A one-dimensional coupled pelagic-benthic box model for the Yellow Sea Cold Water Mass (YSCWM) is developed. The model is divided into three boxes vertically according to the depths of thermocline and euphotic layer. ...A one-dimensional coupled pelagic-benthic box model for the Yellow Sea Cold Water Mass (YSCWM) is developed. The model is divided into three boxes vertically according to the depths of thermocline and euphotic layer. It simulates well the oligotrophic shelf ecosystem of the YSCWM considering effects of nu- trients deposition and microbial loop. Main features of vertical structure of various variables in ecosystem of the YSCWM were captured and seasonal variability of the ecosystem was well reconstructed. Calculation shows that the contribution of microbial loop to the zooplankton can reach up to 60%. Besides, input of inorganic nutrients from atmospheric deposition is an important mechanism of production in upper layer of the YSCWM when stratified.展开更多
The Yellow Sea Cold Water Mass (YSCWM) is one of the important water mass in the Yellow Sea (YS). It is distributed in the lower layer in the Yellow Sea central trough with the temperature less than 10℃ and the s...The Yellow Sea Cold Water Mass (YSCWM) is one of the important water mass in the Yellow Sea (YS). It is distributed in the lower layer in the Yellow Sea central trough with the temperature less than 10℃ and the salinity lower than 33.0. To understand the variability of the YSCWM, the hydrographic data obtained in April and August during 2009-2011 are analyzed in the southeastern Yellow Sea. In August 2011, relatively warm and saline water compared with that in 2009 and 2010 was detected in the lower layer in the Yellow Sea central area. Although the typhoon passed before the cruise, the salinity in the Yellow Sea central trough is much higher than the previous season. It means that the saline event cannot be explained by the typhoon but only by the intrusion of saline water during the previous winter. In April 2011, actually, warm and saline water (T 〉 10~C, S 〉34) was observed in the deepest water depth of the southeastern area of the Yellow Sea. The wind data show that the northerly wind in 2011 winter is stronger than in 2009 and 2010 winter season. The strong northerly wind can trigger the intrusion of warm and saline Yellow Sea Warm Current. Therefore, it is proposed that the strong northerly wind in winter season leads to the intrusion of the Yellow Sea Warm Current into the Yellow Sea central trough and influenced a variability of the YSCWM in summer.展开更多
Based on the field data obtained during summer cruises in 2006, the overall perspective of chemical and hydrographic characteristics of the Yellow Sea Cold Water Mass (YSCWM) are discussed through the cross- YSCWM t...Based on the field data obtained during summer cruises in 2006, the overall perspective of chemical and hydrographic characteristics of the Yellow Sea Cold Water Mass (YSCWM) are discussed through the cross- YSCWM transect profiles and horizontal distributions of hydrological and chemical variables, with emphasis on the differences between the northern Yellow Sea Cold Water Mass (NYSCWM) and the southern Yellow Sea Cold Water Mass (SYSCWM). The results show that YSCWM is characterized by low temperature (〈10℃) and dissolved oxygen (DO) concentration, high salinity (〉32.0) and nutrient concentrations. Compared to the SYSCWM, the NYSCWM possesses lower values of temperature, salinity and nutrient concentrations but higher values of DO. Also its smaller variation ranges of variables (except for temperature) demonstrate that NYSCWM is more uniform than that of SYSCWM. In addition, thermocline is more intensive in the SYSCWM than that of NYSCWM. Furthermore, DO and Chl a maxima appear at the depth of 30 m in the SYSCWM, while these phenomena are not obvious in the NYSCWM.展开更多
The Yellow Sea is located between the China Mainland and the Korean Peninsula, representing a typical shallow epicontinental sea. The Yellow Sea Cold Water Mass(YSCWM) is one of the most important physical features ...The Yellow Sea is located between the China Mainland and the Korean Peninsula, representing a typical shallow epicontinental sea. The Yellow Sea Cold Water Mass(YSCWM) is one of the most important physical features in the Yellow Sea. The characteristics of vertical profiles and seasonal variations of biogenic elements in the YSCWM may lead the variations of nutrient availability(e.g., phosphorus) and phosphorus stress of phytoplankton. In this study, the authors surveyed the seasonal variations of phytoplankton phosphorus stress with emphasis on the effect of the YSCWM during the four cruises in April and October 2006, March and August 2007. Using both bulk and single-cell alkaline phosphatase activity(APA) assays, this study evaluated phosphorus status of phytoplankton community, succession of phytoplankton community and ecophysiological responses of phytoplankton to phosphorus in the typical region of the YSCWM. With the occurrence of the YSCWM, especially the variations of concentration of dissolved inorganic phosphorus(DIP), the results of bulk APA appeared corresponding seasonal variations. Along Transects A and B, the mean APA in August was the highest, and that in March was the lowest. According to the ELF-labeled assay's results, seasonal variations of the ELF-labeled percentages within dominant species indicated that diatoms were dominant in March, April and October, while dinoflagellates were dominant in August. During the four cruises, the ELF-labeled percentages of diatoms except Paralia sulcata showed that diatoms were not phosphorus deficient in April 2006 at all, but suffered from severe phosphorus stress in August 2007. In comparison, the ELF-labeled percentages of dinoflagellates were all above 50% during the four time series, which meant dinoflagellates such as Alexandrium and Scrippsiella, sustained perennial phosphorus stress.展开更多
The circulation of Yellow Sea Cold Water Mass (YSCWM) in the Southern Yellow Sea is investigated using a diagnostic 2D MITgcm model. The resolution of the computational grid is 900 m in the horizontal and 2 m in the...The circulation of Yellow Sea Cold Water Mass (YSCWM) in the Southern Yellow Sea is investigated using a diagnostic 2D MITgcm model. The resolution of the computational grid is 900 m in the horizontal and 2 m in the vertical where an initial tem- perature distribution corresponding to a typical measured Yellow Sea Cold Water Mass was applied. The existence of YSCWM that causes fluid density difference, is shown to produce counter-rotating cyclonic horizontal eddies in the surface layer: the inner one is anti-cyclonic (clockwise) and relatively weaker (8-10cms-1) while the outer one is cyclonic (anti-clockwise) and much stronger (15-20cms-~). This result is consistent with the surface pattern observed by Pang et al. (2004), who has shown that a mesoscale anti-cyclonic eddy (clockwise) exists in the upper layer of central southern Yellow Sea, and a basin-scale cyclonic (anticlockwise) gyre lies outside of the anti-cyclonic eddy, based on the trajectories and drifting velocities of 23 drifters. Below the thermocline, there is an anti-cyclonic (clockwise) circulation. This complex current eddy system is considered to be capable of trapping suspended sediments and depositing them near the front between YSCWM and the coastal waters off the Subei coast, providing an explanation on the sediment depth and size distribution of mud patches in the Southern Yellow Sea. Moreover, sensitive test scenarios indicate that variations of bottom friction do not substantially change the main features of the circulation structure, but will reduce the bottom current velocity, increase the surface current velocity and weaken the upwelling around the frontal area.展开更多
