation:An award winning digital image,protein folding,fast matrix multiplication.Many recent developments in artificial neural networks,particularly deep learning(DL),applied and relevant to computational mechanics(solid,fluids,finite-element technology)are reviewed in detail.Both hybrid and pure machine learning(ML)methods are discussed.Hybrid methods combine traditional PDE discretizations with ML methods either(1)to help model complex nonlinear constitutive relations,(2)to nonlinearly reduce the model order for efficient simulation(turbulence),or(3)to accelerate the simulation by predicting certain components in the traditional integration methods.Here,methods(1)and(2)relied on Long-Short-Term Memory(LSTM)architecture,with method(3)relying on convolutional neural networks.Pure ML methods to solve(nonlinear)PDEs are represented by Physics-Informed Neural network(PINN)methods,which could be combined with attention mechanism to address discontinuous solutions.Both LSTM and attention architectures,together with modern and generalized classic optimizers to include stochasticity for DL networks,are extensively reviewed.Kernel machines,including Gaussian processes,are provided to sufficient depth for more advanced works such as shallow networks with infinite width.Not only addressing experts,readers are assumed familiar with computational mechanics,but not with DL,whose concepts and applications are built up from the basics,aiming at bringing first-time learners quickly to the forefront of research.History and limitations of AI are recounted and discussed,with particular attention at pointing out misstatements or misconceptions of the classics,even in well-known references.Positioning and pointing control of a large-deformable beam is given as an example.展开更多
This work presents a new application for the Hierarchical Function Expansion Method for the solution of the Navier-Stokes equations for compressible fluids in two dimensions and in high velocity. This method is based ...This work presents a new application for the Hierarchical Function Expansion Method for the solution of the Navier-Stokes equations for compressible fluids in two dimensions and in high velocity. This method is based on the finite elements method using the Petrov-Galerkin formulation, know as SUPG (Streamline Upwind Petrov-Galerkin), applied with the expansion of the variables into hierarchical functions. To test and validate the numerical method proposed as well as the computational program developed simulations are performed for some cases whose theoretical solutions are known. These cases are the following: continuity test, stability and convergence test, temperature step problem, and several oblique shocks. The objective of the last cases is basically to verify the capture of the shock wave by the method developed. The results obtained in the simulations with the proposed method were good both qualitatively and quantitatively when compared with the theoretical solutions. This allows concluding that the objectives of this work are reached.展开更多
This paper presents and proves the mixed compatible finite element variationalprinciples in dynamics of viscous barotropic fluids. When the principles are proved, itis found that the compatibility conditions of stress...This paper presents and proves the mixed compatible finite element variationalprinciples in dynamics of viscous barotropic fluids. When the principles are proved, itis found that the compatibility conditions of stress can be naturally satisfied. The gene-rallzed variational principles with mixed hybrid incompatible finite elements are alsopresented and proved, and they can reduce the computation of incompatible elements indynamics of viscous barotropic flows.展开更多
Viscous damping is a dominant source of energy dissipation in laterally oscillating micro-structures. In microresonators in which the characteristic dimensions are comparable to the dimensions of the fluid molecules, ...Viscous damping is a dominant source of energy dissipation in laterally oscillating micro-structures. In microresonators in which the characteristic dimensions are comparable to the dimensions of the fluid molecules, the assumption of the continuum fluid theory is no longer justified and the use of micro-polar fluid theory is indispensable. In this paper a mathematical model was presented in order to predict the viscous fluid damping in a laterally oscillating finger of a micro-resonator considering micro-polar fluid theory. The coupled governing partial differential equations of motion for the vibration of the finger and the micro-polar fluid field have been derived. Considering spin and no-spin boundary conditions, the related shape functions for the fluid field were presented. The obtained governing differential equations with time varying boundary conditions have been transformed to an enhanced form with homogenous boundary conditions and have been discretized using a Galerkin-based reduced order model. The effects of physical properties of the micro-polar fluid and geometrical parameters of the oscillating structure on the damping ratio of the system have been investigated.展开更多
