The effect of graphite surface modification on the thermal conductivity(TC) and bending strength of graphite flakes/Al composites(Gf/Al) prepared by gas pressure infiltration were investigated. Al3 Ni and Al4C3 phase ...The effect of graphite surface modification on the thermal conductivity(TC) and bending strength of graphite flakes/Al composites(Gf/Al) prepared by gas pressure infiltration were investigated. Al3 Ni and Al4C3 phase may form at the interface in Ni-coated Gf/Al and uncoated Gf/Al composites, respectively, while the Al-Cu compound cannot be observed in Cu-coated Gf/Al composites. The Cu and Ni coatings enhance TC and the bending strength of the composites in the meantime. TC of Cu-coated Gf/Al composites reach 515 Wm^-1·K^-1 with 75 vol% Gf, which are higher than that of Ni-coated Gf/Al. Meanwhile, due to Al3 Ni at the interface, the bending strength of Ni-coated Gf/Al composites are far more than those of the uncoated and Cu-coated Gf/Al with the same content of Gf. The results indicate that metal-coated Gf can effectively improve the interfacial bonding between Gf and Al.展开更多
To develop a high performance gray cast iron with high tensile strength and thermal conductivity, multivariable analysis of microstructural effects on properties of gray cast iron was performed. The concerned paramete...To develop a high performance gray cast iron with high tensile strength and thermal conductivity, multivariable analysis of microstructural effects on properties of gray cast iron was performed. The concerned parameters consisted of graphite content, maximum graphite length, primary dendrite percentage and microhardness of the matrix. Under the superposed influence of various parameters, the relationships between thermal conductivity and structural characteristics become irregular, as well as the effects of graphite length on the strength. An adaptive neuro-fuzzy inference system was built to link the parameters and properties. A sensitivity test was then performed to rank the relative impact of parameters. It was found that the dominant parameter for tensile strength is graphite content, while the most relative parameter for thermal conductivity is maximum graphite length. The most effective method to simultaneously improve the tensile and thermal conductivity of gray cast iron is to reduce the carbon equivalent and increase the length of graphite flakes.展开更多
High calcium-fly ash(HCFA)collected from the Mae Moh electricity generating plant in Thailand was utilized as a raw material for ceramic production.The main compositions of HCFA characterized by X-ray fluorescence mai...High calcium-fly ash(HCFA)collected from the Mae Moh electricity generating plant in Thailand was utilized as a raw material for ceramic production.The main compositions of HCFA characterized by X-ray fluorescence mainly consisted of 28.55wt%SiO_(2),16.06wt%Al_(2)O_(3),23.40wt%CaO,and 17.03wt%Fe_(2)O_(3).Due to high proportion of calcareous and ferruginous contents,HCFA was used for replacing the potash feldspar in amounts of 10wt%-40wt%.The influence of substituting high-calcium fly ash(0-40wt%)and sintering temperatures(1000-1200℃)on physical,mechanical,and thermal properties of ceramic-based materials was investigated.The results showed that the in-corporation of HCFA in appropriate amounts could enhance the densification and the strength as well as reduce the thermal conductivity of ceramic samples.High proportion of calcareous and ferruginous constituents in fly ash promoted the vitrification behavior of ceramic samples.As a result,the densification was enhanced by liquid phase formation at optimum fly ash content and sintering temperature.In addition,these components also facilitated a more abundant mullite formation and consequently improved flexural strength of the ceramic samples.The op-timum ceramic properties were achieved with adding fly ash content between 10wt%-30wt%sintered at 1150-1200℃.At 1200℃,the max-imum flexural strength of ceramic-FA samples with adding fly ash 10wt%-30wt%(PSW-FA(10)-(30))was obtained in the range of 92.25-94.71 MPa when the water absorption reached almost zero(0.03%).In terms of thermal insulation materials,the increase in fly ash addi-tion had a positively effect on the thermal conductivity,due to the higher levels of porosity created by gas evolving from the inorganic decom-position reactions inside the ceramic-FA samples.The addition of 20wt%-40wt%high-calcium fly ash in ceramic samples sintered at 1150℃reduced the thermal conductivity to 14.78%-49.25%,while maintaining acceptable flexural strength values(~45.67-87.62 MPa).Based on these promising mechanical and thermal characteristics,it is feasible to utilize this high-calcium fly ash as an alternative raw material in clay compositions for manufacturing of ceramic tiles.展开更多
