Three fundamental problems in the calculation of train derailment abroad and at home were pointed out and the solutions to these problems were presented. The theory of random energy analysis for train derailment was s...Three fundamental problems in the calculation of train derailment abroad and at home were pointed out and the solutions to these problems were presented. The theory of random energy analysis for train derailment was suggested. The main contents of this theory are as follows: geometric criterion of derailment; method of random energy analysis of transverse vibration of train track system; mechanism of derailment and energy increment criterion for derailment evaluation; calculation of the entire derailment course of train. This theory is used to calculate a case of freight train derailment, which corresponds to an actually occurring accident. Another derailment test, in which the train is judged not to be derailed, is calculated and the maximum vibration response is well correspond to the test results. And the effectiveness and practicability of the theory are proved by the two calculated cases.展开更多
Monte Carlo Analysis has been an accepted method for circuit tolerance analysis, but the heavy computational complexity has always prevented its applications. Based on random set theory, this paper presents a simple a...Monte Carlo Analysis has been an accepted method for circuit tolerance analysis, but the heavy computational complexity has always prevented its applications. Based on random set theory, this paper presents a simple and flexible tolerance analysis method to estimate circuit yield. It is the alternative to Monte Carlo analysis, but reduces the number of calculations dramatically.展开更多
According to the Bruggeman theory and Maxwell-Garnett theory, the effective dielectric constant of a two-phase random composite with an interfacial shell is presented. The nonlinearity of the theory is obvious. Especi...According to the Bruggeman theory and Maxwell-Garnett theory, the effective dielectric constant of a two-phase random composite with an interfacial shell is presented. The nonlinearity of the theory is obvious. Especially, the theory is suited to study the dielectric properties of two-phase random composites with a spherical interfacial shell. The theoretical results on dielectric properties of polystyrene-barium titanate composites with an interfacial shell are in good agreement with experimental data.展开更多
The bimodal random crystal field (A) effects are investigated on the phase diagrams of spin-3/2 Ising model by using the effective-field theory with correlations based on two approximations: the general van der Wae...The bimodal random crystal field (A) effects are investigated on the phase diagrams of spin-3/2 Ising model by using the effective-field theory with correlations based on two approximations: the general van der Waerden identity and the approximated van der Waerden identity. In our approach, the crystal field is either turned on or turned off randomly for a given probability p or q = 1 -p, respectively. Then the phase diagrams are constructed on the (A,kT/J) and (p,kT/J) planes for given p and A, respectively, when the coordination number is z = 3. Furthermore, the effect of randomization of the crystal field is illustrated on the (△,kT/J) plane for p = 0.5 when z - 3,4, and 6. All these are carried out for both approximations and then the results are compared to point out the differences. In addition to the lines of second-order phase transitions, the model also exhibits first-order phase transitions and the lines of which terminate at the isolated critical points for high p values.展开更多
Random Matrix Theory (RMT) is a valuable tool for describing the asymptotic behavior of multiple systems,especially for large matrices. In this paper,using asymptotic random matrix theory,a new cooperative Multiple-In...Random Matrix Theory (RMT) is a valuable tool for describing the asymptotic behavior of multiple systems,especially for large matrices. In this paper,using asymptotic random matrix theory,a new cooperative Multiple-Input Multiple-Output (MIMO) scheme for spectrum sensing is proposed,which shows how asymptotic free property of random matrices and the property of Wishart distribution can be used to assist spectrum sensing for Cognitive Radios (CRs). Simulations over Rayleigh fading and AWGN channels demonstrate the proposed scheme has better detection performance compared with the energy detection techniques even in the case of a small sample of observations.展开更多