To deal with the effect of compressible fluids on the supercavitating flow over the subsonic disk cavitator of a projectile, a finite volume method is formulated based on the ideal compressible potential theory. By us...To deal with the effect of compressible fluids on the supercavitating flow over the subsonic disk cavitator of a projectile, a finite volume method is formulated based on the ideal compressible potential theory. By using the continuity equation and Tait state equation as well as Riabouchinsky closure model, an“inverse problem”solution is presented for the supercavitating flow. According to the impenetrable condition on the surface of supercavity, a new iterative method for the supercavity shape is designed to deal with the effect of compressibility on the supercavity shape, pressure drag coefficient and density field. By this method, the very low cavitation number can be computed. The calculated results agree well with the experimental data and empirical formula. At the subsonic condition, the fluid compressibility will make supercavity length and radius increase. The supercavity expands, but remains spheroid. The effect on the first 1/3 part of supercavity is not obvious. The drag coefficient of projectile increases as the cavitation number or Mach number increases. With Mach number increasing, the compressibility is more and more significant. The compressibility must be considered as far as the accurate calculation of supercavitating flow is concerned.展开更多
By combing the characteristics of drilling in Antarctic region, performance requirements on drilling fluid for Antarctic low temperature conditions, and research progress of low temperature drilling fluid, current pro...By combing the characteristics of drilling in Antarctic region, performance requirements on drilling fluid for Antarctic low temperature conditions, and research progress of low temperature drilling fluid, current problems of the drilling fluid have been sorted out, and the development direction of the drilling fluid has been pointed out. Drilling in the Antarctic region mainly includes drilling in snow, ice and subglacial rock formations, and drilling in Antarctic low temperature conditions will face problems in four aspects:(1) low temperature and large temperature changes in the drilling area;(2) likely well leakage and drillstring-sticking in the snow layer, creep in the ice layer, ice chip gathering jamming in the warm ice layer, well wall collapse in the subglacial rock formations;(3) lack of infrastructure and difficulty in logistical support;(4) fragile environment and low carrying capacity. After years of development, progresses have been made on low-temperature drilling fluids for the Antarctic region. Low-temperature petroleum-based drilling fluid, ethanol/ethylene glycol-based drilling fluid, ester-based drilling fluid and silicone oil-based drilling fluid have been developed. However, these drilling fluids have problems such as insufficient low-temperature tolerance, low environmental performance and weak wellbore stability, etc. In order to meet the performance requirements of drilling fluid under low-temperature conditions in Antarctic region, the working mechanisms of low-temperature drilling fluid must be examined in depth;environment-friendly low-temperature base fluid of drilling fluid and related additives must be developed to prepare environmentally friendly low temperature drilling fluid systems;multi-functional integrated adjustment method for drilling fluid must be worked out to ensure well wall stability and improve cutting-carry capacity when drilling ice formations and ice-rock interlayers;and on-site support operation codes must be established to provide technical support for Antarctic drilling.展开更多
A new fluid bag buffer mechanism,which can provide large axial stiffness under the small displacement,is designed.The dynamic change laws of the mechanism stiffness and the internal pressure of the fluid bag are studi...A new fluid bag buffer mechanism,which can provide large axial stiffness under the small displacement,is designed.The dynamic change laws of the mechanism stiffness and the internal pressure of the fluid bag are studied when it is subjected to impact load.According to the protection performance for the flexible joint and the pressure change in the fluid bag during the impact process,the sensitivity of the geometric parameters of the fluid bag to the axial stiffness is analyzed by using the orthogonal experimental method,and the optimal parameter combination of the geometric parameters of the fluid bag under impact is obtained,leading to the displacement of the inner shell reduce by 41.4%.The results show that the internal pressure of the fluid bag is a rising process of oscillation and fluctuation.The sensitivity of the geometric parameters of the fluid bag to the displacement of the inner shell from high to low is as follows:Height H,radius r,wall thickness t,chamfer A.The correlation between the geometric parameters of the fluid bag and its internal pressure is:H is negatively correlated with the internal pressure,while the r,t,and A are positively correlated with the internal pressure.展开更多
In this paper, the internal fluid motion of a jet system is described by the Navier Stokes mechanics equations. For the simulation of the motion, the penalty function finite element method is used, and the velocity ve...In this paper, the internal fluid motion of a jet system is described by the Navier Stokes mechanics equations. For the simulation of the motion, the penalty function finite element method is used, and the velocity vectors and stream function curves are obtained. Using the Prandtl theory, this paper derives the free jet velocity and the jet bunch width in a half-space, the latter of which is amended by experiment. The results obtained in this paper are applied to micro-type high pressure water jet cleaner and the ejector of rocket engine.展开更多