The Yellow Sea Cold Water Mass (YSCWM) was suggested as an over-summering site of the dominant copepod species Calanus sinicus in coastal Chinese seas. Population abundance and structure were investigated by monthly...The Yellow Sea Cold Water Mass (YSCWM) was suggested as an over-summering site of the dominant copepod species Calanus sinicus in coastal Chinese seas. Population abundance and structure were investigated by monthly sampling along three transects across the northern boundary of the YSCWM during 2009-2010. Results show that thermal stratification existed from June to October and that the vertical thermal difference increased with depth. Generally, total abundance was lowest in October and highest in June, and the female/male sex ratio was highest in February and lowest in August. Evident spatial differences in abundance were observed during the existence of the YSCWM. In June, total abundance averaged 158.8 ind/m~ at well-stratified stations, and 532.1 ind/m3 at other stations. Similarly, high abundances of 322.0 and 324.4 ind/m3 were recorded from July to August inside the YSCWM, while the abundance decreased from 50.4 to 1.9 ind/m3 outside the water mass. C. sinicus distribution tended to even out over the study area in September when the YSCWM disappeared. We believe that the YSCWM may retard population recruitment in spring and preserve abundant cohorts in summer. The summer population was transported to neritic waters in autumn. In addition to low temperatures, stable vertical structure was also an essential condition for preservation of the summer population. C. sinicus can survive the summer in marginal areas in high abundance, but the population structure is completely different in terms of C5 proportion and sex ratio.展开更多
The vertical mixing parameterization scheme,by providing the eff ects of some explicitly missed physical processes and more importantly closing the energy budgets,is a critical model component and therefore imposes si...The vertical mixing parameterization scheme,by providing the eff ects of some explicitly missed physical processes and more importantly closing the energy budgets,is a critical model component and therefore imposes signifi cant impacts on model performance.The Yellow Sea Cold Water Mass(YSCWM),as the most striking and unique phenomenon in the Yellow Sea during summer,is dramatically aff ected by vertical mixing process during its each stage and therefore seriously sensitive to the proper choice of parameterization scheme.In this paper,a hindcast of YSCWM in winter of 2006 was implemented by using the Regional Ocean Modeling System(ROMS).Three popular parameterization schemes,including the level 2.5 Mellor-Yamada closure(M-Y 2.5),Generic Length Scale closure(GLS)and K-Profi le Parameterization(KPP),were tested and compared with each other by conducting a series of sensitivity model experiments.The infl uence of diff erent parameterization schemes on modeling the YSCWM was then carefully examined and assessed based on these model experiments.Although reasonable thermal structure and its seasonal variation were well reproduced by all schemes,considerable diff erences could still be found among all experiments.A warmer and spatially smaller simulation of YSCWM,with very strong thermocline,appeared in M-Y 2.5 experiment,while a spatially larger YSCWM with shallow mixed layer was found in GLS and KPP schemes.Among all the experiments,the discrepancy,indicated by core temperature,appeared since spring,and grew gradually by the end of November.Additional experiments also confi rmed that the increase of background diff usivity could eff ectively weaken the YSCWM,in either strength or coverage.Surface wave,another contributor in upper layer,was found responsible for the shrinkage of YSCWM coverage.The treatment of wave eff ect as an additional turbulence production term in prognostic equation was shown to be more superior to the strategy of directly increasing diff usivity for a coastal region.展开更多
A study was carried out to investigate the grazing pressure of heterotrophic nanoflagellates (HNF) on bac-teria assemblages in the Yellow Sea Cold Water Mass (YSCWM) area in October, 2006. The results show that th...A study was carried out to investigate the grazing pressure of heterotrophic nanoflagellates (HNF) on bac-teria assemblages in the Yellow Sea Cold Water Mass (YSCWM) area in October, 2006. The results show that the HNF abundance ranges from 303 to 1388 mL-1, with a mean of 884 mL-1. The HNF biomass is equivalent to 10.6%-115.6% of that of the bacteria. The maximum abundance of the HNF generally occurred in the upper 30 m water layer, with a vertical distribution pattern of surface layer abundance greater than middle layer abundance, then bottom layer abundance. The hydrological data show that the YSCWM is located in the northeastern part of the study area, typically 40 m beneath the surface. A weak correlation is found be- tween the abundances of HNF and bacteria in both the YSCWM and its above water layer. One-way ANOVA analysis reveals that the abundance of HNF and bacteria differs between inside the YSCWM and in the above water mass. The ingestion rates of the HNF on bacteria was 8.02±3.43 h-1 in average. The grazing rate only represented 22.75%±6.91% of bacterial biomass or 6.55%±4.24% of bacterial production, implying that the HNF razinR was not the major factor contributing to the bacterial loss in the YSCWM areas.展开更多
With the in-situ temperature and salinity observations taken seasonally in the Northern Yellow Sea area during the National 908 Water Investigation and Research Project from 2006 to 2007, the characteristics of the No...With the in-situ temperature and salinity observations taken seasonally in the Northern Yellow Sea area during the National 908 Water Investigation and Research Project from 2006 to 2007, the characteristics of the Northern Yellow Sea cold water mass (NYSCWM) were studied, including both its spatial pattern over the whole bottom and historically typical section from Dalian to Chengshantou. Seasonal evolution as well as its spatial distribution was analyzed to further understand the NYSCWM, as a result, some new features about the NYSCWM had been found. Compared to the previous studies, the center of colder water mass in summer moved eastward, but sharing the similar peak values for both temperature and salinity with historical data. In spring, the axis of 32.8 psu saltier moves westward approximately 75 km and the high salinity areas beyond 123.5° E were largely impaired comparing to that in winter. In winter, the NYSCWM almost disappeared due to the reinforced wind-induced mixing and the Yellow Sea Warm Currents (YSWC) moved northward and controlled most of the Northern Yellow Sea region. In autumn, two cold centers with the peak value of 9℃ were found inside the attenuated NYSCWM.展开更多
Samples were collected with a plankton net in the four seasonal cruises during 2006-2007 to study the seasonal variability of the zooplankton community in the southwest part of Huanghai Sea Cold Water Mass (HSCWM, Ye...Samples were collected with a plankton net in the four seasonal cruises during 2006-2007 to study the seasonal variability of the zooplankton community in the southwest part of Huanghai Sea Cold Water Mass (HSCWM, Yellow Sea Cold Water Mass). The spatial and temporal variations of zooplankton species composition, biomass, abundance and biodiversity were examined. A total of 122 zooplankton species and 30 pelagic larvae were identified in the four cruises. Calanus sinicus and Aidanosagitta crassa were the most dominant species, and Themisto gaudichaudi and Euphau- sia pacifica were widely distributed in the HSCWM area. The spatial patterns of non-gelatinous zooplankton (removing the high water content groups) were similar to those of the total zooplank- ton biomass in autumn, but different significantly in the other three seasons. The seasonal means of zooplankton biomass in spring and summer were much higher than that in autumn and win- ter. The total zooplankton abundance averaged 283.5 ind./m3 in spring (highest), 192.5 ind./m3 in summer, 165.5 ind./m3 in autumn and 65.9 ind./m3 in winter (lowest), and the non-gelatinous groups contributed the most total abundance. Correlation analysis suggests that the non-gelatinous zooplankton biomass and abundance had a significant positive correlation in the whole year, but the relationship was insignificant between the total zooplankton biomass and abundance in spring and summer. The diversity index HI of zooplankton community averaged 1.88 in this study, which was somewhat higher than historical results. Relatively low diversity in summer was related to the high dominance of Calanus sinicus, probably due to the strongest effect of the HSCWM in this season.展开更多