We propose and apply a new algorithm of principal component analysis which is suitable for a large sized, highly random time series data, such as a set of stock prices in a stock market. This algorithm utilizes the fa...We propose and apply a new algorithm of principal component analysis which is suitable for a large sized, highly random time series data, such as a set of stock prices in a stock market. This algorithm utilizes the fact that the major part of the time series is random, and compare the eigenvalue spectrum of cross correlation matrix of a large set of random time series, to the spectrum derived by the random matrix theory (RMT) at the limit of large dimension (the number of independent time series) and long enough length of time series. We test this algorithm on the real tick data of American stocks at different years between 1994 and 2002 and show that the extracted principal components indeed reflects the change of leading stock sectors during this period.展开更多
This paper presents a new idea, named as modeling multisensor-heterogeneous information, to incorporate the fuzzy logic methodologies with mulitsensor-multitarget system under the framework of random set theory. First...This paper presents a new idea, named as modeling multisensor-heterogeneous information, to incorporate the fuzzy logic methodologies with mulitsensor-multitarget system under the framework of random set theory. Firstly, based on strong random set and weak random set, the unified form to describe both data (unambiguous information) and fuzzy evidence (uncertain information) is introduced. Secondly, according to signatures of fuzzy evidence, two Bayesian-markov nonlinear measurement models are proposed to fuse effectively data and fuzzy evidence. Thirdly, by use of "the models-based signature-matching scheme", the operation of the statistics of fuzzy evidence defined as random set can be translated into that of the membership functions of relative point state variables. These works are the basis to construct qualitative measurement models and to fuse data and fuzzy evidence.展开更多
We have applied the Random Matrix Theory in order to examine the validity of the NPT treatment in HSP. We have investigated the pathology examining the sEMG recorded signal for about eight minutes. We have performed s...We have applied the Random Matrix Theory in order to examine the validity of the NPT treatment in HSP. We have investigated the pathology examining the sEMG recorded signal for about eight minutes. We have performed standard electromyographic investigations as well as we have applied the RMT method of analysis. We have investigated the sEMG signals before and after the NPT treatment. The application of a so robust method as the RMT evidences that the NPT treatment was able to induce a net improvement of the disease respect to the pathological status before NPT.展开更多
In this paper, a method of power quality disturbance classification based on random matrix theory (RMT) is proposed. The method utilizes the power quality disturbance signal to construct a random matrix. By analyzing ...In this paper, a method of power quality disturbance classification based on random matrix theory (RMT) is proposed. The method utilizes the power quality disturbance signal to construct a random matrix. By analyzing the mean spectral radius (MSR) variation of the random matrix, the type and time of occurrence of power quality disturbance are classified. In this paper, the random matrix theory is used to analyze the voltage sag, swell and interrupt perturbation signals to classify the occurrence time, duration of the disturbance signal and thedepth of voltage sag or swell. Examples show that the method has strong anti-noise ability.展开更多
In the realm of large-scale machine learning,it is crucial to explore methods for reducing computational complexity and memory demands while maintaining generalization performance.Additionally,since the collected data...In the realm of large-scale machine learning,it is crucial to explore methods for reducing computational complexity and memory demands while maintaining generalization performance.Additionally,since the collected data may contain some sensitive information,it is also of great significance to study privacy-preserving machine learning algorithms.This paper focuses on the performance of the differentially private stochastic gradient descent(SGD)algorithm based on random features.To begin,the algorithm maps the original data into a lowdimensional space,thereby avoiding the traditional kernel method for large-scale data storage requirement.Subsequently,the algorithm iteratively optimizes parameters using the stochastic gradient descent approach.Lastly,the output perturbation mechanism is employed to introduce random noise,ensuring algorithmic privacy.We prove that the proposed algorithm satisfies the differential privacy while achieving fast convergence rates under some mild conditions.展开更多
