期刊文献+
共找到20篇文章
< 1 >
每页显示 20 50 100
Study on the effect of thermal deformation on the liquid seal of high-temperature molten salt pump in molten salt reactor
1
作者 Xing‑Chao Shen Yuan Fu Jian‑Yu Zhang 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2023年第2期128-138,共11页
The high-temperature molten salt pump is the core equipment in a molten salt reactor that drives the flow of the molten salt coolant.Rotor stability is key to the continuous and reliable operation of the molten salt p... The high-temperature molten salt pump is the core equipment in a molten salt reactor that drives the flow of the molten salt coolant.Rotor stability is key to the continuous and reliable operation of the molten salt pump,and the liquid seal at the wear ring can affect the dynamic characteristics of the rotor system.When the molten salt pump is operated in the hightemperature molten salt medium,thermal deformation of the submerged parts inevitably occurs,changing clearance between the stator and rotor,affecting the leakage and dynamic characteristics of the seal.In this study,the seal leakage,seal dynamic characteristics,and rotor system dynamic characteristics are simulated and analyzed using finite element simulation software based on two cases of considering the effect of seal thermal deformation effect or not.The results show a significant difference in the leakage characteristics and dynamic characteristics of the seal obtained by considering the effect of seal thermal deformation and neglecting the effect of thermal deformation.The leakage flow rate decreases,and the first-order critical speed of the seal-bearing-rotor system decrease after considering the seal’s thermal deformation. 展开更多
关键词 High-temperature molten salt pump Seal thermal deformation Leakage characteristics Seal dynamic characteristics Critical speed
下载PDF
Incompatible thermal deformation of interlayers and corresponding damage mechanism of high-speed railway track structure
2
作者 Guotang Zhao Lei Zhao Yu Liu 《High-Speed Railway》 2023年第1期37-46,共10页
In the service period,the instability of ballastless track bed are mostly related to the damage of interlayers which are mainly resulted from the incompatible thermal deformation of interlayers.The temperature field w... In the service period,the instability of ballastless track bed are mostly related to the damage of interlayers which are mainly resulted from the incompatible thermal deformation of interlayers.The temperature field within the ballastless track bed shows significant non-uniformity due to the large difference in the materials of various structure layers,leading to a considerable difference in the force bearing of different structure layers.Unit Ballastless Track Bed(UBTB)is most significantly affected by temperature gradient.The thermal deformation of interlayers within UBTB follows the trend of ellipsoid-shape buckling under the effect of the temperature gradient,resulting in a variation of the contact relationship between structure layers and a significant periodic irregularity on the rail.When the train travels on the periodically irregular rail,the structure layers are locally contacted,and the contact zone moves with the variation of the wheel position.This wheel-followed local contact greatly magnifies the interlayer stress,causes interlayer damage,and leads to a considerable increase in the bending moment of the track slab.Continuous Ballastless Track Bed(CBTB)is most significantly affected by the overall temperature variation,which may cause damage to the joint in CBTB.Under the combined action of the overall temperature rise and the temperature gradient,the interlayer damage continuously expands,resulting in bonding failure between structural layers.The thermal force in the continuous track slabs will cause the up-heave buckling and the sudden large deformation of the track slab,and the loss of constraint boundary of the horizontal stability.For the design of a ballastless track structure,the change of bearing status and structural damage related to the incompatible thermal deformation of interlayers should be considered. 展开更多
关键词 High-speed railway Ballastless track bed Incompatible thermal deformation Damage mechanism
下载PDF
Adaptive Shape Control for Thermal Deformation of Membrane Mirror with In-plane PVDF Actuators 被引量:2
3
作者 Yi-Fan Lu Hong-Hao Yue +1 位作者 Zong-Quan Deng Horn-Sen Tzou 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2018年第1期187-197,共11页