This paper discusses the interannual variability of the Northern Yellow Sea Cold Water Mass(NYSCWM) and the factors that influence it,based on survey data from the 1976–2006 national standard section and the Korea Oc...This paper discusses the interannual variability of the Northern Yellow Sea Cold Water Mass(NYSCWM) and the factors that influence it,based on survey data from the 1976–2006 national standard section and the Korea Oceanographic Data Center,monthly E-P flux data from the European Centre for Medium-Range Weather Forecasts,and meridional wind speed data from the International Comprehensive Ocean-Atmosphere Data Set. The results show that:1) the mean salinity of the NYSCWM center has a slightly decreasing trend,which is not consistent with the high salinity center; 2) both the southern salinity front and the halocline of the NYSCWM display a weakening trend,which indicates that the difference between the NYSCWM and coastal water decreases; 3) the Yellow Sea Warm Current intrusion,the E-P flux of the northern Yellow Sea,and the strength of the winter monsoon will affect the NYSCWM salinity during the following summer.展开更多
This paper discusses the long-term temperature variation of the Southern Yellow Sea Cold Water Mass(SYSCWM)and examines those factors that infl uence the SYSCWM,based on hydrographic datasets of the China National Sta...This paper discusses the long-term temperature variation of the Southern Yellow Sea Cold Water Mass(SYSCWM)and examines those factors that infl uence the SYSCWM,based on hydrographic datasets of the China National Standard Section and the Korea Oceanographic Data Center.Surface air temperature,meridional wind speed,and sea surface temperature data are used to describe the seasonal changes.Mean temperature of the two centers of the SYSCWM had diff erent long-term trends.The temperature of the center in the west of the SYSCWM was rising whereas that of the center in the east was falling.Mean temperature of the western center was related to warm water intrusion of the Yellow Sea Warm Current,the winter meridional wind,and the winter air temperature.Summer process played a primary role in the cooling trend of temperature in the eastern center.A decreasing trend of salinity in the eastern half of the SYSCWM showed that warm water intrusion from the south might weaken,as could the SYSCWM circulation.Weakened circulation provided less horizontal heat input to the eastern half of the SYSCWM.Less lateral heat input may have led to the decreasing trend in temperature of the eastern center of the SYSCWM.Further,warmer sea surface temperatures and less heat input in the deep layers intensifi ed the thermocline of the eastern SYSCWM.A stronger thermocline had less heat fl ux input from upper layers to this half of the SYSCWM.Stronger thermocline and weakened heat input can be seen as two main causes of the cooling temperature trend of the eastern center of the SYSCWM.展开更多
Picoplankton distribution around the Zhangzi Island(northern Yellow Sea)was investigated by monthly observation from July 2009 to June 2010.Three picoplankton populations were discriminated by flow cytometry,namely ...Picoplankton distribution around the Zhangzi Island(northern Yellow Sea)was investigated by monthly observation from July 2009 to June 2010.Three picoplankton populations were discriminated by flow cytometry,namely Synechococcus,picoeukaryotes and heterotrophic prokaryotes.In summer(from July to September),the edge of the northern Yellow Sea Cold Water Mass(NYSCWM)resulting from water column stratification was observed.In the NYSCWM,picoplankton(including Synechococcus,picoeukaryotes and heterotrophic prokaryotes)distributed synchronically with extremely high abundance in the thermocline(20 m)in July and August(especially in August),whereas in the bottom zone of the NYSCWM(below 30 m),picoplankton abundance was quite low.Synechococcus,picoeukaryotes and heterotrophic prokaryotes showed similar response to the NYSCWM,indicating they had similar regulating mechanism under the influence of NYSCWM.Whereas in the non-NYSCWM,Synechococcus,picoeukaryotes and heterotrophic prokaryotes exhibited different distribution patterns,suggesting they had different controlling mechanisms.Statistical analysis indicated that temperature,nutrients(NO3^and PO4^3-)and ciliate were important factors in regulating picoplankton distribution.The results in this study suggested that the physical event NYSCWM,had strong influence on picoplankton distribution around the Zhangzi Island in the northern Yellow Sea.展开更多
Three seabed-mounted TD/CTD chains and two upward-looking acoustic Doppler current profilers (ADCPs) in the southwest of Zhangzi Island are used and a simultaneous cruise observation in the northern North Yellow Sea (...Three seabed-mounted TD/CTD chains and two upward-looking acoustic Doppler current profilers (ADCPs) in the southwest of Zhangzi Island are used and a simultaneous cruise observation in the northern North Yellow Sea (NYS) is conducted to study temperature variation in the bottom thermal front zone of the NYS Cold Water Mass (NYSCWM) during the summer of 2009. In the flood-ebb tidal cycles, the bottom temperature decreases (increases) during flood (ebb) tides, which are dominated by the tidal-current induced horizontal advection. The ebb tide-induced temperature increase is larger than the flood tide-induced tempera- ture decrease due to seasonal warming. In the spring-neap tidal cycles, the temperature and the vertical temperature structure show notable fortnightly variation from 16 July to 25 August. The bottom temperature increases from neap to spring tides and decreases from spring to neap. The Richardson number demonstrates strengthened vertical mixing during spring tides but enhanced stratifica- tion during neap tides. The spring-neap variation in vertical shear caused by tidal current is the dominant factor that induces the fort- nightly variation in vertical mixing and thus bottom temperature.展开更多
A two-month seabed-mounted observation(YSG1 area) was carried out in the western Yellow Sea Cold Water Mass(YSCWM) using an RDI-300 K acoustic Doppler current profiler(ADCP) placed at a water depth of 38 m in late sum...A two-month seabed-mounted observation(YSG1 area) was carried out in the western Yellow Sea Cold Water Mass(YSCWM) using an RDI-300 K acoustic Doppler current profiler(ADCP) placed at a water depth of 38 m in late summer, 2012. On August 2012, Typhoon Bolaven passed east of YSG1 with a maximum wind speed of 20 m s-1. The water depth, bottom temperature, and profile current velocities(including u, v and w components) were measured, and the results showed that the typhoon could induce horizontal current with speed greater than 70 cm s-1 in the water column, which is especially rare at below 20 meters above bottom(mab). The deepening velocity shear layer had an intense shear velocity of around 10 cm s-1 m-1, which indicated the deepening of the upper mixed layer. In the upper water column(above 20 mab), westward de-tide current with velocity greater than 30 cm s-1 was generated with the typhoon's onshore surge, and the direction of current movement shifted to become southward. In the lower water column, a possible pattern of eastward compensation current and delayed typhoon-driven current was demonstrated. During the typhoon, bottom temperature variation was changed into diurnal pattern because of the combined influence of typhoon and tidal current. The passage of Bolaven greatly intensified local sediment resuspension in the bottom layer. In addition, low-density particles constituted the suspended particulate matter(SPM) around 10 mab, which may be transported from the central South Yellow Sea by the typhoon. Overall, the intensive external force of the Typhoon Bolaven did not completely destroy the local thermocline, and most re-suspended sediments during the typhoon were restricted within the YSCWM.展开更多
The seasonal variations of several main water masses in the southern Yellow Sea (SYS) and East China Sea (ECS) in 2011 were analyzed using the in-situ data collected on four cruises.There was something special in the ...The seasonal variations of several main water masses in the southern Yellow Sea (SYS) and East China Sea (ECS) in 2011 were analyzed using the in-situ data collected on four cruises.There was something special in the observations for the Yellow Sea Warm Current (YSWC) ,the Yellow Sea Cold Water Mass (YSCWM) and the Changjiang Diluted Water (CDW) during that year.The YSWC was confirmed to be a seasonal current and its source was closely associated with the Kuroshio onshore intrusion and the northerly wind.It was also found that the YSCWM in the summer of 2011 occupied a more extensive area in comparison with the climatologically-mean case due to the abnormally powerful wind prevailing in the winter of 2010 and decaying gradually thereafter.Resulting from the reduced Changjiang River discharge,the CDW spreading toward the Cheju Island in the summer of 2011 was weaker than the long-term mean and was confined to flow southward in the other seasons.The other water masses seemed normal without noticeable anomalies in 2011.The Yellow Sea Coastal Current (YSCC) water,driven by the northerly wind,flowed southeastward as a whole except for its northeastward surface layer in summer.The Taiwan Warm Current (TWC) was the strongest in summer and the weakest in winter in its northward movement.The Kuroshio water with an enhanced onshore intrusion in autumn was stable in hydrographic features apart from the seasonal variation of its surface layer.展开更多