Spectrum sensing in a wideband regime for cognitive radio network(CRN) faces considerably technical challenge due to the constraints on analog-to-digital converters(ADCs).To solve this problem,an eigenvalue-based comp...Spectrum sensing in a wideband regime for cognitive radio network(CRN) faces considerably technical challenge due to the constraints on analog-to-digital converters(ADCs).To solve this problem,an eigenvalue-based compressive wideband spectrum sensing(ECWSS) scheme using random matrix theory(RMT) was proposed in this paper.The ECWSS directly utilized the compressive measurements based on compressive sampling(CS) theory to perform wideband spectrum sensing without requiring signal recovery,which could greatly reduce computational complexity and data acquisition burden.In the ECWSS,to alleviate the communication overhead of secondary user(SU),the sensors around SU carried out compressive sampling at the sub-Nyquist rate instead of SU.Furthermore,the exact probability density function of extreme eigenvalues was used to set the threshold.Theoretical analyses and simulation results show that compared with the existing eigenvalue-based sensing schemes,the ECWSS has much lower computational complexity and cost with no significant detection performance degradation.展开更多
In the hierarchical random effect linear model, the Bayes estimator of random parameter are not only dependent on specific prior distribution but also it is difficult to calculate in most cases. This paper derives the...In the hierarchical random effect linear model, the Bayes estimator of random parameter are not only dependent on specific prior distribution but also it is difficult to calculate in most cases. This paper derives the distributed-free optimal linear estimator of random parameters in the model by means of the credibility theory method. The estimators the authors derive can be applied in more extensive practical scenarios since they are only dependent on the first two moments of prior parameter rather than on specific prior distribution. Finally, the results are compared with some classical models and a numerical example is given to show the effectiveness of the estimators.展开更多
The more diverse the ways and means of information acquisition are,the more complex and various the types of information are. The qualities of available information are usually uncertain,vague,imprecise,incomplete,and...The more diverse the ways and means of information acquisition are,the more complex and various the types of information are. The qualities of available information are usually uncertain,vague,imprecise,incomplete,and so on. However,the information is modeled and fused traditionally in particular,name some of the known theories: evidential,fuzzy sets,possibilistic,rough sets or conditional events,etc. For several years,researchers have explored the unification of theories enabling the fusion of multisource information and have finally considered random set theory as a powerful mathematical tool. This paper attempts to overall review the close relationships between random set theory and other theories,and introduce recent research results which present how different types of information can be dealt with in this unified framework. Finally,some possible future directions are discussed.展开更多
Natural-language information is often mathematically expressed by fuzzy sets. With the random set theory as a bridge, this kind of information can be transformed into fuzzy evidence in Dempster-Shafer (DS) theory. The...Natural-language information is often mathematically expressed by fuzzy sets. With the random set theory as a bridge, this kind of information can be transformed into fuzzy evidence in Dempster-Shafer (DS) theory. Then Dempster's combination rule or other combination rules of evi- dence can be used perfectly for fusing natural-language and other information. However, this traditional transformation involves the use of α -cutsets to construct the focal elements which have to be repre- sented as consonant sets. This construction is very inflexible and unreasonable in some practical ap- plications. In this paper, with the desire to overcome this limitation, a method for constructing more general non-consonant focal elements is proposed based on the random set theory. Some examples are given to show the generality and the efficiency of this new method. Finally, we validate that non-consonant constructions provide less degrees of total uncertainty than that of the consonant case in these examples by using the evaluation criterion of total uncertainty.展开更多
Polynomial-time randomized algorithms were constructed to approximately solve optimal robust performance controller design problems in probabilistic sense and the rigorous mathematical justification of the approach wa...Polynomial-time randomized algorithms were constructed to approximately solve optimal robust performance controller design problems in probabilistic sense and the rigorous mathematical justification of the approach was given. The randomized algorithms here were based on a property from statistical learning theory known as (uniform) convergence of empirical means (UCEM). It is argued that in order to assess the performance of a controller as the plant varies over a pre-specified family, it is better to use the average performance of the controller as the objective function to be optimized, rather than its worst-case performance. The approach is illustrated to be efficient through an example.展开更多