Foam glass is a kind of green building material that is widely used because of its excellent thermal insulation and mechanical properties.In this study,the borosilicate foam glass was fabricated by powder sintering me...Foam glass is a kind of green building material that is widely used because of its excellent thermal insulation and mechanical properties.In this study,the borosilicate foam glass was fabricated by powder sintering method using recycled soda lime waste glass,quartz,and borax as the primary raw materials.CaCO_(3)was used as a foaming agent and Na_(2)CO_(3)as a flux agent.Results showed that as the quartz content decreases from 30 to 17.5 wt.%and borax content increases from 5 to 17.5 wt.%,the pore size,porosity,and thermal insulation of borosilicate foam glass increase significantly,while the compressive strength decreases slightly.When the content of quartz and borax are both 17.5 wt.%,borosilicate foam glass with outstanding performance can be prepared,whose pore distribution is uniform,mean pore size is 1.93 mm,total porosity is 83.44%,thermal conductivity is 0.0711W/(m⋅K),and compressive strength is 2.37 MPa.Finally,the influences of foaming agent content,flux agent content,foaming temperature,and holding time on the pore structure and various properties of borosilicate foam glass were investigated by orthogonal test.According to the results,the foaming temperature has a significant effect,and appropriate foaming agent content,flux agent content,and holding time help to form a uniform pore structure,thereby improving the thermal insulation and mechanical strength of the borosilicate foam glass.展开更多
The development of bio-sourced materials is essential to ensuring sustainable construction;it is considered a locomotive of the green economy.Furthermore,it is an abundant material in our country,to which very little ...The development of bio-sourced materials is essential to ensuring sustainable construction;it is considered a locomotive of the green economy.Furthermore,it is an abundant material in our country,to which very little attention is being given.This work aims to valorize the waste of the trunks of banana trees to be used in construction.Firstly,the physicochemical properties of the fiber,such as the percentage of crystallization and its morphology,have been determined by X-ray diffraction tests and scanning electron microscopy to confirm the potential and the impact of the mode of drying on the quality of the banana fibers,with the purpose to promote the use of this material in construction.Secondly,the results obtained with the gypsum matrix allowed us to note a preponderant improvement in the composite’s thermal properties thanks to the variation of the banana fiber additive.Thirdly,the impact of the nature of the banana fiber distribution(either fiber mixed in matrix or fiber series model)on the flexural and compressive strengths of the composites was studied.The results obtained indicate that the insulation gain reaches up to 40%.It depends on the volume fraction and type of distribution of the banana fibers.However,the thermal inertia of the composites developed,represented by thermal diffusivity and thermal effusivity,was studied.Results indicate a gain of 40%and 25%,respectively,in terms of thermal diffusivity and thermal effusivity of the developed composites compared to plaster alone.Concerning the mechanical properties,the flexural strength depends on the percentage of the volume fraction of banana fibers used,and it can reach 20%more than the flexural strength of plaster;nevertheless,there is a significant loss in terms of the compressive strength of the studied composites.The results obtained are confirmed by the microstructure of the fiber banana.In fact,the morphology of the banana fibers was improved by the drying process.It reduces the amorphous area and improves the cellulosic crystalline surfaces,which assures good adhesion between the fiber and the matrix plaster.Finally,the dimensionless coefficient analysis was done to judge the optimal proportion of the banana fiber additive and to recommend its use even on false ceilings or walls.展开更多