Optical membrane mirrors are promising key components for future space telescopes. Due to their ultra-thin and high flexible properties, the surfaces of these membrane mirrors are susceptible to temperature variations... Optical membrane mirrors are promising key components for future space telescopes. Due to their ultra-thin and high flexible properties, the surfaces of these membrane mirrors are susceptible to temperature variations. Therefore adaptive shape control of the mirror is essential to maintain the surface precision and to ensure its working performance. However, researches on modeling and control of membrane mirrors under thermal loads are sparse in open literatures. A 0.2 m diameter scale model of a polyimide membrane mirror is developed in this study. Three Polyvinylidene fluoride(PVDF) patches are laminated on the non-reflective side of the membrane mirror to serve as in-plane actuators. A new mathematical model of the piezoelectric actuated membrane mirror in multiple fields,(i.e., thermal,mechanical, and electrical field) is established, with which dynamic and static behaviors of the mirror can be analyzed.A closed-loop membrane mirror shape control system is set up and a surface shape control method based on an influence function matrix of the mirror is then investigated. Several experiments including surface displacement tracking and thermal deformation alleviation are performed. The deviations range from 15 μm to 20 μm are eliminated within 0.1 s and the residual deformation is controlled to micron level, which demonstrates the effectiveness of the proposed membrane shape control strategy and shows a satisfactory real-time performance. The proposed research provides a technological support and instruction for shape control of optical membrane mirrors. 展开更多
关键词 Adaptive shape control Membrane mirror thermal deformation PVDF Influence function matrix
下载PDF
Microstructural changes during heating of super duplex stainless steel and its thermal deformation behavior 被引量:2
4
作者 ZHOU Candong AO Ying LIU Xiaorong 《Baosteel Technical Research》 CAS 2017年第4期22-33,共12页
Microstructural changes during heating of highly alloyed Cr26Ni7 type super duplex stainless steel( SDSS2607) and its thermal deformation behavior were investigated. At different heating rates,the mechanism of phase t... Microstructural changes during heating of highly alloyed Cr26Ni7 type super duplex stainless steel( SDSS2607) and its thermal deformation behavior were investigated. At different heating rates,the mechanism of phase transition from γ phase to δ phase and grow th modes of δ phase differed. Variations in microstructures for ascast SDSS2607 during heat preservation at 1 220 ℃ indicated two kinds of transformations from γ phase to δ phase.In-situ observations of microstructural changes during the tensile process at 1 050 ℃ showed a mutual coordination betw een γ and δ phases. When the true strain increased,the mutual coordination between γ and δ phases was damaged. Subsequently,cracks nucleated at the γ/δ interface. With the increase in temperature,the strength of ascast SDSS2607 decreased while its plasticity increased. Its thermoplasticity was poor,and the reduction in area of tensile specimens was less than 80%. When the deformation strain of hot compression increased,the stable deformation zone in the heat processing maps enlarged gradually. Moreover,the unstable deformation zones were extended. 展开更多
关键词 super duplex stainless steel microstructural changes thermal deformation behavior
下载PDF
Thermal Deformation Behavior and Processing Map of a Novel CrFeNiSi_(0.15)Medium Entropy Alloy
5
作者 Hongbin Zhang Kang Chen +6 位作者 Zhongwei Wang Haiping Zhou Chengcheng Shi Shengxue Qin Jie Liu Tingjun Lv Jian Xu 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2023年第11期1870-1882,共13页
The thermal deformation behavior of a novel CrFeNiSi_(0.15)medium entropy alloy(MEA)was studied via isothermal compression experiments,with the processing parameter range of 900–1200℃and 0.001–1 s^(−1).According to... The thermal deformation behavior of a novel CrFeNiSi_(0.15)medium entropy alloy(MEA)was studied via isothermal compression experiments,with the processing parameter range of 900–1200℃and 0.001–1 s^(−1).According to experimental data,the modified constitutive equation had been obtained,which precisely predicted the flow behavior of CrFeNiSi_(0.15)MEA during thermal deformation.At the same time,the processing map was established on the basis of the dynamic material model(DMM)theory.According to the map,the optimal processing parameters were determined at 1130–1200℃/0.06–1 s−1,under which the power dissipation efficiency could reach above 34%.The peak efficiency was above 38%,which occurred at 1200℃/1 s^(−1).In such parameter,complete dynamic recrystallization(DRX)also occurred.The flow instability of CrFeNiSi_(0.15)MEA was estimated to occur at 900–985℃/0.12–1 s^(−1),which was shown as grain boundaries cracking.Furthermore,both the continuous DRX(CDRX)and discontinuous DRX(DDRX)occurred simultaneously during thermal deformation.Meanwhile,some twins were also newly formed during DRX process,most of which were primary twins.The occurrence of twinning was beneficial to promote the development of DRX behavior. 展开更多