Simultaneous faults often occur in running equipments, in order to solve the problems of the simultaneous faults, a new approach based on random sets and Dezert-Smarandache Theory (DSmT) is proposed in this paper. Fir...Simultaneous faults often occur in running equipments, in order to solve the problems of the simultaneous faults, a new approach based on random sets and Dezert-Smarandache Theory (DSmT) is proposed in this paper. Firstly, the simultaneous faults' model is built based on the generalized frame of discernment in DSmT. Secondly, according to the unified description of combination rules in evidence reasoning based on random sets, a new combination rule for simultaneous faults diagnosis is proposed. Thirdly, according to the working characteristics and environment of the sensors used to acquire fault characteristic information, a new method to construct basic probability assignment function is pro- posed based on membership. Finally, diagnosis result is obtained by use of the new combination rule combined with decision rules. A case pertaining to the fault diagnosis for a multi-function rotor test-bed is given, and the result shows that the proposed diagnosis approach is feasible and efficient.展开更多
To overcome the defects that the traditional ap-proach for multi-objective programming under uncertain ran-dom environment(URMOP)neglects the randomness and uncer-tainty of the problem and the volatility of the result...To overcome the defects that the traditional ap-proach for multi-objective programming under uncertain ran-dom environment(URMOP)neglects the randomness and uncer-tainty of the problem and the volatility of the results,a new ap-proach is proposed based on expected value-standard devi-ation value criterion(C_(ESD) criterion).Firstly,the effective solution to the URMOP problem is defined;then,by applying sequence relationship between the uncertain random variables,the UR-MOP problem is transformed into a single-objective program-ming(SOP)under uncertain random environment(URSOP),which are transformed into a deterministic counterpart based on the C_(ESD) criterion.Then the validity of the new approach is proved that the optimal solution to the SOP problem is also effi-cient for the URMOP problem;finally,a numerical example and a case application are presented to show the effectiveness of the new approach.展开更多
The travel time of rock compressional waves is an essential parameter used for estimating important rock properties,such as porosity,permeability,and lithology.Current methods,like wireline logging tests,provide broad...The travel time of rock compressional waves is an essential parameter used for estimating important rock properties,such as porosity,permeability,and lithology.Current methods,like wireline logging tests,provide broad measurements but lack finer resolution.Laboratory-based rock core measurements offer higher resolution but are resource-intensive.Conventionally,wireline logging and rock core measurements have been used independently.This study introduces a novel approach that integrates both data sources.The method leverages the detailed features from limited core data to enhance the resolution of wireline logging data.By combining machine learning with random field theory,the method allows for probabilistic predictions in regions with sparse data sampling.In this framework,12 parameters from wireline tests are used to predict trends in rock core data.The residuals are modeled using random field theory.The outcomes are high-resolution predictions that combine both the predicted trend and the probabilistic realizations of the residual.By utilizing unconditional and conditional random field theories,this method enables unconditional and conditional simulations of the underlying high-resolution rock compressional wave travel time profile and provides uncertainty estimates.This integrated approach optimizes the use of existing core and logging data.Its applicability is confirmed in an oil project in West China.展开更多
During the analysis of stability heat conduction in the composite tubes, firstly, when the temperature boundary conditions are the random conditions, equations of the mean values and variances of the random thermal fu...During the analysis of stability heat conduction in the composite tubes, firstly, when the temperature boundary conditions are the random conditions, equations of the mean values and variances of the random thermal function are transformed. Secondly, when the heat conduct parameters are the fuzzy numbers and the temperature boundary conditions are the random numbers, interval equations of the heat conduction are presented. Thirdly, by comparison of the interval results, the result in the interval analysis is larger than that in the confidence interval. Moreover the error expecting equation is presented. Finally, with upper (lower) approximation in rough set theory, a new method of the interval analysis to deal with the stability heat conduction is presented.展开更多
