During the working of electrical fuses, inside the fuse element the silver ribbon first begins to melt, to vaporize and then a fuse arc appears between the two separated parts of the element. Second, the electrodes ar...During the working of electrical fuses, inside the fuse element the silver ribbon first begins to melt, to vaporize and then a fuse arc appears between the two separated parts of the element. Second, the electrodes are struck and the burn-back phenomenon takes place. Usually, the silver ribbon is enclosed inside a cavity filled with silica sand. During the vaporization of the fuse element, one can consider that the volume is fixed so that the pressure increase appears to reach pressures higher than atmospheric pressure. Thus, in this paper two pressures, 1 atm and 10 atm, are considered. The electrical field inside the plasma can reach high values since the distance between the cathode surface and the anode surface varies with time. That is to say from zero cm to one cm order. So we consider various electrical fields: 102 V/m, 103 V/m, 5×103 V/m, 104 V/m at atmospheric pressure and 105 V/m at a pressure of 10 atm. This study is made in heavy species temperature range from 2,400 K to 10,000 K. To study the plasma created inside the electric fuse, we first need to determine some characteristics in order to justify some hypotheses. That is to say: are the classical approximations of the thermal plasmas physics justified? In other words: plasma frequency, the ideality of the plasma, the Debye-Hückel approximation and the drift velocity versus thermal velocity. These characteristics and assumptions are discussed and commented on in this paper. Then, an evaluation of non-thermal equilibrium versus considered electrical fields is given. Finally, considering the high mobility of electrons, we evaluate the electrical conductivities.展开更多
The general expressions, based on the Fermi distribution of the free electrons, are applied for calculation of the kinetic coefficients in donor-doped silicon at arbitrary degree of the degeneracy of electron gas unde...The general expressions, based on the Fermi distribution of the free electrons, are applied for calculation of the kinetic coefficients in donor-doped silicon at arbitrary degree of the degeneracy of electron gas under equilibrium conditions. The classical statistics lead to large errors in estimation of the transport parameters for the materials where Fermi level is located high above the conduction band edge unless the effective density of randomly moving electrons is introduced. The obtained results for the diffusion coefficient and drift mobility are discussed together with practical approximations applicable for non-degenerate electron gas and materials with arbitrary degree of degeneracy. In particular, the drift mobility of randomly moving electrons is found to depend on the degree of degeneracy and can exceed the Hall mobility considerably. When the effective density is introduced, the traditional Einstein relation between the diffusion coefficient and the drift mobility of randomly moving electrons is conserved at any level of degeneracy. The main conclusions and formulae can be applicable for holes in acceptor-doped silicon as well.展开更多
文摘During the working of electrical fuses, inside the fuse element the silver ribbon first begins to melt, to vaporize and then a fuse arc appears between the two separated parts of the element. Second, the electrodes are struck and the burn-back phenomenon takes place. Usually, the silver ribbon is enclosed inside a cavity filled with silica sand. During the vaporization of the fuse element, one can consider that the volume is fixed so that the pressure increase appears to reach pressures higher than atmospheric pressure. Thus, in this paper two pressures, 1 atm and 10 atm, are considered. The electrical field inside the plasma can reach high values since the distance between the cathode surface and the anode surface varies with time. That is to say from zero cm to one cm order. So we consider various electrical fields: 102 V/m, 103 V/m, 5×103 V/m, 104 V/m at atmospheric pressure and 105 V/m at a pressure of 10 atm. This study is made in heavy species temperature range from 2,400 K to 10,000 K. To study the plasma created inside the electric fuse, we first need to determine some characteristics in order to justify some hypotheses. That is to say: are the classical approximations of the thermal plasmas physics justified? In other words: plasma frequency, the ideality of the plasma, the Debye-Hückel approximation and the drift velocity versus thermal velocity. These characteristics and assumptions are discussed and commented on in this paper. Then, an evaluation of non-thermal equilibrium versus considered electrical fields is given. Finally, considering the high mobility of electrons, we evaluate the electrical conductivities.
文摘The general expressions, based on the Fermi distribution of the free electrons, are applied for calculation of the kinetic coefficients in donor-doped silicon at arbitrary degree of the degeneracy of electron gas under equilibrium conditions. The classical statistics lead to large errors in estimation of the transport parameters for the materials where Fermi level is located high above the conduction band edge unless the effective density of randomly moving electrons is introduced. The obtained results for the diffusion coefficient and drift mobility are discussed together with practical approximations applicable for non-degenerate electron gas and materials with arbitrary degree of degeneracy. In particular, the drift mobility of randomly moving electrons is found to depend on the degree of degeneracy and can exceed the Hall mobility considerably. When the effective density is introduced, the traditional Einstein relation between the diffusion coefficient and the drift mobility of randomly moving electrons is conserved at any level of degeneracy. The main conclusions and formulae can be applicable for holes in acceptor-doped silicon as well.