关键词 Medium entropy alloys thermal deformation behavior Constitutive model Processing maps
原文传递
Effect of thermal deformation on microstructure and properties of TC18 titanium alloy produced by laser additive manufacturing
6
作者 Xiao-dong Li Chang-yue Qiu +4 位作者 Yu-ting Liu Hong-fang Wang Dong-dong Zheng Yan-yan Zhu Shu-quan Zhang 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2020年第12期1476-1484,共9页
Grain boundary of α phase damaged ductility of laser melting-deposited TC18 titanium alloy and grain boundary of α phases were difficult to break by nominal heat treatment. An extra thermal deformation was introduce... Grain boundary of α phase damaged ductility of laser melting-deposited TC18 titanium alloy and grain boundary of α phases were difficult to break by nominal heat treatment. An extra thermal deformation was introduced to break the grain boundary of α phase with the improved mechanical property of TC18 titanium alloy fabricated by laser melting deposition technique.Results indicated that after thermal deformation, β grains in alloy seriously elongated. When sample was deformed at temperatures from 750 to 850 ℃, α phase exhibited both rod and irregular morphologies with discontinuous distribution at grain boundary, and the subsequent heat treatment would lead to spheroidization of the α phase. However, after deformation at 900 ℃, α phase transferred into β phase and the subsequent heat treatment would make continuous grain boundary of α phase reappear. The suitable hot deformation can effectively break the continuous grain boundary in laser melting-deposited TC18 alloy with respected improved ductility. 展开更多
关键词 Laser additive manufacturing Nearβtitanium alloy thermal deformation Heat treatment Microstructural characteristics
原文传递
Thermal deformation behavior and microstructure evolution of modified IN617 alloy with different initial states
7
作者 Qi Li Xin-liang Jiang +2 位作者 Zheng-zong Chen Zheng-dong Liu Liang Zuo 《Journal of Iron and Steel Research(International)》 SCIE EI CSCD 2021年第10期1315-1328,共14页
The thermal deformation behaviors of the as-cast and wrought modified IN617 nickel-based heat-resistant alloys at different temperatures(1000–1180℃)and strain rates(0.01–1 s^(−1))were studied.The constitutive equat... The thermal deformation behaviors of the as-cast and wrought modified IN617 nickel-based heat-resistant alloys at different temperatures(1000–1180℃)and strain rates(0.01–1 s^(−1))were studied.The constitutive equation was established to describe the relationship of the flow stress,temperature,and strain rate during thermal deformation.The effect of the thermal deformation conditions on the microstructure evolution of alloys was studied using electron backscatter diffraction.The results revealed that the thermal deformation activation energy of the as-cast alloy was greater than that of the wrought alloy.The dynamic recrystallization(DRX)process is slow at intermediate strain rate(0.1 s^(−1))due to the comprehensive influence of various factors,such as the critical strain of DRX nucleation and stored energy.The DRX volume fraction increases with the improvement of deformation temperature.The varied dynamic softening mechanisms induce the different thermal deformation behaviors of as-cast and wrought alloys.The dynamic recovery,discontinuous dynamic recrystallization(DDRX)and nucleation at slip zone caused by strain incompatibility in grains were observed during thermal deformation of as-cast alloys.In the process of thermal deformation of wrought alloys,DDRX was the primary dynamic crystallization mechanism.The continuous dynamic recrystallization was an auxiliary nucleation mechanism. 展开更多
关键词 Nickel-based heat-resistant alloy Initial alloy state thermal deformation Microstructure evolution Dynamic recrystallization nucleation mechanism
原文传递
Iterative reverse deformation optimization design of castings based on numerical simulation of solidification thermal stress 被引量:1
8
作者 Yu-hao Chen Dun-ming Liao +3 位作者 Wei-dong Li Tao Chen Ming Yang Jun-ke Shi 《China Foundry》 SCIE CAS 2022年第4期342-350,共9页