Settling particulate matter (SPM) was collected by using sediment traps at four stations in a survey section from Qingdao to Cheju-do, across the Huanghai Sea cold water mass (HSCWM), in August 2002. The sediment ...Settling particulate matter (SPM) was collected by using sediment traps at four stations in a survey section from Qingdao to Cheju-do, across the Huanghai Sea cold water mass (HSCWM), in August 2002. The sediment traps were planted in three layers: the upper layer of the thermocline (ULT) above the HSCWM, the lower layer of the thermocline (LLT), and the bottom layer of water column (BL). To determine the particle flux, the contents of organic carbon (POC), organic nitrogen (PON), total carbon (PC), and total phosphorous (PP) in SPM were analyzed, and two flux models (Ⅰ and Ⅱ) were improved to calculate the resuspension ratio, with an assumption in Model Ⅰ that the vertical flux of SPM in the LLT equals the net vertical flux of SPM in the whole water column. An X value, i.e., the fraction of the resuspension flux originating from the surficial sediments nearby the sampling station, was deduced from Model Ⅰ to estimate the contribution of lateral currents to the total resuspension flux. The results showed that inorganic particles, fecal pellets, and miscellaneous aggregates were the major types of SPM in the HSCWM, and the contents of POC, PON, PC, and PP all decreased with water depth. A great deal of fecal pellets found in the LLT indicates that the main space producing biogenic SPM is the thermocline, and especially the LLT, where the C/N ratio is lower than that in the ULT. The resuspension ratios, 90%-96% among stations, imply strong impact ofresuspension on particle flux in the BL. These values were not significantly different between the two flux models, suggesting that the hypothesis in Model Ⅰ that the flux in the LLT equaling the net flux to the bottom is acceptable for shallow waters with stratification like the HSCWM. The POC export ratio from the HSCWM ranges from 35% to 68%. It benefits from the short sinking distance in shallow water. The upwelling in the HSCWM enhanced the POC flux through the water mass, and the lateral currents provides up to being greater than 50% ofresuspension flux in the BL according to evaluation of the X value.展开更多
To understand the effects of the Yellow Sea Cold Bottom Water (YSCBW) on the diel vertical migration (D- VM) of the copepod Calanus sinicus, we surveyed vertical distribution of C. sinicus at a fixed station in th...To understand the effects of the Yellow Sea Cold Bottom Water (YSCBW) on the diel vertical migration (D- VM) of the copepod Calanus sinicus, we surveyed vertical distribution of C. sinicus at a fixed station in the Yellow Sea before (spring) and during (summer) formation of the YSCBW. Cold water (〈10℃) was observed in the bottom layer when the water column was thermally stratified in summer, but the water column was thermally well-mixed in spring 2010. Samples were collected from five different layers at 3-h intervals using an opening-closing net. Adult females (1-155 ind./m3) showed a clear normal DVM pattern throughout the entire water column in spring, whereas adult males did not migrate. DVM of copepodite V (CV) individuals was not clear, but the maximum abundance of CI-CIV occurred consistently in the upper 10-20 m layer, where there was a high concentration of chlorophyll-a (Chl-a) (0.49-1.19μg/L). In summer, weak DVM was limited to cold waters beneath the thermocline for adult females (〈30 ind./m3), but not for adult males. The maximum abundance of CI-CIV also occurred consistently in the subsurface layer (20-40 m) together with high concentrations of Chl-a (0.81-2.36 μg/L). CV individuals (1-272 ind./m3) moved slightly upward noc- turnally to the near-surface layer (10-20 m), where the average temperature was 25.74℃, but they were not found in the surface layer (0-10 m; 28.31℃). These results indicate that the existence of the YSBCW affected food availability at depth and the vertical temperature distribution, leading to variation in the amplitude and shape of stage-specific vertical distributions (CI to adults) in C. sinicus before and during the formation of cold waters in the Yellow Sea during the study period.展开更多
Using the hydroacoustic method with a 200 kHz scientific echo sounding system, the diel vertical migration (DVM) of the sound-scatteringlayer (SSL) in the Yellow Sea Bottom Cold Water (YSBCW) of the southeastern...Using the hydroacoustic method with a 200 kHz scientific echo sounding system, the diel vertical migration (DVM) of the sound-scatteringlayer (SSL) in the Yellow Sea Bottom Cold Water (YSBCW) of the southeastern Yellow Sea was studied in April (spring) and August (summer) of 2010 and 2011. For each survey, 13-27 hours of acoustic data were continuously collected at a stationary station. The acoustic volume scattering strength (Sv) data were analyzed with temperature profile data. In the spring of both 2010 and 2011, the SSL clearly showed the vertical migration throughout the entire water column, moving from the surface layer at night to near the bottom during the day. Conductivity, temperature, and depth data indicated that the entire water column was well mixed with low temperature of about 8℃. However, the SSL showed different patterns in the summers of 2010 and 2011. In the summer of 2010 (≈28℃ at the surface), the SSL migrated to near the bottom during the day, but there were two SSLs above and below the thermocline at depth of 10-30 m at night. In the summer of 2011 (≈20℃ at the surface), the SSL extended throughout the entire water column at night, possibly owing to an abrupt change in sea weather conditions caused by the passage of a Typhoon Muifa over the study area. It was cancluded that the DVM patterns in summer in the YSBCW area may be greatly influenced by a strengthened or weakened thermocline.展开更多
Data obtained from over 250 CTD stations in December 2006 and April 2007 were used to analyze the temperature and salinity structure of the water masses of the South Yellow Sea in spring.Six basic water masses were id...Data obtained from over 250 CTD stations in December 2006 and April 2007 were used to analyze the temperature and salinity structure of the water masses of the South Yellow Sea in spring.Six basic water masses were identifi ed:the Southwest Yellow Sea Coastal Water Mass(SWYSCWM),Southwest Yellow Sea Local Water Mass(SWYSLWM),Qingdao Cold Water Mass(QDCWM),Yellow Sea Warm Current Water Mass(YSWCWM),Inchon Cold Water Mass(ICWM),and Subei Coastal Water Mass(SBCWM).The mechanisms of formation of these water masses are very diff erent.The SWYSCWM is aff ected by continental water,whereas the SWYSLWM and SBCWM are local water masses that are less aff ected by other waters.The QDCWM derives from cold northern water.The YSWCWM exists from winter to spring.Because of the limited data coverage,the mechanism of formation of the ICWM remains unclear.展开更多
基金This work is supported by Major State Basic Research DevelopmentProgram of China (973 Program, G19990437), China International Co-operation Program (No. 2001CB711004) and NSFC (No. 40476045)
文摘A one-dimensional coupled pelagic-benthic box model for the Yellow Sea Cold Water Mass (YSCWM) is developed. The model is divided into three boxes vertically according to the depths of thermocline and euphotic layer. It simulates well the oligotrophic shelf ecosystem of the YSCWM considering effects of nu- trients deposition and microbial loop. Main features of vertical structure of various variables in ecosystem of the YSCWM were captured and seasonal variability of the ecosystem was well reconstructed. Calculation shows that the contribution of microbial loop to the zooplankton can reach up to 60%. Besides, input of inorganic nutrients from atmospheric deposition is an important mechanism of production in upper layer of the YSCWM when stratified.