Phase diagram and thermodynamic parameters of the random field Ising model (RFIM) on spherical lattice are studied by using mean field theory. This lattice is placed in an external magnetic field (B). The random f...Phase diagram and thermodynamic parameters of the random field Ising model (RFIM) on spherical lattice are studied by using mean field theory. This lattice is placed in an external magnetic field (B). The random field (hi) is assumed to be Gaussian distributed with zero mean and a variance (hi2) = HRF2. The free energy (F), the magnetization (M) and the order parameter (q) are calculated. The ferromagnetic (FM) spin-glass (SG) phase transition is clearly observed. The critical temperature (Tc) is computed under a critical intensity of random field HRF = V/2/πJ. The phase transition from FM to paramagnetic (PM) occurs at TC = J/k in the absence of magnetic field. The critical temperature decreases as HRF increases in the phase boundary of FM-to-SG. The magnetic susceptibility (X) shows a sharp cusp at TC and the specific heat (C) has a singularity in small random field. The internal energy (U) has a similar behaviour to that obtained from the Monte Carlo simulation.展开更多
基金TheNationalNaturalScienceFoundationofChina (No .5 0 0 780 0 6) FoundationoftheScienceandTechnologySectionoftheRailwayBureauofChina (No .2 0 0 1G0 2 9)
文摘Three fundamental problems in the calculation of train derailment abroad and at home were pointed out and the solutions to these problems were presented. The theory of random energy analysis for train derailment was suggested. The main contents of this theory are as follows: geometric criterion of derailment; method of random energy analysis of transverse vibration of train track system; mechanism of derailment and energy increment criterion for derailment evaluation; calculation of the entire derailment course of train. This theory is used to calculate a case of freight train derailment, which corresponds to an actually occurring accident. Another derailment test, in which the train is judged not to be derailed, is calculated and the maximum vibration response is well correspond to the test results. And the effectiveness and practicability of the theory are proved by the two calculated cases.
基金the National Natural Science Foundation of China (No.60772006, 60434020)the Zhejiang Natural Science Foundation (No.R106745, Y1080422).
文摘Monte Carlo Analysis has been an accepted method for circuit tolerance analysis, but the heavy computational complexity has always prevented its applications. Based on random set theory, this paper presents a simple and flexible tolerance analysis method to estimate circuit yield. It is the alternative to Monte Carlo analysis, but reduces the number of calculations dramatically.
文摘According to the Bruggeman theory and Maxwell-Garnett theory, the effective dielectric constant of a two-phase random composite with an interfacial shell is presented. The nonlinearity of the theory is obvious. Especially, the theory is suited to study the dielectric properties of two-phase random composites with a spherical interfacial shell. The theoretical results on dielectric properties of polystyrene-barium titanate composites with an interfacial shell are in good agreement with experimental data.
文摘The bimodal random crystal field (A) effects are investigated on the phase diagrams of spin-3/2 Ising model by using the effective-field theory with correlations based on two approximations: the general van der Waerden identity and the approximated van der Waerden identity. In our approach, the crystal field is either turned on or turned off randomly for a given probability p or q = 1 -p, respectively. Then the phase diagrams are constructed on the (A,kT/J) and (p,kT/J) planes for given p and A, respectively, when the coordination number is z = 3. Furthermore, the effect of randomization of the crystal field is illustrated on the (△,kT/J) plane for p = 0.5 when z - 3,4, and 6. All these are carried out for both approximations and then the results are compared to point out the differences. In addition to the lines of second-order phase transitions, the model also exhibits first-order phase transitions and the lines of which terminate at the isolated critical points for high p values.
基金Supported by the National Natural Science Foundation of China (No.60972039)Natural Science Foundation of Jiangsu Province (No.BK2007729)Natural Science Funding of Jiangsu Province (No.06KJA51001)
文摘Random Matrix Theory (RMT) is a valuable tool for describing the asymptotic behavior of multiple systems,especially for large matrices. In this paper,using asymptotic random matrix theory,a new cooperative Multiple-Input Multiple-Output (MIMO) scheme for spectrum sensing is proposed,which shows how asymptotic free property of random matrices and the property of Wishart distribution can be used to assist spectrum sensing for Cognitive Radios (CRs). Simulations over Rayleigh fading and AWGN channels demonstrate the proposed scheme has better detection performance compared with the energy detection techniques even in the case of a small sample of observations.