In the casting process,in order to compensate for the solidification shrinkage to obtain higher dimensional accuracy of the casting,it is often necessary to modify the original design of castings,and a suitable compen... In the casting process,in order to compensate for the solidification shrinkage to obtain higher dimensional accuracy of the casting,it is often necessary to modify the original design of castings,and a suitable compensation method has a decisive impact on the dimensional accuracy of the actual casting.In this study,based on solidification simulation,a design method of reverse deformation is proposed,and two compensation methods,empirical compensation and direct reverse deformation,are implemented.The simulation results show that the empirical compensation method has problems such as difficulty in determining the parameters and satisfaction of both the overall and local accuracy at the same time;while based on the simulation results for each node of the casting,the direct reverse deformation design achieves the design with shape.In addition,the casting model can be optimized through iterative revisions,so that higher dimensional accuracy can be continuously obtained in the subsequent design process.Therefore,the direct reverse deformation design is more accurate and reasonable compared to empirical compensation method. 展开更多
关键词 casting simulation thermal stress deformation dimensional compensation dimensional accuracy
下载PDF
Study on seepage and deformation characteristics of coal microstructure by 3D reconstruction of CT images at high temperatures 被引量:13
9
作者 Gang Wang Xiangjie Qin +1 位作者 Dongyang Han Zhiyuan Liu 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2021年第2期175-185,共11页
To study the seepage and deformation characteristics of coal at high temperatures,coal samples from six different regions were selected and subjected to computed tomography(CT)scanning studies.In conjunction with ANSY... To study the seepage and deformation characteristics of coal at high temperatures,coal samples from six different regions were selected and subjected to computed tomography(CT)scanning studies.In conjunction with ANSYS software,3 D reconstruction of CT images was used for the establishment of fluidsolid conjugate heat transfer model and coal thermal deformation model based on the microstructures of coal.In addition,the structure of coal was studied in 2 D and 3 D perspectives,followed by the analysis of seepage and deformation characteristics of coal at high temperatures.The results of this study indicated that porosity positively correlated with the fractal dimension,and the connectivity and seepage performances were roughly identical from 2 D and 3 D perspectives.As the porosity increased,the fractal dimension of coal samples became larger and the pore-fracture structures became more complex.As a result,the permeability of coal samples decreased.In the meantime,fluid was fully heated,generating high-temperature water at outlet.However,when the porosity was low,the outlet temperature was very high.The average deformation of coal skeleton with different pore-fracture structures at high temperatures showed a trend of initial increase and subsequent decrease with the increase of porosity and fractal dimension.The maximum deformation of coal skeleton positively correlated with connectivity but negatively correlated with the fractal dimension. 展开更多
关键词 COAL Pore-fracture structures Fluid-solid conjugate heat transfer thermal deformation
下载PDF
Mechanical properties and thermal deformation behavior of low-cost titanium matrix composites prepared by a structure-optimized Y_(2)O_(3) crucible
10
作者 Qian Dang Gang Huang +3 位作者 Ye Wang Chi Zhang Guo-huai Liu Zhao-dong Wang 《Journal of Iron and Steel Research(International)》 SCIE EI CAS 2024年第3期738-751,共14页
A porous yttrium oxide crucible with both thermal shock resistance and erosion resistance was developed by structural optimization.The structure-optimized yttrium oxide crucible was proved to be suitable for melting h... A porous yttrium oxide crucible with both thermal shock resistance and erosion resistance was developed by structural optimization.The structure-optimized yttrium oxide crucible was proved to be suitable for melting highly reactive titanium alloys.Low-cost(TiB+Y2O_(3))-reinforced titanium matrix composites were prepared by vacuum induction melting using the prepared crucible.The thermal deformation behavior and microstructure evolution of(TiB+Y2O_(3))-reinforced tita-nium matrix composites were investigated at deformation temperatures of 900-1100℃with strain rates of 0.001-1 s-1.The results showed that the prepared yttrium oxide crucible had both thermal shock and erosion resistance,the low-cost titanium matrix composites could be prepared by the developed yttrium oxide crucibles which were homogeneous in composition and highly sensitive to strain rate and deformation temperature,and the peak and