The author presents a new approach which is used to solve an important Diophantine problem. An elementary argument is used to furnish another fully transparent proof of Fermat’s Last Theorem. This was first stated by...The author presents a new approach which is used to solve an important Diophantine problem. An elementary argument is used to furnish another fully transparent proof of Fermat’s Last Theorem. This was first stated by Pierre de Fermat in the seventeenth century. It is widely regarded that no elementary proof of this theorem exists. The author provides evidence to dispel this belief.展开更多
This article presents a brief and new solution to the problem known as the “Fermat’s Last Theorem”. It is achieved without the use of abstract algebra elements or elements from other fields of modern mathematics of...This article presents a brief and new solution to the problem known as the “Fermat’s Last Theorem”. It is achieved without the use of abstract algebra elements or elements from other fields of modern mathematics of the twentieth century. For this reason it can be easily understood by any mathematician or by anyone who knows basic mathematics. The important thing is that the above “theorem” is generalized. Thus, this generalization is essentially a new theorem in the field of number theory.展开更多
This article offers a simple but rigorous proof of Brouwer’s fixed point theorem using Sperner’s Lemma.The general method I have used so far in the proof is mainly to convert the n-dimensional shapes to the correspo...This article offers a simple but rigorous proof of Brouwer’s fixed point theorem using Sperner’s Lemma.The general method I have used so far in the proof is mainly to convert the n-dimensional shapes to the corresponding case under the Sperner’s Labeling and apply the Sperner’s Lemma to solve the question.展开更多
Using the same method that we used in [1] to prove Fermat’s Last Theorem in a simpler and truly marvellous way, we demonstrate that Beal’s Conjecture yields—in the simplest imaginable manner, to our effort to prove...Using the same method that we used in [1] to prove Fermat’s Last Theorem in a simpler and truly marvellous way, we demonstrate that Beal’s Conjecture yields—in the simplest imaginable manner, to our effort to prove it.展开更多
If the concept of proof (including arithmetic proof) is syntactically restricted to closed sentences (or their Godel numbers), then the standard accounts of Godel's Incompleteness Theorems (and Lob's Theorem) ...If the concept of proof (including arithmetic proof) is syntactically restricted to closed sentences (or their Godel numbers), then the standard accounts of Godel's Incompleteness Theorems (and Lob's Theorem) are blocked. In these standard accounts (Godel's own paper and the exposition in Boolos' Computability and Logic are treated as exemplars), it is assumed that certain formulas (notably so called "Godel sentences") containing the Godel number of an open sentence and an arithmetic proof predicate are closed sentences. Ordinary usage of the term "provable" (and indeed "unprovable") favors their restriction to closed sentences which unlike so-called open sentences can be true or false. In this paper the restricted form of provability is called strong provability or unprovability. If this concept of proof is adopted, then there is no obvious alternative path to establishing those theorems.展开更多
Bell tests with entangled light have been performed many times in many ways using linear polarizers, but the same tests have never been done with a circular polarizer. Until recently there has never been a true circul...Bell tests with entangled light have been performed many times in many ways using linear polarizers, but the same tests have never been done with a circular polarizer. Until recently there has never been a true circular polarization beamsplitter—an optical component that separates light directly into left and right handed polarizations. Using a true circular polarization beamsplitter based on birefringent gratings, entangled light has been analyzed with unexpected results.展开更多
The wave/particle duality of particles in Physics is well known. Particles have properties that uniquely characterize them from one another, such as mass, charge and spin. Charged particles have associated Electric an...The wave/particle duality of particles in Physics is well known. Particles have properties that uniquely characterize them from one another, such as mass, charge and spin. Charged particles have associated Electric and Magnetic fields. Also, every moving particle has a De Broglie wavelength determined by its mass and velocity. This paper shows that all of these properties of a particle can be derived from a single wave function equation for that particle. Wave functions for the Electron and the Positron are presented and principles are provided that can be used to calculate the wave functions of all the fundamental particles in Physics. Fundamental particles such as electrons and positrons are considered to be point particles in the Standard Model of Physics and are not considered to have a structure. This paper demonstrates that they do indeed have structure and that this structure extends into the space around the particle’s center (in fact, they have infinite extent), but with rapidly diminishing energy density with the distance from that