To investigate the effects of temperature and moisture content(MC) on acoustic wave velocity(AWV)in wood,the relationships between wood temperature,MC,and AWV were theoretically analyzed.According to the theoretical p...To investigate the effects of temperature and moisture content(MC) on acoustic wave velocity(AWV)in wood,the relationships between wood temperature,MC,and AWV were theoretically analyzed.According to the theoretical propagation characteristics of the acoustic waves in the wood mixture and the differences in velocity among various media(including ice,water,pure wood or oven-dried wood),theoretical relationships of temperature,MC,and AWV were established,assuming that the samples in question were composed of a simple mixture of wood and water or of wood and ice.Using the theoretical model,the phase transition of AWV in green wood near the freezing point(as derived from previous experimental results) was plausibly described.By comparative analysis between theoretical and experimental models for American red pine(Pinus resinosa) samples,it was established that the theoretically predicted AWV values matched the experiment results when the temperature of the wood was below the freezing point of water,with an averageprediction error of 1.66%.The theoretically predicted AWV increased quickly in green wood as temperature decreased and changed suddenly near 0 °C,consistent with the experimental observations.The prediction error of the model was relatively large when the temperature of the wood was above the freezing point,probably due to an overestimation of the effect of the liquid water content on the acoustic velocity and the limited variables of the model.The high correlation between the predicted and measured acoustic velocity values in frozen wood samples revealed the mechanisms of temperature,MC,and water status and how these affected the wood(particularly its acoustic velocity below freezing point of water).This result also verified the reliability of a previous experimental model used to adjust for the effect of temperature during field testing of trees.展开更多
The major elements, rare earth elements (REE) and trace elements of four basalt samples from central and western Pacific ferro- manganese crust provinces have been analyzed using chemical methods and ICP - MS, respe...The major elements, rare earth elements (REE) and trace elements of four basalt samples from central and western Pacific ferro- manganese crust provinces have been analyzed using chemical methods and ICP - MS, respectively. The results indicate that the samples have been extensively altered and that the contents of their major elements have changed significantly. However, the similarity of REE partition patterns and trace element contents of basalt samples to those of fresh oceanic island basalts (OIB) indicate that the basalt samples originated as OIB. Because of low-temperature alteration, the contents of A1203 , Fe203 , MnO, K20 and P205 increased, while MgO and FeO decreased. Active components, such as magnesium and iron, were leached from OIB resulting in the relative enrichment of SiO2. The leaching of active components can cause the relative enrichment of REE, while the precipitation of LREE-rich ferromanganese oxides in vesicles and fissures not only causes an increase of REE contents, but also induces "fractionation" of LREE and HREE. Based on the enrichment mechanism of REE contents, the theoretical quantities of precipitated ferromanganese oxides and the depleted quantities of active components are calculated : the depleted quantities of active components for the unit mass of fresh basalts vary in the range of 0.15 ~ 0. 657, and the precipitated quantities of ferromanganese oxides for the unit mass of fresh basahs vary in the range of 0. 006 ~ 0. 042. Of the major elements, the two most depleted are iron, and magnesium, with 18.28% ~ 70.95% of iron and 44.50% ~ 93.94% of magnesium in the fresh basalts was leached out. Theoretical calculation and geochemistry results both indicate that low-temperature alteration of basalts can supply abundant amount of metals to seawater, and may play an important role in ocean metal circulation.展开更多
Applications, theoretical analysis and numerical methods are introduced for the simulation of mechanical models and principles of the porous flow in high temperature, high salt, complicated geology and large-scale res...Applications, theoretical analysis and numerical methods are introduced for the simulation of mechanical models and principles of the porous flow in high temperature, high salt, complicated geology and large-scale reservoirs in this paper. Considering petroleum geology, geochemistry, computational permeation fluid mechanics and computer technology, we state the models of permeation fluid mechanics and put forward a sequence of implicit upwind difference iteration schemes based on refined fractional steps of the upstream, which can compute the pressures, the saturation and the concentrations of different chemistry components. A type of software applicable in major industries has been completed and carried out in numerical analysis and simulations of oil extraction in Shengli Oil-field, which brings huge economic benefits and social benefits. This software gives many characters: spatial steps are taken as ten meters, the number of nodes is up to hundreds of thousands and simulation time period can be tens of years and the high-order accuracy can be promised in numerical data. Precise analysis is present for simplified models of this type and that provides a tool to solve the international famous problem.展开更多