基金The China-Korea cooperative project on the Yellow Sea Cold Water Mass under contract No.PE99165,funded by the Korea Institute of Ocean Science and Technology
文摘The Yellow Sea Cold Water Mass (YSCWM) is one of the important water mass in the Yellow Sea (YS). It is distributed in the lower layer in the Yellow Sea central trough with the temperature less than 10℃ and the salinity lower than 33.0. To understand the variability of the YSCWM, the hydrographic data obtained in April and August during 2009-2011 are analyzed in the southeastern Yellow Sea. In August 2011, relatively warm and saline water compared with that in 2009 and 2010 was detected in the lower layer in the Yellow Sea central area. Although the typhoon passed before the cruise, the salinity in the Yellow Sea central trough is much higher than the previous season. It means that the saline event cannot be explained by the typhoon but only by the intrusion of saline water during the previous winter. In April 2011, actually, warm and saline water (T 〉 10~C, S 〉34) was observed in the deepest water depth of the southeastern area of the Yellow Sea. The wind data show that the northerly wind in 2011 winter is stronger than in 2009 and 2010 winter season. The strong northerly wind can trigger the intrusion of warm and saline Yellow Sea Warm Current. Therefore, it is proposed that the strong northerly wind in winter season leads to the intrusion of the Yellow Sea Warm Current into the Yellow Sea central trough and influenced a variability of the YSCWM in summer.
基金The National Natural Science Foundation of China under contract No.41106071the National Basic Research(973Program)of China under contract No.2010CB428703+1 种基金the Key Project of Young Marine Science Foundation of State Oceanic Administration of China under contract No.2012503the Key Project of Fundamental Research Funds for the First Institute of Oceanography,State Oceanic Administration under contract Nos GY02-2011T01 and GY02-2013T05
文摘Based on the field data obtained during summer cruises in 2006, the overall perspective of chemical and hydrographic characteristics of the Yellow Sea Cold Water Mass (YSCWM) are discussed through the cross- YSCWM transect profiles and horizontal distributions of hydrological and chemical variables, with emphasis on the differences between the northern Yellow Sea Cold Water Mass (NYSCWM) and the southern Yellow Sea Cold Water Mass (SYSCWM). The results show that YSCWM is characterized by low temperature (〈10℃) and dissolved oxygen (DO) concentration, high salinity (〉32.0) and nutrient concentrations. Compared to the SYSCWM, the NYSCWM possesses lower values of temperature, salinity and nutrient concentrations but higher values of DO. Also its smaller variation ranges of variables (except for temperature) demonstrate that NYSCWM is more uniform than that of SYSCWM. In addition, thermocline is more intensive in the SYSCWM than that of NYSCWM. Furthermore, DO and Chl a maxima appear at the depth of 30 m in the SYSCWM, while these phenomena are not obvious in the NYSCWM.
基金The National Natural Science Foundation of China under contract Nos 41206106 and 41222038the National Basic Research Program of China under contract No.2006CB400604+1 种基金the National High Technology Research and Development Program under contract No.2007AA092003-01Cooperation on the Development of Basic Technologies for the Yellow Sea and East China Sea Operational Oceanographic System(YOOS)
文摘The Yellow Sea is located between the China Mainland and the Korean Peninsula, representing a typical shallow epicontinental sea. The Yellow Sea Cold Water Mass(YSCWM) is one of the most important physical features in the Yellow Sea. The characteristics of vertical profiles and seasonal variations of biogenic elements in the YSCWM may lead the variations of nutrient availability(e.g., phosphorus) and phosphorus stress of phytoplankton. In this study, the authors surveyed the seasonal variations of phytoplankton phosphorus stress with emphasis on the effect of the YSCWM during the four cruises in April and October 2006, March and August 2007. Using both bulk and single-cell alkaline phosphatase activity(APA) assays, this study evaluated phosphorus status of phytoplankton community, succession of phytoplankton community and ecophysiological responses of phytoplankton to phosphorus in the typical region of the YSCWM. With the occurrence of the YSCWM, especially the variations of concentration of dissolved inorganic phosphorus(DIP), the results of bulk APA appeared corresponding seasonal variations. Along Transects A and B, the mean APA in August was the highest, and that in March was the lowest. According to the ELF-labeled assay's results, seasonal variations of the ELF-labeled percentages within dominant species indicated that diatoms were dominant in March, April and October, while dinoflagellates were dominant in August. During the four cruises, the ELF-labeled percentages of diatoms except Paralia sulcata showed that diatoms were not phosphorus deficient in April 2006 at all, but suffered from severe phosphorus stress in August 2007. In comparison, the ELF-labeled percentages of dinoflagellates were all above 50% during the four time series, which meant dinoflagellates such as Alexandrium and Scrippsiella, sustained perennial phosphorus stress.
基金funded by the National Natural Science Foundation of China (NSFC) (Grant Nos. 41030856, 51479182 and 51425901)the Open Fund of State Key Laboratory of Hydraulics and Mountain River Engineering (Grant No. SKHL1428)The financial support through a PhD grant awarded to Chunyan Zhou by the University of Dundee, UK is gratefully acknowledged
文摘The circulation of Yellow Sea Cold Water Mass (YSCWM) in the Southern Yellow Sea is investigated using a diagnostic 2D MITgcm model. The resolution of the computational grid is 900 m in the horizontal and 2 m in the vertical where an initial tem- perature distribution corresponding to a typical measured Yellow Sea Cold Water Mass was applied. The existence of YSCWM that causes fluid density difference, is shown to produce counter-rotating cyclonic horizontal eddies in the surface layer: the inner one is anti-cyclonic (clockwise) and relatively weaker (8-10cms-1) while the outer one is cyclonic (anti-clockwise) and much stronger (15-20cms-~). This result is consistent with the surface pattern observed by Pang et al. (2004), who has shown that a mesoscale anti-cyclonic eddy (clockwise) exists in the upper layer of central southern Yellow Sea, and a basin-scale cyclonic (anticlockwise) gyre lies outside of the anti-cyclonic eddy, based on the trajectories and drifting velocities of 23 drifters. Below the thermocline, there is an anti-cyclonic (clockwise) circulation. This complex current eddy system is considered to be capable of trapping suspended sediments and depositing them near the front between YSCWM and the coastal waters off the Subei coast, providing an explanation on the sediment depth and size distribution of mud patches in the Southern Yellow Sea. Moreover, sensitive test scenarios indicate that variations of bottom friction do not substantially change the main features of the circulation structure, but will reduce the bottom current velocity, increase the surface current velocity and weaken the upwelling around the frontal area.