Applications, theoretical analysis and numerical methods are introduced for the simulation of mechanical models and principles of the porous flow in high temperature, high salt, complicated geology and large-scale res...Applications, theoretical analysis and numerical methods are introduced for the simulation of mechanical models and principles of the porous flow in high temperature, high salt, complicated geology and large-scale reservoirs in this paper. Considering petroleum geology, geochemistry, computational permeation fluid mechanics and computer technology, we state the models of permeation fluid mechanics and put forward a sequence of implicit upwind difference iteration schemes based on refined fractional steps of the upstream, which can compute the pressures, the saturation and the concentrations of different chemistry components. A type of software applicable in major industries has been completed and carried out in numerical analysis and simulations of oil extraction in Shengli Oil-field, which brings huge economic benefits and social benefits. This software gives many characters: spatial steps are taken as ten meters, the number of nodes is up to hundreds of thousands and simulation time period can be tens of years and the high-order accuracy can be promised in numerical data. Precise analysis is present for simplified models of this type and that provides a tool to solve the international famous problem.展开更多
Cavitation generation methods have been used in multifarious directions because of their diversity,and numerous studies and discussions have been conducted on cavitation generation methods.This study aims to explore t...Cavitation generation methods have been used in multifarious directions because of their diversity,and numerous studies and discussions have been conducted on cavitation generation methods.This study aims to explore the generating mechanism and evolution law of volume alternate cavitation(VAC).In the VAC,liquid water is placed in an airtight container with a variable volume.As the volume alternately changes,the liquid water inside the container continues to cavitate.Then,the mixture turbulence model and in-cylinder dynamic grid model are adopted to conduct computational fluid dynamics simulation of volume alternate cavitation.In the simulation,the cloud images at seven heights on the central axis are monitored,and the phenomenon and mechanism of height and eccentricity are analyzed in detail.By employing the cavitation flow visualization method,the generating mechanism and evolution law of cavitation are revealed.The synergistic effects of experiments and high-speed camera capturing confirm the correctness of the simulation results.In the experiment,the volume change stroke of the airtight container is set to 20 mm,the volume change frequency is 18 Hz,and the shooting frequency of the high-speed camera is set to 10000 FPS.The experimental results indicate that the position of the cavitation phenomenon has a reasonable law during the whole evolution cycle of the cavitation cloud.Also,the volume alternation cycle corresponds to the generation,development,and collapse stages of cavitation bubbles.展开更多
文摘Three recent breakthroughs due to AI in arts and science serve as motivation:An award winning digital image,protein folding,fast matrix multiplication.Many recent developments in artificial neural networks,particularly deep learning(DL),applied and relevant to computational mechanics(solid,fluids,finite-element technology)are reviewed in detail.Both hybrid and pure machine learning(ML)methods are discussed.Hybrid methods combine traditional PDE discretizations with ML methods either(1)to help model complex nonlinear constitutive relations,(2)to nonlinearly reduce the model order for efficient simulation(turbulence),or(3)to accelerate the simulation by predicting certain components in the traditional integration methods.Here,methods(1)and(2)relied on Long-Short-Term Memory(LSTM)architecture,with method(3)relying on convolutional neural networks.Pure ML methods to solve(nonlinear)PDEs are represented by Physics-Informed Neural network(PINN)methods,which could be combined with attention mechanism to address discontinuous solutions.Both LSTM and attention architectures,together with modern and generalized classic optimizers to include stochasticity for DL networks,are extensively reviewed.Kernel machines,including Gaussian processes,are provided to sufficient depth for more advanced works such as shallow networks with infinite width.Not only addressing experts,readers are assumed familiar with computational mechanics,but not with DL,whose concepts and applications are built up from the basics,aiming at bringing first-time learners quickly to the forefront of research.History and limitations of AI are recounted and discussed,with particular attention at pointing out misstatements or misconceptions of the classics,even in well-known references.Positioning and pointing control of a large-deformable beam is given as an example.