On the basis of the existing originally modified calculation models of theoretical combustion temperature(TCT),some factors,such as the combustion ratio of pulverized coal injection(PCI),the decomposition heat of ...On the basis of the existing originally modified calculation models of theoretical combustion temperature(TCT),some factors,such as the combustion ratio of pulverized coal injection(PCI),the decomposition heat of PCI and the heat consumption of SiO2 in ash reduced in high temperature environment,were amended and improved to put forward a more comprehensive model for calculating TCT.The influences of each improvement on TCT were studied and the results were analyzed compared with those of traditional model and originally modified model,which showed that the present model could reflect the thermal state of a hearth more effectively.展开更多
The theoretical flame temperature (TFT) before tuyere, always highly concerned by blast furnace (BF) operators, is one of the most important parameters for evaluating the thermal state of hearth. However, some inf...The theoretical flame temperature (TFT) before tuyere, always highly concerned by blast furnace (BF) operators, is one of the most important parameters for evaluating the thermal state of hearth. However, some influ- encing parameters, for example, the SiO2 reduction by carbon, were always neglected or inaccurate when calculating the TFT. According to the definition of TFT, the temperature of coke into raceway and the reduction rate of SiO2 in ash of coke and pulverized coal were obtained by analyzing the samples before tuyere in blast furnace. Taking full ac- count of different factors, a modified model for calculating the TFT in blast furnace was established. The effects of the oxygen enrichment rate, the reduction rate of SiO2 in raceway, the ash content in coke and pulverized coal and the pulverized coal injection (PCI) rate on TFT were determined quantitatively. The modified model was applied to selecting the used coal for PCI in blast furnace. Considering the different SiO2 contents of mixed coal, the calculated TFT remained a stable level. This showed that the selected coal could be suitable for PCI in blast furnace.展开更多
It is well known that the ambient temperature is a sensitive parameter which has a great effect on biology, technology, geology and even on human behavior. A prediction is a statement about an uncertain event. It is o...It is well known that the ambient temperature is a sensitive parameter which has a great effect on biology, technology, geology and even on human behavior. A prediction is a statement about an uncertain event. It is often, but not always, based upon experience or knowl- edge. Although guaranteed accurate information about the future is in many cases impossible, prediction can be useful to assist in making plans about possible developments. As a result, temperature profiles can be developed which accurately represent the expected ambient temperature exposure that this environment experiences during mea- surement. The ambient temperature over time is modeled based on the previous Train and Tmax data and using a Lagrange interpolation. To observe the comprehensive variation of ambient temperature the profile must be determined numerically. The model proposed in this paper can provide an acceptable way to measure the change in ambient temperature.展开更多
Effective monitoring of atmospheric concentrations is vital for assessing the Stockholm Convention's effectiveness on persistent organic pollutants(POPs).This task,particularly challenging in polar regions due to ...Effective monitoring of atmospheric concentrations is vital for assessing the Stockholm Convention's effectiveness on persistent organic pollutants(POPs).This task,particularly challenging in polar regions due to low air concentrations and temperature fluctuations,requires robust sampling techniques.Furthermore,the influence of temperature on the sampling efficiency of polyurethane foam discs remains unclear.Here we employ a flow-through sampling(FTS)column coupled with an active pump to collect air samples at varying temperatures.We delved into breakthrough profiles of key pollutants,such as polycyclic aromatic hydrocarbons(PAHs),polychlorobiphenyls(PCBs),and organochlorine pesticides(OCPs),and examined the temperature-dependent behaviors of the theoretical plate number(N)and breakthrough volume(VB)using frontal chromatography theory.Our findings reveal a significant relationship between temperature dependence coefficients(K_(TN),K_(TV))and compound volatility,with decreasing values as volatility increases.While distinct trends are noted for PAHs,PCBs,and OCPs in KTN,KTV values exhibit similar patterns across all chemicals.Moreover,we establish a binary linear correlation between log(V_(B)/m^(3)),1/(T/K),and N,simplifying breakthrough level estimation by enabling easy conversion between N and VB.Finally,an empirical linear solvation energy relationship incorporating a temperature term is developed,yielding satisfactory results for N at various temperatures.This approach holds the potential to rectify temperature-related effects and loss rates in historical data from long-term monitoring networks,benefiting polar and remote regions.展开更多