In order to balance the conductivity and flexural strength of graphite composite bipolar plates,the influence of conductive filler on the properties of graphite composite bipolar plate was comprehensively studied by u...In order to balance the conductivity and flexural strength of graphite composite bipolar plates,the influence of conductive filler on the properties of graphite composite bipolar plate was comprehensively studied by using phenolic resin as binder,natural flake graphite as conductive substrate and functional carbon materials with different structures as auxiliary filler.The results show that the particle size of conductive substrate has an important influence on the conductivity enhancement of auxiliary filler.The influence of conductive particle size on auxiliary filler electrical conductivity improvement was first investigated in this research.The effects of various auxiliary filler concentrations on improving electrical conductivity and flexural strength were then examined.This research has substantial implications for the balance of electrical conductivity and flexural strength of graphite composite bipolar plates.展开更多
Thermally conductive polymer nanocomposites integrated with lightweight,excellent flexural strength,and high fracture toughness(KIc)would be of great use in many fields.However,achieving all of these properties simult...Thermally conductive polymer nanocomposites integrated with lightweight,excellent flexural strength,and high fracture toughness(KIc)would be of great use in many fields.However,achieving all of these properties simultaneously remains a great challenge.Inspired by natural nacre,here we demonstrate a lightweight,strong,tough,and thermally conductive boron nitride nanosheet/epoxy layered(BNNEL)nanocomposite.Because of the layered structure and enhancing the interfacial interactions through hydrogen bonding and Si–O–B covalent bonding,the resulting nacre-inspired BNNEL nanocomposites show high fracture toughness of~4.22 MPa·m^(1/2),which is 7 folds as high as pure epoxy.Moreover,the BNNEL nanocomposites demonstrate sufficient flexural strength(~168.90 MPa,comparable to epoxy resin),while also being lightweight(~1.23 g/cm^(3)).Additionally,the BNNEL nanocomposites display a thermal conductivity(κ)of~0.47 W/(m·K)at low boron nitride nanosheet loading of 2.08 vol.%,which is 2.7 times higher than that of pure epoxy resin.The developed nacre-inspired strategy of layered structure design and interfacial enhancement provides an avenue for fabricating high mechanical properties and thermally conductive polymer nanocomposites.展开更多
基金Funded by the Research Fund of the State Key Laboratory of Solidification Processing(NWPU),China(No.126-QP-2015).
文摘The effect of graphite surface modification on the thermal conductivity(TC) and bending strength of graphite flakes/Al composites(Gf/Al) prepared by gas pressure infiltration were investigated. Al3 Ni and Al4C3 phase may form at the interface in Ni-coated Gf/Al and uncoated Gf/Al composites, respectively, while the Al-Cu compound cannot be observed in Cu-coated Gf/Al composites. The Cu and Ni coatings enhance TC and the bending strength of the composites in the meantime. TC of Cu-coated Gf/Al composites reach 515 Wm^-1·K^-1 with 75 vol% Gf, which are higher than that of Ni-coated Gf/Al. Meanwhile, due to Al3 Ni at the interface, the bending strength of Ni-coated Gf/Al composites are far more than those of the uncoated and Cu-coated Gf/Al with the same content of Gf. The results indicate that metal-coated Gf can effectively improve the interfacial bonding between Gf and Al.
文摘To develop a high performance gray cast iron with high tensile strength and thermal conductivity, multivariable analysis of microstructural effects on properties of gray cast iron was performed. The concerned parameters consisted of graphite content, maximum graphite length, primary dendrite percentage and microhardness of the matrix. Under the superposed influence of various parameters, the relationships between thermal conductivity and structural characteristics become irregular, as well as the effects of graphite length on the strength. An adaptive neuro-fuzzy inference system was built to link the parameters and properties. A sensitivity test was then performed to rank the relative impact of parameters. It was found that the dominant parameter for tensile strength is graphite content, while the most relative parameter for thermal conductivity is maximum graphite length. The most effective method to simultaneously improve the tensile and thermal conductivity of gray cast iron is to reduce the carbon equivalent and increase the length of graphite flakes.