文摘This work presents a new application for the Hierarchical Function Expansion Method for the solution of the Navier-Stokes equations for compressible fluids in two dimensions and in high velocity. This method is based on the finite elements method using the Petrov-Galerkin formulation, know as SUPG (Streamline Upwind Petrov-Galerkin), applied with the expansion of the variables into hierarchical functions. To test and validate the numerical method proposed as well as the computational program developed simulations are performed for some cases whose theoretical solutions are known. These cases are the following: continuity test, stability and convergence test, temperature step problem, and several oblique shocks. The objective of the last cases is basically to verify the capture of the shock wave by the method developed. The results obtained in the simulations with the proposed method were good both qualitatively and quantitatively when compared with the theoretical solutions. This allows concluding that the objectives of this work are reached.
文摘This paper presents and proves the mixed compatible finite element variationalprinciples in dynamics of viscous barotropic fluids. When the principles are proved, itis found that the compatibility conditions of stress can be naturally satisfied. The gene-rallzed variational principles with mixed hybrid incompatible finite elements are alsopresented and proved, and they can reduce the computation of incompatible elements indynamics of viscous barotropic flows.
文摘Viscous damping is a dominant source of energy dissipation in laterally oscillating micro-structures. In microresonators in which the characteristic dimensions are comparable to the dimensions of the fluid molecules, the assumption of the continuum fluid theory is no longer justified and the use of micro-polar fluid theory is indispensable. In this paper a mathematical model was presented in order to predict the viscous fluid damping in a laterally oscillating finger of a micro-resonator considering micro-polar fluid theory. The coupled governing partial differential equations of motion for the vibration of the finger and the micro-polar fluid field have been derived. Considering spin and no-spin boundary conditions, the related shape functions for the fluid field were presented. The obtained governing differential equations with time varying boundary conditions have been transformed to an enhanced form with homogenous boundary conditions and have been discretized using a Galerkin-based reduced order model. The effects of physical properties of the micro-polar fluid and geometrical parameters of the oscillating structure on the damping ratio of the system have been investigated.
基金Foundation item: Supported by the National Natural Science Foundation of China (Grant No. 51309230), and China Postdoctoral Science Foundation (Nos. 2014T70992 and 2013 M542531)We would like to thank Dr. Tao Miao for closely following our work and making several useful suggestions.
文摘To deal with the effect of compressible fluids on the supercavitating flow over the subsonic disk cavitator of a projectile, a finite volume method is formulated based on the ideal compressible potential theory. By using the continuity equation and Tait state equation as well as Riabouchinsky closure model, an“inverse problem”solution is presented for the supercavitating flow. According to the impenetrable condition on the surface of supercavity, a new iterative method for the supercavity shape is designed to deal with the effect of compressibility on the supercavity shape, pressure drag coefficient and density field. By this method, the very low cavitation number can be computed. The calculated results agree well with the experimental data and empirical formula. At the subsonic condition, the fluid compressibility will make supercavity length and radius increase. The supercavity expands, but remains spheroid. The effect on the first 1/3 part of supercavity is not obvious. The drag coefficient of projectile increases as the cavitation number or Mach number increases. With Mach number increasing, the compressibility is more and more significant. The compressibility must be considered as far as the accurate calculation of supercavitating flow is concerned.
文摘By combing the characteristics of drilling in Antarctic region, performance requirements on drilling fluid for Antarctic low temperature conditions, and research progress of low temperature drilling fluid, current problems of the drilling fluid have been sorted out, and the development direction of the drilling fluid has been pointed out. Drilling in the Antarctic region mainly includes drilling in snow, ice and subglacial rock formations, and drilling in Antarctic low temperature conditions will face problems in four aspects:(1) low temperature and large temperature changes in the drilling area;(2) likely well leakage and drillstring-sticking in the snow layer, creep in the ice layer, ice chip gathering jamming in the warm ice layer, well wall collapse in the subglacial rock formations;(3) lack of infrastructure and difficulty in logistical support;(4) fragile environment and low carrying capacity. After years of development, progresses have been made on low-temperature drilling fluids for the Antarctic region. Low-temperature petroleum-based drilling fluid, ethanol/ethylene glycol-based drilling fluid, ester-based drilling fluid and silicone oil-based drilling fluid have been developed. However, these drilling fluids have problems such as insufficient low-temperature tolerance, low environmental performance and weak wellbore stability, etc. In order to meet the performance requirements of drilling fluid under low-temperature conditions in Antarctic region, the working mechanisms of low-temperature drilling fluid must be examined in depth;environment-friendly low-temperature base fluid of drilling fluid and related additives must be developed to prepare environmentally friendly low temperature drilling fluid systems;multi-functional integrated adjustment method for drilling fluid must be worked out to ensure well wall stability and improve cutting-carry capacity when drilling ice formations and ice-rock interlayers;and on-site support operation codes must be established to provide technical support for Antarctic drilling.