基金funded by the National Natural Science Foundation of China(Grant Nos.31600453 and 31570547)Fundamental Research Funds for the Central Universities(Grant No.2572017EB02)Natural Science Foundation of Heilongjiang Province,China(Grant No.C201403)
文摘To investigate the effects of temperature and moisture content(MC) on acoustic wave velocity(AWV)in wood,the relationships between wood temperature,MC,and AWV were theoretically analyzed.According to the theoretical propagation characteristics of the acoustic waves in the wood mixture and the differences in velocity among various media(including ice,water,pure wood or oven-dried wood),theoretical relationships of temperature,MC,and AWV were established,assuming that the samples in question were composed of a simple mixture of wood and water or of wood and ice.Using the theoretical model,the phase transition of AWV in green wood near the freezing point(as derived from previous experimental results) was plausibly described.By comparative analysis between theoretical and experimental models for American red pine(Pinus resinosa) samples,it was established that the theoretically predicted AWV values matched the experiment results when the temperature of the wood was below the freezing point of water,with an averageprediction error of 1.66%.The theoretically predicted AWV increased quickly in green wood as temperature decreased and changed suddenly near 0 °C,consistent with the experimental observations.The prediction error of the model was relatively large when the temperature of the wood was above the freezing point,probably due to an overestimation of the effect of the liquid water content on the acoustic velocity and the limited variables of the model.The high correlation between the predicted and measured acoustic velocity values in frozen wood samples revealed the mechanisms of temperature,MC,and water status and how these affected the wood(particularly its acoustic velocity below freezing point of water).This result also verified the reliability of a previous experimental model used to adjust for the effect of temperature during field testing of trees.
基金The National Natural Science Foundation of China (NSFC) under contract No 40706028the China Oceanic Mineral Resources Re-search and Development Association (COMRA) under contract No DYXM115-01-2-01
文摘The major elements, rare earth elements (REE) and trace elements of four basalt samples from central and western Pacific ferro- manganese crust provinces have been analyzed using chemical methods and ICP - MS, respectively. The results indicate that the samples have been extensively altered and that the contents of their major elements have changed significantly. However, the similarity of REE partition patterns and trace element contents of basalt samples to those of fresh oceanic island basalts (OIB) indicate that the basalt samples originated as OIB. Because of low-temperature alteration, the contents of A1203 , Fe203 , MnO, K20 and P205 increased, while MgO and FeO decreased. Active components, such as magnesium and iron, were leached from OIB resulting in the relative enrichment of SiO2. The leaching of active components can cause the relative enrichment of REE, while the precipitation of LREE-rich ferromanganese oxides in vesicles and fissures not only causes an increase of REE contents, but also induces "fractionation" of LREE and HREE. Based on the enrichment mechanism of REE contents, the theoretical quantities of precipitated ferromanganese oxides and the depleted quantities of active components are calculated : the depleted quantities of active components for the unit mass of fresh basalts vary in the range of 0.15 ~ 0. 657, and the precipitated quantities of ferromanganese oxides for the unit mass of fresh basahs vary in the range of 0. 006 ~ 0. 042. Of the major elements, the two most depleted are iron, and magnesium, with 18.28% ~ 70.95% of iron and 44.50% ~ 93.94% of magnesium in the fresh basalts was leached out. Theoretical calculation and geochemistry results both indicate that low-temperature alteration of basalts can supply abundant amount of metals to seawater, and may play an important role in ocean metal circulation.
文摘Applications, theoretical analysis and numerical methods are introduced for the simulation of mechanical models and principles of the porous flow in high temperature, high salt, complicated geology and large-scale reservoirs in this paper. Considering petroleum geology, geochemistry, computational permeation fluid mechanics and computer technology, we state the models of permeation fluid mechanics and put forward a sequence of implicit upwind difference iteration schemes based on refined fractional steps of the upstream, which can compute the pressures, the saturation and the concentrations of different chemistry components. A type of software applicable in major industries has been completed and carried out in numerical analysis and simulations of oil extraction in Shengli Oil-field, which brings huge economic benefits and social benefits. This software gives many characters: spatial steps are taken as ten meters, the number of nodes is up to hundreds of thousands and simulation time period can be tens of years and the high-order accuracy can be promised in numerical data. Precise analysis is present for simplified models of this type and that provides a tool to solve the international famous problem.