基金This work was financially supported by the National Metal and Materials Technology Center,Thailand(Project No.P-18-50327).
文摘High calcium-fly ash(HCFA)collected from the Mae Moh electricity generating plant in Thailand was utilized as a raw material for ceramic production.The main compositions of HCFA characterized by X-ray fluorescence mainly consisted of 28.55wt%SiO_(2),16.06wt%Al_(2)O_(3),23.40wt%CaO,and 17.03wt%Fe_(2)O_(3).Due to high proportion of calcareous and ferruginous contents,HCFA was used for replacing the potash feldspar in amounts of 10wt%-40wt%.The influence of substituting high-calcium fly ash(0-40wt%)and sintering temperatures(1000-1200℃)on physical,mechanical,and thermal properties of ceramic-based materials was investigated.The results showed that the in-corporation of HCFA in appropriate amounts could enhance the densification and the strength as well as reduce the thermal conductivity of ceramic samples.High proportion of calcareous and ferruginous constituents in fly ash promoted the vitrification behavior of ceramic samples.As a result,the densification was enhanced by liquid phase formation at optimum fly ash content and sintering temperature.In addition,these components also facilitated a more abundant mullite formation and consequently improved flexural strength of the ceramic samples.The op-timum ceramic properties were achieved with adding fly ash content between 10wt%-30wt%sintered at 1150-1200℃.At 1200℃,the max-imum flexural strength of ceramic-FA samples with adding fly ash 10wt%-30wt%(PSW-FA(10)-(30))was obtained in the range of 92.25-94.71 MPa when the water absorption reached almost zero(0.03%).In terms of thermal insulation materials,the increase in fly ash addi-tion had a positively effect on the thermal conductivity,due to the higher levels of porosity created by gas evolving from the inorganic decom-position reactions inside the ceramic-FA samples.The addition of 20wt%-40wt%high-calcium fly ash in ceramic samples sintered at 1150℃reduced the thermal conductivity to 14.78%-49.25%,while maintaining acceptable flexural strength values(~45.67-87.62 MPa).Based on these promising mechanical and thermal characteristics,it is feasible to utilize this high-calcium fly ash as an alternative raw material in clay compositions for manufacturing of ceramic tiles.
基金This work was supported by the Shanghai Municipal Natural Science Foundation,China(Granted No.[19ZR1418500]).
文摘Foam glass is a kind of green building material that is widely used because of its excellent thermal insulation and mechanical properties.In this study,the borosilicate foam glass was fabricated by powder sintering method using recycled soda lime waste glass,quartz,and borax as the primary raw materials.CaCO_(3)was used as a foaming agent and Na_(2)CO_(3)as a flux agent.Results showed that as the quartz content decreases from 30 to 17.5 wt.%and borax content increases from 5 to 17.5 wt.%,the pore size,porosity,and thermal insulation of borosilicate foam glass increase significantly,while the compressive strength decreases slightly.When the content of quartz and borax are both 17.5 wt.%,borosilicate foam glass with outstanding performance can be prepared,whose pore distribution is uniform,mean pore size is 1.93 mm,total porosity is 83.44%,thermal conductivity is 0.0711W/(m⋅K),and compressive strength is 2.37 MPa.Finally,the influences of foaming agent content,flux agent content,foaming temperature,and holding time on the pore structure and various properties of borosilicate foam glass were investigated by orthogonal test.According to the results,the foaming temperature has a significant effect,and appropriate foaming agent content,flux agent content,and holding time help to form a uniform pore structure,thereby improving the thermal insulation and mechanical strength of the borosilicate foam glass.