文摘We propose and apply a new algorithm of principal component analysis which is suitable for a large sized, highly random time series data, such as a set of stock prices in a stock market. This algorithm utilizes the fact that the major part of the time series is random, and compare the eigenvalue spectrum of cross correlation matrix of a large set of random time series, to the spectrum derived by the random matrix theory (RMT) at the limit of large dimension (the number of independent time series) and long enough length of time series. We test this algorithm on the real tick data of American stocks at different years between 1994 and 2002 and show that the extracted principal components indeed reflects the change of leading stock sectors during this period.
基金Supported by the NSFC(No.60434020,60572051)Science and Technology Key Item of Ministry of Education of the PRC( No.205-092)the ZJNSF(No. R106745)
文摘This paper presents a new idea, named as modeling multisensor-heterogeneous information, to incorporate the fuzzy logic methodologies with mulitsensor-multitarget system under the framework of random set theory. Firstly, based on strong random set and weak random set, the unified form to describe both data (unambiguous information) and fuzzy evidence (uncertain information) is introduced. Secondly, according to signatures of fuzzy evidence, two Bayesian-markov nonlinear measurement models are proposed to fuse effectively data and fuzzy evidence. Thirdly, by use of "the models-based signature-matching scheme", the operation of the statistics of fuzzy evidence defined as random set can be translated into that of the membership functions of relative point state variables. These works are the basis to construct qualitative measurement models and to fuse data and fuzzy evidence.
文摘We have applied the Random Matrix Theory in order to examine the validity of the NPT treatment in HSP. We have investigated the pathology examining the sEMG recorded signal for about eight minutes. We have performed standard electromyographic investigations as well as we have applied the RMT method of analysis. We have investigated the sEMG signals before and after the NPT treatment. The application of a so robust method as the RMT evidences that the NPT treatment was able to induce a net improvement of the disease respect to the pathological status before NPT.
文摘In this paper, a method of power quality disturbance classification based on random matrix theory (RMT) is proposed. The method utilizes the power quality disturbance signal to construct a random matrix. By analyzing the mean spectral radius (MSR) variation of the random matrix, the type and time of occurrence of power quality disturbance are classified. In this paper, the random matrix theory is used to analyze the voltage sag, swell and interrupt perturbation signals to classify the occurrence time, duration of the disturbance signal and thedepth of voltage sag or swell. Examples show that the method has strong anti-noise ability.
基金supported by Zhejiang Provincial Natural Science Foundation of China(LR20A010001)National Natural Science Foundation of China(12271473 and U21A20426)。
文摘In the realm of large-scale machine learning,it is crucial to explore methods for reducing computational complexity and memory demands while maintaining generalization performance.Additionally,since the collected data may contain some sensitive information,it is also of great significance to study privacy-preserving machine learning algorithms.This paper focuses on the performance of the differentially private stochastic gradient descent(SGD)algorithm based on random features.To begin,the algorithm maps the original data into a lowdimensional space,thereby avoiding the traditional kernel method for large-scale data storage requirement.Subsequently,the algorithm iteratively optimizes parameters using the stochastic gradient descent approach.Lastly,the output perturbation mechanism is employed to introduce random noise,ensuring algorithmic privacy.We prove that the proposed algorithm satisfies the differential privacy while achieving fast convergence rates under some mild conditions.
基金National Natural Science Foundations of China(Nos.61201161,61271335)Postdoctoral Science Foundation of Jiangsu Province of China(No.1301002B)
文摘Spectrum sensing in a wideband regime for cognitive radio network(CRN) faces considerably technical challenge due to the constraints on analog-to-digital converters(ADCs).To solve this problem,an eigenvalue-based compressive wideband spectrum sensing(ECWSS) scheme using random matrix theory(RMT) was proposed in this paper.The ECWSS directly utilized the compressive measurements based on compressive sampling(CS) theory to perform wideband spectrum sensing without requiring signal recovery,which could greatly reduce computational complexity and data acquisition burden.In the ECWSS,to alleviate the communication overhead of secondary user(SU),the sensors around SU carried out compressive sampling at the sub-Nyquist rate instead of SU.Furthermore,the exact probability density function of extreme eigenvalues was used to set the threshold.Theoretical analyses and simulation results show that compared with the existing eigenvalue-based sensing schemes,the ECWSS has much lower computational complexity and cost with no significant detection performance degradation.