基金Item Sponsored by National Natural Science Foundation of China(50974143)
文摘On the basis of the existing originally modified calculation models of theoretical combustion temperature(TCT),some factors,such as the combustion ratio of pulverized coal injection(PCI),the decomposition heat of PCI and the heat consumption of SiO2 in ash reduced in high temperature environment,were amended and improved to put forward a more comprehensive model for calculating TCT.The influences of each improvement on TCT were studied and the results were analyzed compared with those of traditional model and originally modified model,which showed that the present model could reflect the thermal state of a hearth more effectively.
基金Sponsored by National Natural Science Foundation of China and Baosteel(51274026,50874129)National High-tech Research and Development Program of China(2009AA06Z105)
文摘The theoretical flame temperature (TFT) before tuyere, always highly concerned by blast furnace (BF) operators, is one of the most important parameters for evaluating the thermal state of hearth. However, some influ- encing parameters, for example, the SiO2 reduction by carbon, were always neglected or inaccurate when calculating the TFT. According to the definition of TFT, the temperature of coke into raceway and the reduction rate of SiO2 in ash of coke and pulverized coal were obtained by analyzing the samples before tuyere in blast furnace. Taking full ac- count of different factors, a modified model for calculating the TFT in blast furnace was established. The effects of the oxygen enrichment rate, the reduction rate of SiO2 in raceway, the ash content in coke and pulverized coal and the pulverized coal injection (PCI) rate on TFT were determined quantitatively. The modified model was applied to selecting the used coal for PCI in blast furnace. Considering the different SiO2 contents of mixed coal, the calculated TFT remained a stable level. This showed that the selected coal could be suitable for PCI in blast furnace.
文摘It is well known that the ambient temperature is a sensitive parameter which has a great effect on biology, technology, geology and even on human behavior. A prediction is a statement about an uncertain event. It is often, but not always, based upon experience or knowl- edge. Although guaranteed accurate information about the future is in many cases impossible, prediction can be useful to assist in making plans about possible developments. As a result, temperature profiles can be developed which accurately represent the expected ambient temperature exposure that this environment experiences during mea- surement. The ambient temperature over time is modeled based on the previous Train and Tmax data and using a Lagrange interpolation. To observe the comprehensive variation of ambient temperature the profile must be determined numerically. The model proposed in this paper can provide an acceptable way to measure the change in ambient temperature.
基金supported by the National Natural Science Foundation of China(No.21976171,41905115)the CAS Strategic Priority Research Program(XDA23020301)+1 种基金the Guangxi Key Research and Development Program(GuikeAB21220063)the Ministry of Science and Technology of the People's Republic of China(2016YFE0112200),and Guangxi First-class Disciplines(Agricultural Resources and Environment).
文摘Effective monitoring of atmospheric concentrations is vital for assessing the Stockholm Convention's effectiveness on persistent organic pollutants(POPs).This task,particularly challenging in polar regions due to low air concentrations and temperature fluctuations,requires robust sampling techniques.Furthermore,the influence of temperature on the sampling efficiency of polyurethane foam discs remains unclear.Here we employ a flow-through sampling(FTS)column coupled with an active pump to collect air samples at varying temperatures.We delved into breakthrough profiles of key pollutants,such as polycyclic aromatic hydrocarbons(PAHs),polychlorobiphenyls(PCBs),and organochlorine pesticides(OCPs),and examined the temperature-dependent behaviors of the theoretical plate number(N)and breakthrough volume(VB)using frontal chromatography theory.Our findings reveal a significant relationship between temperature dependence coefficients(K_(TN),K_(TV))and compound volatility,with decreasing values as volatility increases.While distinct trends are noted for PAHs,PCBs,and OCPs in KTN,KTV values exhibit similar patterns across all chemicals.Moreover,we establish a binary linear correlation between log(V_(B)/m^(3)),1/(T/K),and N,simplifying breakthrough level estimation by enabling easy conversion between N and VB.Finally,an empirical linear solvation energy relationship incorporating a temperature term is developed,yielding satisfactory results for N at various temperatures.This approach holds the potential to rectify temperature-related effects and loss rates in historical data from long-term monitoring networks,benefiting polar and remote regions.