基金Supported by the Knowledge Innovation Program of Chinese Academy of Sciencesthe National Basic Research Program of China(973 Program)(No.2011CB403604)the IOCAS-Zhangzidao Fishery Eco-Mariculture Joint Laboratory
文摘The Yellow Sea Cold Water Mass (YSCWM) was suggested as an over-summering site of the dominant copepod species Calanus sinicus in coastal Chinese seas. Population abundance and structure were investigated by monthly sampling along three transects across the northern boundary of the YSCWM during 2009-2010. Results show that thermal stratification existed from June to October and that the vertical thermal difference increased with depth. Generally, total abundance was lowest in October and highest in June, and the female/male sex ratio was highest in February and lowest in August. Evident spatial differences in abundance were observed during the existence of the YSCWM. In June, total abundance averaged 158.8 ind/m~ at well-stratified stations, and 532.1 ind/m3 at other stations. Similarly, high abundances of 322.0 and 324.4 ind/m3 were recorded from July to August inside the YSCWM, while the abundance decreased from 50.4 to 1.9 ind/m3 outside the water mass. C. sinicus distribution tended to even out over the study area in September when the YSCWM disappeared. We believe that the YSCWM may retard population recruitment in spring and preserve abundant cohorts in summer. The summer population was transported to neritic waters in autumn. In addition to low temperatures, stable vertical structure was also an essential condition for preservation of the summer population. C. sinicus can survive the summer in marginal areas in high abundance, but the population structure is completely different in terms of C5 proportion and sex ratio.
基金Supported by the National Natural Science Foundation of China(Nos.41606005,41430963,41676004)the National Program on Global Change and Air-Sea Interaction(No.GASI-GEOGE-03)+1 种基金the Liaoning Revitalization Talents Program(No.XLYC1807161)the Dalian Highlevel Talents Innovation Support Plan(No.2017RQ063)。
文摘The vertical mixing parameterization scheme,by providing the eff ects of some explicitly missed physical processes and more importantly closing the energy budgets,is a critical model component and therefore imposes signifi cant impacts on model performance.The Yellow Sea Cold Water Mass(YSCWM),as the most striking and unique phenomenon in the Yellow Sea during summer,is dramatically aff ected by vertical mixing process during its each stage and therefore seriously sensitive to the proper choice of parameterization scheme.In this paper,a hindcast of YSCWM in winter of 2006 was implemented by using the Regional Ocean Modeling System(ROMS).Three popular parameterization schemes,including the level 2.5 Mellor-Yamada closure(M-Y 2.5),Generic Length Scale closure(GLS)and K-Profi le Parameterization(KPP),were tested and compared with each other by conducting a series of sensitivity model experiments.The infl uence of diff erent parameterization schemes on modeling the YSCWM was then carefully examined and assessed based on these model experiments.Although reasonable thermal structure and its seasonal variation were well reproduced by all schemes,considerable diff erences could still be found among all experiments.A warmer and spatially smaller simulation of YSCWM,with very strong thermocline,appeared in M-Y 2.5 experiment,while a spatially larger YSCWM with shallow mixed layer was found in GLS and KPP schemes.Among all the experiments,the discrepancy,indicated by core temperature,appeared since spring,and grew gradually by the end of November.Additional experiments also confi rmed that the increase of background diff usivity could eff ectively weaken the YSCWM,in either strength or coverage.Surface wave,another contributor in upper layer,was found responsible for the shrinkage of YSCWM coverage.The treatment of wave eff ect as an additional turbulence production term in prognostic equation was shown to be more superior to the strategy of directly increasing diff usivity for a coastal region.
基金The National Basic Research Program(973 Program)of China under contract Nos 2006CB400604 and 2011CB409804the National Natural Science Foundation of China under contract No.40876078
文摘A study was carried out to investigate the grazing pressure of heterotrophic nanoflagellates (HNF) on bac-teria assemblages in the Yellow Sea Cold Water Mass (YSCWM) area in October, 2006. The results show that the HNF abundance ranges from 303 to 1388 mL-1, with a mean of 884 mL-1. The HNF biomass is equivalent to 10.6%-115.6% of that of the bacteria. The maximum abundance of the HNF generally occurred in the upper 30 m water layer, with a vertical distribution pattern of surface layer abundance greater than middle layer abundance, then bottom layer abundance. The hydrological data show that the YSCWM is located in the northeastern part of the study area, typically 40 m beneath the surface. A weak correlation is found be- tween the abundances of HNF and bacteria in both the YSCWM and its above water layer. One-way ANOVA analysis reveals that the abundance of HNF and bacteria differs between inside the YSCWM and in the above water mass. The ingestion rates of the HNF on bacteria was 8.02±3.43 h-1 in average. The grazing rate only represented 22.75%±6.91% of bacterial biomass or 6.55%±4.24% of bacterial production, implying that the HNF razinR was not the major factor contributing to the bacterial loss in the YSCWM areas.
文摘With the in-situ temperature and salinity observations taken seasonally in the Northern Yellow Sea area during the National 908 Water Investigation and Research Project from 2006 to 2007, the characteristics of the Northern Yellow Sea cold water mass (NYSCWM) were studied, including both its spatial pattern over the whole bottom and historically typical section from Dalian to Chengshantou. Seasonal evolution as well as its spatial distribution was analyzed to further understand the NYSCWM, as a result, some new features about the NYSCWM had been found. Compared to the previous studies, the center of colder water mass in summer moved eastward, but sharing the similar peak values for both temperature and salinity with historical data. In spring, the axis of 32.8 psu saltier moves westward approximately 75 km and the high salinity areas beyond 123.5° E were largely impaired comparing to that in winter. In winter, the NYSCWM almost disappeared due to the reinforced wind-induced mixing and the Yellow Sea Warm Currents (YSWC) moved northward and controlled most of the Northern Yellow Sea region. In autumn, two cold centers with the peak value of 9℃ were found inside the attenuated NYSCWM.
基金The National Offshore Comprehensive Marine Investigation and Assessment Project under contract No.908-01-ST03the National Key Basic Research Project under contract No.2010CB428703+1 种基金the Fundamental Research Funds for the First Institute of Oceanography under contract No.GY02-2010T05the China-Korea Cooperative Research on the Yellow Sea Cold Water Mass
文摘Samples were collected with a plankton net in the four seasonal cruises during 2006-2007 to study the seasonal variability of the zooplankton community in the southwest part of Huanghai Sea Cold Water Mass (HSCWM, Yellow Sea Cold Water Mass). The spatial and temporal variations of zooplankton species composition, biomass, abundance and biodiversity were examined. A total of 122 zooplankton species and 30 pelagic larvae were identified in the four cruises. Calanus sinicus and Aidanosagitta crassa were the most dominant species, and Themisto gaudichaudi and Euphau- sia pacifica were widely distributed in the HSCWM area. The spatial patterns of non-gelatinous zooplankton (removing the high water content groups) were similar to those of the total zooplank- ton biomass in autumn, but different significantly in the other three seasons. The seasonal means of zooplankton biomass in spring and summer were much higher than that in autumn and win- ter. The total zooplankton abundance averaged 283.5 ind./m3 in spring (highest), 192.5 ind./m3 in summer, 165.5 ind./m3 in autumn and 65.9 ind./m3 in winter (lowest), and the non-gelatinous groups contributed the most total abundance. Correlation analysis suggests that the non-gelatinous zooplankton biomass and abundance had a significant positive correlation in the whole year, but the relationship was insignificant between the total zooplankton biomass and abundance in spring and summer. The diversity index HI of zooplankton community averaged 1.88 in this study, which was somewhat higher than historical results. Relatively low diversity in summer was related to the high dominance of Calanus sinicus, probably due to the strongest effect of the HSCWM in this season.