theological stresses decreased with increasing deformation temperature or decreasing strain rate.In addition,the average thermal deformation activation energy of the composites was calculated to be 574.6 kJ/mol by establishing the Arrhenius constitutive equation in consideration of the strain variables,and the fitting goodness between the predicted stress value and the measured value was 97.624%.The calculated analysis of the hot processing map showed that the best stable thermal deformation zone was located in the deformation temperature range of 1000-1100℃and strain rate range of 0.001-0.01 s^(-1),where the peak dissipation coefficient wasη=71%.In this zone,the deformation of the reinforcement and matrix was harmonious,the reinforcement was less likely to fracture,dynamic recrystallization occurred more fully and the alloy exhibited near steady rheological characteristics. 展开更多
关键词 Yttrium oxide crucible Titanium matrix composite thermal deformation behavior Constitutive equation Hot processing map Microstructure evolution
原文传递
Thermal error regression modeling of the real-time deformation coefficient of the moving shaft of a gantry milling machine 被引量:4
11
作者 Wen-Hua Ye Yun-Xia Guo +2 位作者 Heng-Fei Zhou Rui-Jun Liang Wei-Fang Chen 《Advances in Manufacturing》 SCIE CAS CSCD 2020年第1期119-132,共14页
This paper describes a novel modeling method for determining the thermal deformation coefficient of the moving shaft of a machine tool.Firstly,the relation between the thermal deformation coefficient and the thermal e... This paper describes a novel modeling method for determining the thermal deformation coefficient of the moving shaft of a machine tool.Firstly,the relation between the thermal deformation coefficient and the thermal expansion coefficient is expounded,revealing that the coefficient of thermal deformation is an important factor affecting the precision of moving shaft feed systems.Then,thermal errors and current boundary and machining conditions are measured using sensors to obtain the first set of parameters for a thermal prediction model.The dynamic characteristics of the positioning and straightness thermal errors of the moving axis of a machine tool are analyzed under different feed speeds and mounting modes of the moving shaft and bearing.Finally,the theoretical model is derived from experimental data,and the axial and radial thermal deformation coefficients at different time and positions are obtained.The expressions for the axial and radial thermal deformation of the moving shaft are modified according to theoretical considerations,and the thermal positioning and straightness error models are established and experimentally verified.This modeling method can be easily extended to other machine tools to determine thermal deformation coefficients that are robust and self-correcting. 展开更多
关键词 Moving shaft Ball screw thermal expansion thermal deformation coefficient Error modeling
原文传递
Temperature Field Analysis of Mine Flameproof Outer Rotor Permanent Magnet Synchronous Motor with Different Cooling Schemes 被引量:1
12
作者 Shengnan Wu Daquan Hao Wenming Tong 《CES Transactions on Electrical Machines and Systems》 CSCD 2022年第2期162-169,共8页
Aiming at the problem of temperature rise of mine flameproof outer rotor permanent magnet synchronous motor,based on the fluid structure coupling method,the temperature distribution of motor under three cooling scheme... Aiming at the problem of temperature rise of mine flameproof outer rotor permanent magnet synchronous motor,based on the fluid structure coupling method,the temperature distribution of motor under three cooling schemes of air cooling and water cooling are calculated respectively.For the structure I air cooling system,the influence of different number of heat sink on the maximum temperature rise and pressure drop of fluid channel is analyzed,and the parameters of heat sink are optimized.For the structure II air cooling system,the influence of setting fillet at the turn back of the fluid channel on the head loss in the fluid domain of the motor is analyzed,and the influence of different fillet radius on the head loss and the maximum temperature rise in the fluid domain is obtained.For the structure II water cooling system,the influence of different water flow speed on the maximum temperature rise of the motor is analyzed,and the influence of different assembly clearance of modular stator teeth and yoke on the maximum temperature rise of the motor is analyzed.The cooling effect and temperature rise distribution characteristics of the three cooling schemes are compared and analyzed.Finally,a water-cooled prototype is manufactured,and the temperature rise experiment is carried out,and the influence of the thermal deformation of fluid channel,stator yoke and stator teeth on the maximum temperature of the motor is analyzed.The results show that the calculated temperature field after considering the thermal deformation is closer to the experimental value,which verifies the accuracy of the calculation results,It also provides a reference for the selection and design of the cooling structure of the same type of PMSM electric roller. 展开更多