基金supported by the National Science Foundation of China under Grant Nos.71361015,71340010,71371074the Jiangxi Provincial Natural Science Foundation under Grant No.20142BAB201013+2 种基金China Postdoctoral Science Foundation under Grant No.2013M540534China Postdoctoral Fund special Project under Grant No.2014T70615Jiangxi Postdoctoral Science Foundation under Grant No.2013KY53
文摘In the hierarchical random effect linear model, the Bayes estimator of random parameter are not only dependent on specific prior distribution but also it is difficult to calculate in most cases. This paper derives the distributed-free optimal linear estimator of random parameters in the model by means of the credibility theory method. The estimators the authors derive can be applied in more extensive practical scenarios since they are only dependent on the first two moments of prior parameter rather than on specific prior distribution. Finally, the results are compared with some classical models and a numerical example is given to show the effectiveness of the estimators.
基金Supported in part by the NSFC (No.60934009,60874105)the ZJNSF (Y1080422, R106745)NCET (08-0345)
文摘The more diverse the ways and means of information acquisition are,the more complex and various the types of information are. The qualities of available information are usually uncertain,vague,imprecise,incomplete,and so on. However,the information is modeled and fused traditionally in particular,name some of the known theories: evidential,fuzzy sets,possibilistic,rough sets or conditional events,etc. For several years,researchers have explored the unification of theories enabling the fusion of multisource information and have finally considered random set theory as a powerful mathematical tool. This paper attempts to overall review the close relationships between random set theory and other theories,and introduce recent research results which present how different types of information can be dealt with in this unified framework. Finally,some possible future directions are discussed.
基金Supported by the National Natural Science Foundation of China (60772006) the Zhejiang Natural Science Foundation (R106745, Y1080422)
文摘Natural-language information is often mathematically expressed by fuzzy sets. With the random set theory as a bridge, this kind of information can be transformed into fuzzy evidence in Dempster-Shafer (DS) theory. Then Dempster's combination rule or other combination rules of evi- dence can be used perfectly for fusing natural-language and other information. However, this traditional transformation involves the use of α -cutsets to construct the focal elements which have to be repre- sented as consonant sets. This construction is very inflexible and unreasonable in some practical ap- plications. In this paper, with the desire to overcome this limitation, a method for constructing more general non-consonant focal elements is proposed based on the random set theory. Some examples are given to show the generality and the efficiency of this new method. Finally, we validate that non-consonant constructions provide less degrees of total uncertainty than that of the consonant case in these examples by using the evaluation criterion of total uncertainty.
文摘Polynomial-time randomized algorithms were constructed to approximately solve optimal robust performance controller design problems in probabilistic sense and the rigorous mathematical justification of the approach was given. The randomized algorithms here were based on a property from statistical learning theory known as (uniform) convergence of empirical means (UCEM). It is argued that in order to assess the performance of a controller as the plant varies over a pre-specified family, it is better to use the average performance of the controller as the objective function to be optimized, rather than its worst-case performance. The approach is illustrated to be efficient through an example.
基金Supported by the National Natural Science Foundation of China (No.60434020, No.60772006)the Zhejiang Natural Science Foundation (R106745, Y1080422)
文摘Simultaneous faults often occur in running equipments, in order to solve the problems of the simultaneous faults, a new approach based on random sets and Dezert-Smarandache Theory (DSmT) is proposed in this paper. Firstly, the simultaneous faults' model is built based on the generalized frame of discernment in DSmT. Secondly, according to the unified description of combination rules in evidence reasoning based on random sets, a new combination rule for simultaneous faults diagnosis is proposed. Thirdly, according to the working characteristics and environment of the sensors used to acquire fault characteristic information, a new method to construct basic probability assignment function is pro- posed based on membership. Finally, diagnosis result is obtained by use of the new combination rule combined with decision rules. A case pertaining to the fault diagnosis for a multi-function rotor test-bed is given, and the result shows that the proposed diagnosis approach is feasible and efficient.