基金Supported by the National Natural Science Foundation of China(Nos.41176018,41376031)the Strategic Priority Research Program of Chinese Academy of Sciences(No.XDA11020301)the NSFC-Shandong Joint Fund for Marine Science Research Centers(No.U1406401)
文摘This paper discusses the interannual variability of the Northern Yellow Sea Cold Water Mass(NYSCWM) and the factors that influence it,based on survey data from the 1976–2006 national standard section and the Korea Oceanographic Data Center,monthly E-P flux data from the European Centre for Medium-Range Weather Forecasts,and meridional wind speed data from the International Comprehensive Ocean-Atmosphere Data Set. The results show that:1) the mean salinity of the NYSCWM center has a slightly decreasing trend,which is not consistent with the high salinity center; 2) both the southern salinity front and the halocline of the NYSCWM display a weakening trend,which indicates that the difference between the NYSCWM and coastal water decreases; 3) the Yellow Sea Warm Current intrusion,the E-P flux of the northern Yellow Sea,and the strength of the winter monsoon will affect the NYSCWM salinity during the following summer.
基金Supported by the National Natural Science Foundation of China(Nos.41176018,41376031,41206020)the Strategic Priority Research Program of Chinese Academy of Sciences(No.XDA11020301)the NSFCShandong Joint Fund for Marine Science Research Centers(No.U1406401)
文摘This paper discusses the long-term temperature variation of the Southern Yellow Sea Cold Water Mass(SYSCWM)and examines those factors that infl uence the SYSCWM,based on hydrographic datasets of the China National Standard Section and the Korea Oceanographic Data Center.Surface air temperature,meridional wind speed,and sea surface temperature data are used to describe the seasonal changes.Mean temperature of the two centers of the SYSCWM had diff erent long-term trends.The temperature of the center in the west of the SYSCWM was rising whereas that of the center in the east was falling.Mean temperature of the western center was related to warm water intrusion of the Yellow Sea Warm Current,the winter meridional wind,and the winter air temperature.Summer process played a primary role in the cooling trend of temperature in the eastern center.A decreasing trend of salinity in the eastern half of the SYSCWM showed that warm water intrusion from the south might weaken,as could the SYSCWM circulation.Weakened circulation provided less horizontal heat input to the eastern half of the SYSCWM.Less lateral heat input may have led to the decreasing trend in temperature of the eastern center of the SYSCWM.Further,warmer sea surface temperatures and less heat input in the deep layers intensifi ed the thermocline of the eastern SYSCWM.A stronger thermocline had less heat fl ux input from upper layers to this half of the SYSCWM.Stronger thermocline and weakened heat input can be seen as two main causes of the cooling temperature trend of the eastern center of the SYSCWM.
基金The National Natural Science Foundation of China under contract Nos 41306160the NSFC-Shandong Joint Fund for Marine Science Research Centers under contract No.U1606404the Strategic Priority Research Program of the Chinese Academy of Sciences under contract No.XDA11020103.1
文摘Picoplankton distribution around the Zhangzi Island(northern Yellow Sea)was investigated by monthly observation from July 2009 to June 2010.Three picoplankton populations were discriminated by flow cytometry,namely Synechococcus,picoeukaryotes and heterotrophic prokaryotes.In summer(from July to September),the edge of the northern Yellow Sea Cold Water Mass(NYSCWM)resulting from water column stratification was observed.In the NYSCWM,picoplankton(including Synechococcus,picoeukaryotes and heterotrophic prokaryotes)distributed synchronically with extremely high abundance in the thermocline(20 m)in July and August(especially in August),whereas in the bottom zone of the NYSCWM(below 30 m),picoplankton abundance was quite low.Synechococcus,picoeukaryotes and heterotrophic prokaryotes showed similar response to the NYSCWM,indicating they had similar regulating mechanism under the influence of NYSCWM.Whereas in the non-NYSCWM,Synechococcus,picoeukaryotes and heterotrophic prokaryotes exhibited different distribution patterns,suggesting they had different controlling mechanisms.Statistical analysis indicated that temperature,nutrients(NO3^and PO4^3-)and ciliate were important factors in regulating picoplankton distribution.The results in this study suggested that the physical event NYSCWM,had strong influence on picoplankton distribution around the Zhangzi Island in the northern Yellow Sea.
基金supported by the National Natural Science Foundation of China (Nos. U1706215, 41506012, 41430963 and 41606005)
文摘Three seabed-mounted TD/CTD chains and two upward-looking acoustic Doppler current profilers (ADCPs) in the southwest of Zhangzi Island are used and a simultaneous cruise observation in the northern North Yellow Sea (NYS) is conducted to study temperature variation in the bottom thermal front zone of the NYS Cold Water Mass (NYSCWM) during the summer of 2009. In the flood-ebb tidal cycles, the bottom temperature decreases (increases) during flood (ebb) tides, which are dominated by the tidal-current induced horizontal advection. The ebb tide-induced temperature increase is larger than the flood tide-induced tempera- ture decrease due to seasonal warming. In the spring-neap tidal cycles, the temperature and the vertical temperature structure show notable fortnightly variation from 16 July to 25 August. The bottom temperature increases from neap to spring tides and decreases from spring to neap. The Richardson number demonstrates strengthened vertical mixing during spring tides but enhanced stratifica- tion during neap tides. The spring-neap variation in vertical shear caused by tidal current is the dominant factor that induces the fort- nightly variation in vertical mixing and thus bottom temperature.
基金supported by the National Natural Science Foundation of China (Nos. 41806190, 41030856)National Program on Key Basic Research Project of China (973 Program, No. 2005CB422304)+3 种基金Qingdao Postdoctoral Application Research Project Fundingthe Fundamental Research Funds for the Central Universities (Nos. 20171305, 201562030,20176 2015, 201822027)the Project of Taishan Scholarthe Shared Voyage of National Nature Science Foundation of China for their support
文摘A two-month seabed-mounted observation(YSG1 area) was carried out in the western Yellow Sea Cold Water Mass(YSCWM) using an RDI-300 K acoustic Doppler current profiler(ADCP) placed at a water depth of 38 m in late summer, 2012. On August 2012, Typhoon Bolaven passed east of YSG1 with a maximum wind speed of 20 m s-1. The water depth, bottom temperature, and profile current velocities(including u, v and w components) were measured, and the results showed that the typhoon could induce horizontal current with speed greater than 70 cm s-1 in the water column, which is especially rare at below 20 meters above bottom(mab). The deepening velocity shear layer had an intense shear velocity of around 10 cm s-1 m-1, which indicated the deepening of the upper mixed layer. In the upper water column(above 20 mab), westward de-tide current with velocity greater than 30 cm s-1 was generated with the typhoon's onshore surge, and the direction of current movement shifted to become southward. In the lower water column, a possible pattern of eastward compensation current and delayed typhoon-driven current was demonstrated. During the typhoon, bottom temperature variation was changed into diurnal pattern because of the combined influence of typhoon and tidal current. The passage of Bolaven greatly intensified local sediment resuspension in the bottom layer. In addition, low-density particles constituted the suspended particulate matter(SPM) around 10 mab, which may be transported from the central South Yellow Sea by the typhoon. Overall, the intensive external force of the Typhoon Bolaven did not completely destroy the local thermocline, and most re-suspended sediments during the typhoon were restricted within the YSCWM.