关键词 Permanent magnet synchronous motor with outer rotor Fluid structure coupling Maximum temperature rise and head loss Assembly clearance and thermal deformation
下载PDF
Minimizing Warpage for Macro-Size Fused Deposition Modeling Parts
13
作者 Thanh Thuong Huynh Tien V.T.Nguyen +1 位作者 Quoc Manh Nguyen Trieu Khoa Nguyen 《Computers, Materials & Continua》 SCIE EI 2021年第9期2913-2923,共11页
In this study,we investigated warpage and corner lifting minimization for three-dimensional printed parts generated by macro-size fused deposition modeling(FDM).First,the reasons for warpage were theoretically elucida... In this study,we investigated warpage and corner lifting minimization for three-dimensional printed parts generated by macro-size fused deposition modeling(FDM).First,the reasons for warpage were theoretically elucidated.This approach revealed that the thermal deformation and differential volumetric shrinkage of the extruded molten plastic resulted in warpage of FDM parts.In addition,low adhesion between the deposited model and the heated or non-heated printing bed may intensify warpage further.As a next step,initial small-size and medium-size models were used to identify parameters to manage and minimize warpage in a way that would reduce material consumption and running time.Finally,a macro-size model was built to experimentally investigate and verify the technical solutions to minimize the warpage of FDM parts.In conclusion,an improved part with reduced warpage was efficiently produced after detailed consideration of thermal effects and adhesion force.Potential exists to widen the application scope of FDM technology in manufacturing for processes like thermoforming that involve mold core fabrication with heating.This technology,which has applications not only in mechanical engineering but also in related engineering fields,is convenient and could readily be applied to practical manufacturing industries. 展开更多
关键词 Fused deposition modeling corner lifting volumetric shrinkage thermal deformation acrylonitrile butadiene styrene filament
下载PDF
Analytical Solution of Thermo-Elastic-Plastic Deformation of the Combined Forging Die
14
作者 曹民业 苗宏量 +1 位作者 胡成亮 赵震 《Journal of Shanghai Jiaotong university(Science)》 EI 2023年第2期280-288,共9页
On the multi-layer forging die used in daily life,stressed ring can strength the die structure within elastic deformation and the die material can be self-strengthened through uniform plastic deformation by autofretta... On the multi-layer forging die used in daily life,stressed ring can strength the die structure within elastic deformation and the die material can be self-strengthened through uniform plastic deformation by autofrettage effect,whereas the thermal effect generated during forging process can directly influence the stress state and dimension of the forging die in service.In this study,an analytical solution of the thermo-elastic-plastic deformation in the forging die is derived.The relationships between the radial and circumferential stresses and the temperature distribution,which are directly related to geometric parameters,material properties and working pressure,are determined.This helps to better understand the thermo-elastic-plastic deformation behavior of the die and design the combined forging die to achieve long service life and high accuracy product. 展开更多
关键词 thermal deformation elastic deformation plastic deformation DIE temperature
原文传递
Characteristics of the transient thermal load and deformation of the evacuated receiver in solar parabolic trough collector 被引量:2
15
作者 LI Lu YU HuaJie +1 位作者 LI YinShi HE Ya-Ling 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2020年第7期1188-1201,共14页