基金supported by the National Natural Science Foundation of China(72001213)the basic research program of Natural Science of Shaanxi Province,China(2021JQ-369).
文摘To overcome the defects that the traditional ap-proach for multi-objective programming under uncertain ran-dom environment(URMOP)neglects the randomness and uncer-tainty of the problem and the volatility of the results,a new ap-proach is proposed based on expected value-standard devi-ation value criterion(C_(ESD) criterion).Firstly,the effective solution to the URMOP problem is defined;then,by applying sequence relationship between the uncertain random variables,the UR-MOP problem is transformed into a single-objective program-ming(SOP)under uncertain random environment(URSOP),which are transformed into a deterministic counterpart based on the C_(ESD) criterion.Then the validity of the new approach is proved that the optimal solution to the SOP problem is also effi-cient for the URMOP problem;finally,a numerical example and a case application are presented to show the effectiveness of the new approach.
基金the Australian Government through the Australian Research Council's Discovery Projects funding scheme(Project DP190101592)the National Natural Science Foundation of China(Grant Nos.41972280 and 52179103).
文摘The travel time of rock compressional waves is an essential parameter used for estimating important rock properties,such as porosity,permeability,and lithology.Current methods,like wireline logging tests,provide broad measurements but lack finer resolution.Laboratory-based rock core measurements offer higher resolution but are resource-intensive.Conventionally,wireline logging and rock core measurements have been used independently.This study introduces a novel approach that integrates both data sources.The method leverages the detailed features from limited core data to enhance the resolution of wireline logging data.By combining machine learning with random field theory,the method allows for probabilistic predictions in regions with sparse data sampling.In this framework,12 parameters from wireline tests are used to predict trends in rock core data.The residuals are modeled using random field theory.The outcomes are high-resolution predictions that combine both the predicted trend and the probabilistic realizations of the residual.By utilizing unconditional and conditional random field theories,this method enables unconditional and conditional simulations of the underlying high-resolution rock compressional wave travel time profile and provides uncertainty estimates.This integrated approach optimizes the use of existing core and logging data.Its applicability is confirmed in an oil project in West China.
文摘During the analysis of stability heat conduction in the composite tubes, firstly, when the temperature boundary conditions are the random conditions, equations of the mean values and variances of the random thermal function are transformed. Secondly, when the heat conduct parameters are the fuzzy numbers and the temperature boundary conditions are the random numbers, interval equations of the heat conduction are presented. Thirdly, by comparison of the interval results, the result in the interval analysis is larger than that in the confidence interval. Moreover the error expecting equation is presented. Finally, with upper (lower) approximation in rough set theory, a new method of the interval analysis to deal with the stability heat conduction is presented.
文摘Phase diagram and thermodynamic parameters of the random field Ising model (RFIM) on spherical lattice are studied by using mean field theory. This lattice is placed in an external magnetic field (B). The random field (hi) is assumed to be Gaussian distributed with zero mean and a variance (hi2) = HRF2. The free energy (F), the magnetization (M) and the order parameter (q) are calculated. The ferromagnetic (FM) spin-glass (SG) phase transition is clearly observed. The critical temperature (Tc) is computed under a critical intensity of random field HRF = V/2/πJ. The phase transition from FM to paramagnetic (PM) occurs at TC = J/k in the absence of magnetic field. The critical temperature decreases as HRF increases in the phase boundary of FM-to-SG. The magnetic susceptibility (X) shows a sharp cusp at TC and the specific heat (C) has a singularity in small random field. The internal energy (U) has a similar behaviour to that obtained from the Monte Carlo simulation.