center. The particles are formed from Electromagnetic standing waves, which are stable solutions to the Schrödinger and Classical wave equations. This stable structure therefore accounts for both the wave and particle nature of these particles. In fact, all of their properties such as mass, spin and electric charge, can be accounted for from this structure. These particle properties appear to originate from a single point at the center of the wave function structure, in the same sort of way that the Shell theorem of gravity causes the gravity of a body to appear to all originate from a central point. This paper represents the first two fully characterized fundamental particles, with a complete description of their structure and properties, built up from the underlying Electromagnetic waves that comprise these and all fundamental particles.展开更多
This paper shows that first integrals of discrete equation of motion for Birkhoff systems can be determined explicitly by investigating the invariance properties of the discrete Pfaffian. The result obtained is a disc...This paper shows that first integrals of discrete equation of motion for Birkhoff systems can be determined explicitly by investigating the invariance properties of the discrete Pfaffian. The result obtained is a discrete analogue of theorem of Noether in the calculus of variations. An example is given to illustrate the application of the results.展开更多
In this paper, we generalize the method of mechanical theorem proving in curves to prove theorems about surfaces in differential geometry with a mechanical procedure. We improve the classical result on Wronskian deter...In this paper, we generalize the method of mechanical theorem proving in curves to prove theorems about surfaces in differential geometry with a mechanical procedure. We improve the classical result on Wronskian determinant, which can be used to decide whether the elements in a partial differential field are linearly dependent over its constant field. Based on Wronskian determinant, we can describe the geometry statements in the surfaces by an algebraic language and then prove them by the characteristic set method.展开更多
We utilize the topological-geometrical structure imposed by the Heterotic superstring theory on spacetime in conjunction with the K3 Kähler manifold to explain the mysterious nature of dark matter and its cou...We utilize the topological-geometrical structure imposed by the Heterotic superstring theory on spacetime in conjunction with the K3 Kähler manifold to explain the mysterious nature of dark matter and its coupling to the pure dark energy density of the cosmos. The analogous situations in the case of a Kerr black hole as well as the redundant components of the Riemannian tensor are pointed out and the final result was found to be in complete agreement with all previous theoretical ones as well as all recent accurate measurements and cosmic observations. We conclude by commenting briefly on the Cantorian model of Zitterbewegung and the connection between Olbers’s paradox and dark energy.展开更多
After half a century research, the mechanical theorem proving in geometries has become an active research topic in the automated reasoning field. This review involves three approaches on automated generating readable ...After half a century research, the mechanical theorem proving in geometries has become an active research topic in the automated reasoning field. This review involves three approaches on automated generating readable machine proofs for geometry theorems which include search methods, coordinate-free methods, and formal logic methods. Some critical issues about these approaches are also discussed. Furthermore, the authors propose three further research directions for the readable machine proofs for geometry theorems, including geometry inequalities, intelligent geometry softwares and machine learning.展开更多
文摘The author presents a new approach which is used to solve an important Diophantine problem. An elementary argument is used to furnish another fully transparent proof of Fermat’s Last Theorem. This was first stated by Pierre de Fermat in the seventeenth century. It is widely regarded that no elementary proof of this theorem exists. The author provides evidence to dispel this belief.
文摘This article presents a brief and new solution to the problem known as the “Fermat’s Last Theorem”. It is achieved without the use of abstract algebra elements or elements from other fields of modern mathematics of the twentieth century. For this reason it can be easily understood by any mathematician or by anyone who knows basic mathematics. The important thing is that the above “theorem” is generalized. Thus, this generalization is essentially a new theorem in the field of number theory.
基金by Dr Kemp from National Mathematics and Science College.
文摘This article offers a simple but rigorous proof of Brouwer’s fixed point theorem using Sperner’s Lemma.The general method I have used so far in the proof is mainly to convert the n-dimensional shapes to the corresponding case under the Sperner’s Labeling and apply the Sperner’s Lemma to solve the question.
文摘Using the same method that we used in [1] to prove Fermat’s Last Theorem in a simpler and truly marvellous way, we demonstrate that Beal’s Conjecture yields—in the simplest imaginable manner, to our effort to prove it.
