A low-frequency multi-mode ultrasonic Lamb wave method suitable for character- izing the thickness, the density and the elastic constants of the ultra-thin transversely isotropic laminate composite is presented. The &...A low-frequency multi-mode ultrasonic Lamb wave method suitable for character- izing the thickness, the density and the elastic constants of the ultra-thin transversely isotropic laminate composite is presented. The 'ultra-thin' here means that the thickness of the plate is much less than the wavelength of the ultrasonic wave so that the echoes from the front and back faces of the plate can't be separated in the time domain. The dispersion equations for the low frequency ultrasonic Lamb waves with the propagation directions parallel and vertical to the fiber direction are derived. In conjunction with the least square algorithm method, the secant algorithm is used to estimate the parameters of the ultra-thin fiber-reinforced composite layer. The evaluation errors and the sensitivity of the method to different paramters of the thin composite are analyzed. The technique has been used to characterize the ultra-thin grass fiber reinforced PES composite with thickness down to ten percents of the ultrasonic wavelength. It is observed that the agreement between the nominal and the estimation values is reasonably good.展开更多
Ceria-zirconia mixed oxides(CZMO)are widely used in many important catalysis fields.However,pure CZMO is known to have poor thermal stability.In this paper,a strategy was proposed to design Ce_(0.475)Zr_(0.475)M_(0.05...Ceria-zirconia mixed oxides(CZMO)are widely used in many important catalysis fields.However,pure CZMO is known to have poor thermal stability.In this paper,a strategy was proposed to design Ce_(0.475)Zr_(0.475)M_(0.05)O_(2)(M=La,Y,Pr,Nd,Pm,Sm,Eu,Gd,Tb,Er,Lu,and,Yb)oxide surface with high thermal stability by using first-principles molecular dynamics(FPMD)simulation and experiment method.Through the structure stability analysis at different temperatures,the surface energyγas a function of R_(ion)/D_(ave)is identified as a quantitative structure descriptor for analyzing the doping effect of rare earth(RE)elements on the thermal stability of Ce_(0.475)Zr_(0.475)M_(0.05)O_(2).By doping the suitable RE,γcan be adjusted to the optimal range to enhance the thermal stability of Ce_(0.475)Zr_(0.475)M_(0.05)O_(2).With this strategy,it can be predicted that the sequence of thermal stability improvement is Y>La>Gd>Nd>Pr>Pm>Sm>Eu>Tb>Er>Yb>Lu,which was further verified by our experiment results.After thermal treatment at 1100℃for 10 h,the specific surface area(SSA)of aged Y-CZ and La-CZ samples can reach 21.34 and 19.51 m~2/g,which is 63.02%and 49.04%higher than the CZMO sample without doping because the surface doping of Y and La is in favor of inhibiting the surface atoms thermal displacement.In a word,the strategy proposed in this work can be expected to provide a viable way for designing the highly efficient CZMO materials in extensive applications and promoting the usages of the high-abundance rare-earth elements Y and La.展开更多
International and domestic research progress in theory and experiment and applications of the air-to-water sound transmission are presented in this paper. Four classical numerical methods of calculating the underwater...International and domestic research progress in theory and experiment and applications of the air-to-water sound transmission are presented in this paper. Four classical numerical methods of calculating the underwater sound field gener- ated by an airborne source, i.e., the ray theory, the wave solution, the normal-mode theory and the wavenumber integration approach, are introduced. Effects of two special conditions, i.e., the moving airborne source or medium and the rough air-water interface, on the air-to-water sound transmission are reviewed. In experimental studies, the depth and range distributions of the underwater sound field created by different kinds of airborne sources in near-field and far-field, the longitudinal horizontal correlation of underwater sound field and application methods for inverse problems are reviewed.展开更多
基金the National Natural Science Foundation of China (No. 69631020) and theOffice of Naval Research of America (00014-93-1-0340).
文摘A low-frequency multi-mode ultrasonic Lamb wave method suitable for character- izing the thickness, the density and the elastic constants of the ultra-thin transversely isotropic laminate composite is presented. The 'ultra-thin' here means that the thickness of the plate is much less than the wavelength of the ultrasonic wave so that the echoes from the front and back faces of the plate can't be separated in the time domain. The dispersion equations for the low frequency ultrasonic Lamb waves with the propagation directions parallel and vertical to the fiber direction are derived. In conjunction with the least square algorithm method, the secant algorithm is used to estimate the parameters of the ultra-thin fiber-reinforced composite layer. The evaluation errors and the sensitivity of the method to different paramters of the thin composite are analyzed. The technique has been used to characterize the ultra-thin grass fiber reinforced PES composite with thickness down to ten percents of the ultrasonic wavelength. It is observed that the agreement between the nominal and the estimation values is reasonably good.
基金Project supported by China Postdoctoral Science Foundation(2020M680616)Major State Research Development Program of Hebei province(20374202D)。
文摘Ceria-zirconia mixed oxides(CZMO)are widely used in many important catalysis fields.However,pure CZMO is known to have poor thermal stability.In this paper,a strategy was proposed to design Ce_(0.475)Zr_(0.475)M_(0.05)O_(2)(M=La,Y,Pr,Nd,Pm,Sm,Eu,Gd,Tb,Er,Lu,and,Yb)oxide surface with high thermal stability by using first-principles molecular dynamics(FPMD)simulation and experiment method.Through the structure stability analysis at different temperatures,the surface energyγas a function of R_(ion)/D_(ave)is identified as a quantitative structure descriptor for analyzing the doping effect of rare earth(RE)elements on the thermal stability of Ce_(0.475)Zr_(0.475)M_(0.05)O_(2).By doping the suitable RE,γcan be adjusted to the optimal range to enhance the thermal stability of Ce_(0.475)Zr_(0.475)M_(0.05)O_(2).With this strategy,it can be predicted that the sequence of thermal stability improvement is Y>La>Gd>Nd>Pr>Pm>Sm>Eu>Tb>Er>Yb>Lu,which was further verified by our experiment results.After thermal treatment at 1100℃for 10 h,the specific surface area(SSA)of aged Y-CZ and La-CZ samples can reach 21.34 and 19.51 m~2/g,which is 63.02%and 49.04%higher than the CZMO sample without doping because the surface doping of Y and La is in favor of inhibiting the surface atoms thermal displacement.In a word,the strategy proposed in this work can be expected to provide a viable way for designing the highly efficient CZMO materials in extensive applications and promoting the usages of the high-abundance rare-earth elements Y and La.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11434012 and 11674349)
文摘International and domestic research progress in theory and experiment and applications of the air-to-water sound transmission are presented in this paper. Four classical numerical methods of calculating the underwater sound field gener- ated by an airborne source, i.e., the ray theory, the wave solution, the normal-mode theory and the wavenumber integration approach, are introduced. Effects of two special conditions, i.e., the moving airborne source or medium and the rough air-water interface, on the air-to-water sound transmission are reviewed. In experimental studies, the depth and range distributions of the underwater sound field created by different kinds of airborne sources in near-field and far-field, the longitudinal horizontal correlation of underwater sound field and application methods for inverse problems are reviewed.