基金supported by the Fun⁃damental Scientific Research Business Expenses of Central Universities(No.NJ2020024).
文摘A new fluid bag buffer mechanism,which can provide large axial stiffness under the small displacement,is designed.The dynamic change laws of the mechanism stiffness and the internal pressure of the fluid bag are studied when it is subjected to impact load.According to the protection performance for the flexible joint and the pressure change in the fluid bag during the impact process,the sensitivity of the geometric parameters of the fluid bag to the axial stiffness is analyzed by using the orthogonal experimental method,and the optimal parameter combination of the geometric parameters of the fluid bag under impact is obtained,leading to the displacement of the inner shell reduce by 41.4%.The results show that the internal pressure of the fluid bag is a rising process of oscillation and fluctuation.The sensitivity of the geometric parameters of the fluid bag to the displacement of the inner shell from high to low is as follows:Height H,radius r,wall thickness t,chamfer A.The correlation between the geometric parameters of the fluid bag and its internal pressure is:H is negatively correlated with the internal pressure,while the r,t,and A are positively correlated with the internal pressure.
文摘In this paper, the internal fluid motion of a jet system is described by the Navier Stokes mechanics equations. For the simulation of the motion, the penalty function finite element method is used, and the velocity vectors and stream function curves are obtained. Using the Prandtl theory, this paper derives the free jet velocity and the jet bunch width in a half-space, the latter of which is amended by experiment. The results obtained in this paper are applied to micro-type high pressure water jet cleaner and the ejector of rocket engine.
文摘Applications, theoretical analysis and numerical methods are introduced for the simulation of mechanical models and principles of the porous flow in high temperature, high salt, complicated geology and large-scale reservoirs in this paper. Considering petroleum geology, geochemistry, computational permeation fluid mechanics and computer technology, we state the models of permeation fluid mechanics and put forward a sequence of implicit upwind difference iteration schemes based on refined fractional steps of the upstream, which can compute the pressures, the saturation and the concentrations of different chemistry components. A type of software applicable in major industries has been completed and carried out in numerical analysis and simulations of oil extraction in Shengli Oil-field, which brings huge economic benefits and social benefits. This software gives many characters: spatial steps are taken as ten meters, the number of nodes is up to hundreds of thousands and simulation time period can be tens of years and the high-order accuracy can be promised in numerical data. Precise analysis is present for simplified models of this type and that provides a tool to solve the international famous problem.
基金Supported by National Nature Science Foundation of China(Grant No.51575245)Jiangsu Provincial Key research and development program(Grant No.BE2015134)Zhenjiang Municipal Key Research and Development Project(Grant No.KZ2020001).
文摘Cavitation generation methods have been used in multifarious directions because of their diversity,and numerous studies and discussions have been conducted on cavitation generation methods.This study aims to explore the generating mechanism and evolution law of volume alternate cavitation(VAC).In the VAC,liquid water is placed in an airtight container with a variable volume.As the volume alternately changes,the liquid water inside the container continues to cavitate.Then,the mixture turbulence model and in-cylinder dynamic grid model are adopted to conduct computational fluid dynamics simulation of volume alternate cavitation.In the simulation,the cloud images at seven heights on the central axis are monitored,and the phenomenon and mechanism of height and eccentricity are analyzed in detail.By employing the cavitation flow visualization method,the generating mechanism and evolution law of cavitation are revealed.The synergistic effects of experiments and high-speed camera capturing confirm the correctness of the simulation results.In the experiment,the volume change stroke of the airtight container is set to 20 mm,the volume change frequency is 18 Hz,and the shooting frequency of the high-speed camera is set to 10000 FPS.The experimental results indicate that the position of the cavitation phenomenon has a reasonable law during the whole evolution cycle of the cavitation cloud.Also,the volume alternation cycle corresponds to the generation,development,and collapse stages of cavitation bubbles.