As a core element in solar parabolic trough collector, the evaluated receiver often runs under severe thermal conditions. Worse still, the transient thermal load is more likely to cause structural deformation and dama... As a core element in solar parabolic trough collector, the evaluated receiver often runs under severe thermal conditions. Worse still, the transient thermal load is more likely to cause structural deformation and damage. This work develops an efficient transient multi-level multi-dimensional(M2) analysis method to address photo-thermal-elastic problems, thereby estimating transient thermal load and deformation for the receiver:(i) one-dimensional(1-D) thermo-hydraulic model is adopted to determine the transient thermo-hydraulic state,(ii) 3-D finite volume method(FVM) model for the receiver tube is established to obtain the real-time temperature distribution,(iii) 3-D finite element method(FEM) model is employed to make thermoelastic analysis. Based on this M2 method, the typical transient cases are conducted in cold-start, disturbed-operation and regulatedprocess. Three indicators(average temperature of the wall(ATW), radial temperature difference(RTD), circumferential temperature difference(CTD)) are defined for overall analysis of the receiver thermal load. It is found that in the transient process,receivers face response delay and endure significant thermal load fluctuation. The response time for a single HCE(heat collecting element) under lower mass flow rate(1.5 kg s-1) could sustain 280 s. During the cold-start stage(DNI=200 W m-2 to 800 W m-2), the maximum value of CTD in receiver is as high as 11.67℃, corresponding to a maximum deflection of 1.05 cm.When the mass flow rate decreases sharply by 80%, the CTD reaches 33.04℃, causing a 2.06-cm deflection. It should be pointed out that in the cold-start stage and the lower mass flow rate operation for solar parabolic trough collector, alleviating the transient thermal load and deformation is of importance for safely and efficiently running evaluated receiver. 展开更多
关键词 solar energy transient thermal load and deformation heat collecting element parabolic trough collector multi-level multi-dimensional analysis method
原文传递
Thermally controlled large deformation in temperaturesensitive hydrogels bilayers
16
作者 Jianying Hu Nan Jiang Jianke Du 《International Journal of Smart and Nano Materials》 SCIE EI 2021年第4期450-471,共22页
The present work investigates the thermally controlled deformation characteristics in temperature-sensitive hydrogels bilayers.The free energy density for temperature-sensitive hydrogels is modified,upon which the fin... The present work investigates the thermally controlled deformation characteristics in temperature-sensitive hydrogels bilayers.The free energy density for temperature-sensitive hydrogels is modified,upon which the finite element model is developed and implemented through user-defined material subroutine UHYPER in the commercial software ABAQUS.The modified UHYPER implementation allows for more vividly depicting the continuous deformation in phase temperature region for temperature-sensitive hydrogels.Several thermally controlled cases of temperature-sensitive hydrogel including grippers,self-folding boxes,thermally driven origami are presented to illustrate a wide array of complex interesting applications or phenomena.Furthermore,we develop a simple model to theoretically calculate the bending angle of the temperature-sensitive hydrogel bilayers,which has been validated by the finite element simulation results.Our study can provide more insights for optimal design in thermally controlled hydrogels structures. 展开更多
关键词 Temperature-sensitive hydrogels thermally controlled deformation swelling-induced bending
原文传递
Performance Enhancement of Parabolic Trough Collector by Using Homogenizer and Spiral
17
作者 LI Peijing LIU Taixiu +3 位作者 QIN Yuanlong ZHENG Zhimei ZHAO Kai LIU Qibin 《Journal of Thermal Science》 SCIE EI CAS CSCD 2024年第2期658-674,共17页
In conventional parabolic trough collectors(PTCs),sunlight is concentrated at the bottom of the absorber tube,resulting in a significant circumferential temperature gradient across the absorber tube,heat loss and ther... In conventional parabolic trough collectors(PTCs),sunlight is concentrated at the bottom of the absorber tube,resulting in a significant circumferential temperature gradient across the absorber tube,heat loss and thermal deformation,which affects the safety and thermal performance of PTCs.In this study,a new receiver with homogenizer and spiral(RHS) is proposed,achieving the optical and thermal synergy to ameliorate the thermal deformation of the absorber tube and enhance thermal efficiency.A plane structure homogenizer is designed to improve uniformity of the concentrated solar flux of absorber tube through second reflection.In combination with the spiral,it improves the optical-thermal efficiency of the PTC by enhancing heat exchange between the fluid and the backlight side of the absorber tube.The performance of the collector is numerically studied by building a three-dimensional coupled light-thermal-structure model.The results show that the thermal deformation of the RHS is reduced by more than 96% and the optical-thermal efficiency is improved by 1.2%-0.63% compared with conventional receivers(CRs) under the same inlet temperature conditions.The proposed receiver is validated to be effective in reducing thermal deformation and improving optical-thermal efficiency. 展开更多