文摘The development of bio-sourced materials is essential to ensuring sustainable construction;it is considered a locomotive of the green economy.Furthermore,it is an abundant material in our country,to which very little attention is being given.This work aims to valorize the waste of the trunks of banana trees to be used in construction.Firstly,the physicochemical properties of the fiber,such as the percentage of crystallization and its morphology,have been determined by X-ray diffraction tests and scanning electron microscopy to confirm the potential and the impact of the mode of drying on the quality of the banana fibers,with the purpose to promote the use of this material in construction.Secondly,the results obtained with the gypsum matrix allowed us to note a preponderant improvement in the composite’s thermal properties thanks to the variation of the banana fiber additive.Thirdly,the impact of the nature of the banana fiber distribution(either fiber mixed in matrix or fiber series model)on the flexural and compressive strengths of the composites was studied.The results obtained indicate that the insulation gain reaches up to 40%.It depends on the volume fraction and type of distribution of the banana fibers.However,the thermal inertia of the composites developed,represented by thermal diffusivity and thermal effusivity,was studied.Results indicate a gain of 40%and 25%,respectively,in terms of thermal diffusivity and thermal effusivity of the developed composites compared to plaster alone.Concerning the mechanical properties,the flexural strength depends on the percentage of the volume fraction of banana fibers used,and it can reach 20%more than the flexural strength of plaster;nevertheless,there is a significant loss in terms of the compressive strength of the studied composites.The results obtained are confirmed by the microstructure of the fiber banana.In fact,the morphology of the banana fibers was improved by the drying process.It reduces the amorphous area and improves the cellulosic crystalline surfaces,which assures good adhesion between the fiber and the matrix plaster.Finally,the dimensionless coefficient analysis was done to judge the optimal proportion of the banana fiber additive and to recommend its use even on false ceilings or walls.
基金the financial supports from the National Key R&D Program of China(Nos.2020YFB1505904 and 2018YFB1502502-04)。
文摘In order to balance the conductivity and flexural strength of graphite composite bipolar plates,the influence of conductive filler on the properties of graphite composite bipolar plate was comprehensively studied by using phenolic resin as binder,natural flake graphite as conductive substrate and functional carbon materials with different structures as auxiliary filler.The results show that the particle size of conductive substrate has an important influence on the conductivity enhancement of auxiliary filler.The influence of conductive particle size on auxiliary filler electrical conductivity improvement was first investigated in this research.The effects of various auxiliary filler concentrations on improving electrical conductivity and flexural strength were then examined.This research has substantial implications for the balance of electrical conductivity and flexural strength of graphite composite bipolar plates.
基金supported by the National Key Research and Development Program of China(No.2021YFA0715700)the National Science Fund for Distinguished Young Scholars(No.52125302),National Natural Science Foundation of China(No.22075009)111 Project(No.B14009).
文摘Thermally conductive polymer nanocomposites integrated with lightweight,excellent flexural strength,and high fracture toughness(KIc)would be of great use in many fields.However,achieving all of these properties simultaneously remains a great challenge.Inspired by natural nacre,here we demonstrate a lightweight,strong,tough,and thermally conductive boron nitride nanosheet/epoxy layered(BNNEL)nanocomposite.Because of the layered structure and enhancing the interfacial interactions through hydrogen bonding and Si–O–B covalent bonding,the resulting nacre-inspired BNNEL nanocomposites show high fracture toughness of~4.22 MPa·m^(1/2),which is 7 folds as high as pure epoxy.Moreover,the BNNEL nanocomposites demonstrate sufficient flexural strength(~168.90 MPa,comparable to epoxy resin),while also being lightweight(~1.23 g/cm^(3)).Additionally,the BNNEL nanocomposites display a thermal conductivity(κ)of~0.47 W/(m·K)at low boron nitride nanosheet loading of 2.08 vol.%,which is 2.7 times higher than that of pure epoxy resin.The developed nacre-inspired strategy of layered structure design and interfacial enhancement provides an avenue for fabricating high mechanical properties and thermally conductive polymer nanocomposites.