基金supported by National Basic Research Program of China(973 Program,2010CB428904)
文摘The seasonal variations of several main water masses in the southern Yellow Sea (SYS) and East China Sea (ECS) in 2011 were analyzed using the in-situ data collected on four cruises.There was something special in the observations for the Yellow Sea Warm Current (YSWC) ,the Yellow Sea Cold Water Mass (YSCWM) and the Changjiang Diluted Water (CDW) during that year.The YSWC was confirmed to be a seasonal current and its source was closely associated with the Kuroshio onshore intrusion and the northerly wind.It was also found that the YSCWM in the summer of 2011 occupied a more extensive area in comparison with the climatologically-mean case due to the abnormally powerful wind prevailing in the winter of 2010 and decaying gradually thereafter.Resulting from the reduced Changjiang River discharge,the CDW spreading toward the Cheju Island in the summer of 2011 was weaker than the long-term mean and was confined to flow southward in the other seasons.The other water masses seemed normal without noticeable anomalies in 2011.The Yellow Sea Coastal Current (YSCC) water,driven by the northerly wind,flowed southeastward as a whole except for its northeastward surface layer in summer.The Taiwan Warm Current (TWC) was the strongest in summer and the weakest in winter in its northward movement.The Kuroshio water with an enhanced onshore intrusion in autumn was stable in hydrographic features apart from the seasonal variation of its surface layer.
文摘Settling particulate matter (SPM) was collected by using sediment traps at four stations in a survey section from Qingdao to Cheju-do, across the Huanghai Sea cold water mass (HSCWM), in August 2002. The sediment traps were planted in three layers: the upper layer of the thermocline (ULT) above the HSCWM, the lower layer of the thermocline (LLT), and the bottom layer of water column (BL). To determine the particle flux, the contents of organic carbon (POC), organic nitrogen (PON), total carbon (PC), and total phosphorous (PP) in SPM were analyzed, and two flux models (Ⅰ and Ⅱ) were improved to calculate the resuspension ratio, with an assumption in Model Ⅰ that the vertical flux of SPM in the LLT equals the net vertical flux of SPM in the whole water column. An X value, i.e., the fraction of the resuspension flux originating from the surficial sediments nearby the sampling station, was deduced from Model Ⅰ to estimate the contribution of lateral currents to the total resuspension flux. The results showed that inorganic particles, fecal pellets, and miscellaneous aggregates were the major types of SPM in the HSCWM, and the contents of POC, PON, PC, and PP all decreased with water depth. A great deal of fecal pellets found in the LLT indicates that the main space producing biogenic SPM is the thermocline, and especially the LLT, where the C/N ratio is lower than that in the ULT. The resuspension ratios, 90%-96% among stations, imply strong impact ofresuspension on particle flux in the BL. These values were not significantly different between the two flux models, suggesting that the hypothesis in Model Ⅰ that the flux in the LLT equaling the net flux to the bottom is acceptable for shallow waters with stratification like the HSCWM. The POC export ratio from the HSCWM ranges from 35% to 68%. It benefits from the short sinking distance in shallow water. The upwelling in the HSCWM enhanced the POC flux through the water mass, and the lateral currents provides up to being greater than 50% ofresuspension flux in the BL according to evaluation of the X value.
基金The study on the impact of the Yellow Sea Bottom Cold Water Mass to the ecosystem(YES Coldwater:PE99165)part of the Korea-China cooperative project on the Yellow Sea Cold Water Mass
文摘To understand the effects of the Yellow Sea Cold Bottom Water (YSCBW) on the diel vertical migration (D- VM) of the copepod Calanus sinicus, we surveyed vertical distribution of C. sinicus at a fixed station in the Yellow Sea before (spring) and during (summer) formation of the YSCBW. Cold water (〈10℃) was observed in the bottom layer when the water column was thermally stratified in summer, but the water column was thermally well-mixed in spring 2010. Samples were collected from five different layers at 3-h intervals using an opening-closing net. Adult females (1-155 ind./m3) showed a clear normal DVM pattern throughout the entire water column in spring, whereas adult males did not migrate. DVM of copepodite V (CV) individuals was not clear, but the maximum abundance of CI-CIV occurred consistently in the upper 10-20 m layer, where there was a high concentration of chlorophyll-a (Chl-a) (0.49-1.19μg/L). In summer, weak DVM was limited to cold waters beneath the thermocline for adult females (〈30 ind./m3), but not for adult males. The maximum abundance of CI-CIV also occurred consistently in the subsurface layer (20-40 m) together with high concentrations of Chl-a (0.81-2.36 μg/L). CV individuals (1-272 ind./m3) moved slightly upward noc- turnally to the near-surface layer (10-20 m), where the average temperature was 25.74℃, but they were not found in the surface layer (0-10 m; 28.31℃). These results indicate that the existence of the YSBCW affected food availability at depth and the vertical temperature distribution, leading to variation in the amplitude and shape of stage-specific vertical distributions (CI to adults) in C. sinicus before and during the formation of cold waters in the Yellow Sea during the study period.
基金The China-Korea cooperative project"The study on the impact of the Yellow Sea Cold Water Mass to the ecosystem"under contract No.PE99165promoted by the Korea Institute of Ocean Science and Technology
文摘Using the hydroacoustic method with a 200 kHz scientific echo sounding system, the diel vertical migration (DVM) of the sound-scatteringlayer (SSL) in the Yellow Sea Bottom Cold Water (YSBCW) of the southeastern Yellow Sea was studied in April (spring) and August (summer) of 2010 and 2011. For each survey, 13-27 hours of acoustic data were continuously collected at a stationary station. The acoustic volume scattering strength (Sv) data were analyzed with temperature profile data. In the spring of both 2010 and 2011, the SSL clearly showed the vertical migration throughout the entire water column, moving from the surface layer at night to near the bottom during the day. Conductivity, temperature, and depth data indicated that the entire water column was well mixed with low temperature of about 8℃. However, the SSL showed different patterns in the summers of 2010 and 2011. In the summer of 2010 (≈28℃ at the surface), the SSL migrated to near the bottom during the day, but there were two SSLs above and below the thermocline at depth of 10-30 m at night. In the summer of 2011 (≈20℃ at the surface), the SSL extended throughout the entire water column at night, possibly owing to an abrupt change in sea weather conditions caused by the passage of a Typhoon Muifa over the study area. It was cancluded that the DVM patterns in summer in the YSBCW area may be greatly influenced by a strengthened or weakened thermocline.
基金Supported by the National Key R&D Program of China(No.2017YFC1403400)。
文摘Data obtained from over 250 CTD stations in December 2006 and April 2007 were used to analyze the temperature and salinity structure of the water masses of the South Yellow Sea in spring.Six basic water masses were identifi ed:the Southwest Yellow Sea Coastal Water Mass(SWYSCWM),Southwest Yellow Sea Local Water Mass(SWYSLWM),Qingdao Cold Water Mass(QDCWM),Yellow Sea Warm Current Water Mass(YSWCWM),Inchon Cold Water Mass(ICWM),and Subei Coastal Water Mass(SBCWM).The mechanisms of formation of these water masses are very diff erent.The SWYSCWM is aff ected by continental water,whereas the SWYSLWM and SBCWM are local water masses that are less aff ected by other waters.The QDCWM derives from cold northern water.The YSWCWM exists from winter to spring.Because of the limited data coverage,the mechanism of formation of the ICWM remains unclear.