文摘If the concept of proof (including arithmetic proof) is syntactically restricted to closed sentences (or their Godel numbers), then the standard accounts of Godel's Incompleteness Theorems (and Lob's Theorem) are blocked. In these standard accounts (Godel's own paper and the exposition in Boolos' Computability and Logic are treated as exemplars), it is assumed that certain formulas (notably so called "Godel sentences") containing the Godel number of an open sentence and an arithmetic proof predicate are closed sentences. Ordinary usage of the term "provable" (and indeed "unprovable") favors their restriction to closed sentences which unlike so-called open sentences can be true or false. In this paper the restricted form of provability is called strong provability or unprovability. If this concept of proof is adopted, then there is no obvious alternative path to establishing those theorems.
文摘Bell tests with entangled light have been performed many times in many ways using linear polarizers, but the same tests have never been done with a circular polarizer. Until recently there has never been a true circular polarization beamsplitter—an optical component that separates light directly into left and right handed polarizations. Using a true circular polarization beamsplitter based on birefringent gratings, entangled light has been analyzed with unexpected results.
文摘The wave/particle duality of particles in Physics is well known. Particles have properties that uniquely characterize them from one another, such as mass, charge and spin. Charged particles have associated Electric and Magnetic fields. Also, every moving particle has a De Broglie wavelength determined by its mass and velocity. This paper shows that all of these properties of a particle can be derived from a single wave function equation for that particle. Wave functions for the Electron and the Positron are presented and principles are provided that can be used to calculate the wave functions of all the fundamental particles in Physics. Fundamental particles such as electrons and positrons are considered to be point particles in the Standard Model of Physics and are not considered to have a structure. This paper demonstrates that they do indeed have structure and that this structure extends into the space around the particle’s center (in fact, they have infinite extent), but with rapidly diminishing energy density with the distance from that center. The particles are formed from Electromagnetic standing waves, which are stable solutions to the Schrödinger and Classical wave equations. This stable structure therefore accounts for both the wave and particle nature of these particles. In fact, all of their properties such as mass, spin and electric charge, can be accounted for from this structure. These particle properties appear to originate from a single point at the center of the wave function structure, in the same sort of way that the Shell theorem of gravity causes the gravity of a body to appear to all originate from a central point. This paper represents the first two fully characterized fundamental particles, with a complete description of their structure and properties, built up from the underlying Electromagnetic waves that comprise these and all fundamental particles.
基金Project partially supported by the National Natural Science Foundation of China (Grant No 10172056) and the Science Research of the Education Bureau of Anhui Province, China (Grant No 2006KJ263B). Acknowledgement We wish to thank the referees for their careful reading of the manuscript and their useful remarks which helped us to improve the quality of this paper.
文摘This paper shows that first integrals of discrete equation of motion for Birkhoff systems can be determined explicitly by investigating the invariance properties of the discrete Pfaffian. The result obtained is a discrete analogue of theorem of Noether in the calculus of variations. An example is given to illustrate the application of the results.
基金the National Key Basic Research Project of China (Grant No.2004CB318000)
文摘In this paper, we generalize the method of mechanical theorem proving in curves to prove theorems about surfaces in differential geometry with a mechanical procedure. We improve the classical result on Wronskian determinant, which can be used to decide whether the elements in a partial differential field are linearly dependent over its constant field. Based on Wronskian determinant, we can describe the geometry statements in the surfaces by an algebraic language and then prove them by the characteristic set method.
文摘We utilize the topological-geometrical structure imposed by the Heterotic superstring theory on spacetime in conjunction with the K3 Kähler manifold to explain the mysterious nature of dark matter and its coupling to the pure dark energy density of the cosmos. The analogous situations in the case of a Kerr black hole as well as the redundant components of the Riemannian tensor are pointed out and the final result was found to be in complete agreement with all previous theoretical ones as well as all recent accurate measurements and cosmic observations. We conclude by commenting briefly on the Cantorian model of Zitterbewegung and the connection between Olbers’s paradox and dark energy.
基金supported by the Funds of the Chinese Academy of Sciences for Key Topics in Innovation Engineering under Grant No.KJCX2-YW-S02
文摘After half a century research, the mechanical theorem proving in geometries has become an active research topic in the automated reasoning field. This review involves three approaches on automated generating readable machine proofs for geometry theorems which include search methods, coordinate-free methods, and formal logic methods. Some critical issues about these approaches are also discussed. Furthermore, the authors propose three further research directions for the readable machine proofs for geometry theorems, including geometry inequalities, intelligent geometry softwares and machine learning.