关键词 parabolic trough collector HOMOGENIZER thermal deformation SPIRAL
原文传递
Design of Twin-Screw Compressor Rotor Tooth Profile with Meshing Clearance Based on Graphic Method and Alpha Shape Algorithm
18
作者 杨剑 徐明照 陆征 《Journal of Shanghai Jiaotong university(Science)》 EI 2023年第2期243-254,共12页
Rotor clearance is necessary for the safe operation of twin-screw compressors,and it has a major impact on the performance of twin-screw compressors.The purpose of this study was to obtain a rotor tooth profile with r... Rotor clearance is necessary for the safe operation of twin-screw compressors,and it has a major impact on the performance of twin-screw compressors.The purpose of this study was to obtain a rotor tooth profile with reasonable meshing clearance on the rotor end surface,so that the clearance on the rotor contact line would be uniform and the rotor could be smoothly meshed.Under ideal conditions,the rotor of a screw compressor should have no clearance or interference.However,owing to assembly errors,thermal compression,stress deformation,and other factors,a rotor without backlash modification will inevitably produce interference during operation.A new design method based on the Alpha shape solution was proposed to achieve an efficient and high-precision design of the clearance of the twin-screw rotor profile.This method avoids the complex analytical calculations in the traditional envelope principle.The best approximation of the points on the rotor conjugate motion sweeping surface in the points is illuminated using a specific color.The sweeping surface of the screw rotor single-tooth profile is roughly scanned to capture the base point set of the sweeping surface boundary points.The chord length and tilt angle of each interval are calculated using the value of the base point set to adjust the position,phase,and magnification of each interval sweeping surface.Finally,the data point set is converted to the same coordinate system to generate the conjugated rotor profile.An example was used to verify the feasibility and adaptability of this method.Based on the equidistant profile method,the clearance between male and female rotors of a screw compressor was obtained under actual operation conditions.Therefore,this study provides a basis for the meshing clearance design in the machining of twin-screw compressor rotors. 展开更多
关键词 screw compressor thermal deformation Alpha shape algorithm equidistant profile method CLEARANCE
原文传递
Carbide precipitation behavior and mechanical properties of micro-alloyed medium Mn steel 被引量:2
19
作者 Luhan Hao Xiangji +3 位作者 Guangqian Zhang Wei Zhao Mingyue Sun Yan Peng 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2020年第12期122-130,共9页
The carbide precipitation behavior and mechanical properties of advanced high strength steel deformed at different temperatures are investigated by X-ray diffractometer(XRD),scanning electron microscope(SEM),transmiss... The carbide precipitation behavior and mechanical properties of advanced high strength steel deformed at different temperatures are investigated by X-ray diffractometer(XRD),scanning electron microscope(SEM),transmission electron microscope(TEM) equipped with an energy dispersing spectroscopy(EDS),and tensile tests.The medium Mn steel was subjected to controlled deformation up to 70% at 750℃,850℃,950℃,and 1050℃,and then quenched with water to room temperature,followed by intercritical annealing at 630℃ for 10 min.In comparison with the undeformed and quenched specimen,it can be concluded that acicular cementite precipitates during the quenching and cooling process,while granular NbC is the deformation induced precipitate and grows during the following annealing process.As the deformation temperature increases from 750℃ to 1050℃,the product of strength and elongation increases at first and then decreases.The smallest average size of second phase particles(20 nm) and the best mechanical properties(32.5 GPa%) can be obtained at the deformation temperature of 950℃. 展开更多
关键词 Advanced high strength steel Medium Mn steel thermal deformation Intercritical annealing The product of strength and elongation
原文传递
Numerical analysis of three-dimensional thermo-elastic rolling contact under steady-state conditions 被引量:1
20
作者 Yonghun YU Junho SUH 《Friction》 SCIE EI CAS CSCD 2022年第4期630-644,共15页
In this study,a three-dimensional thermo-elastic model that considers the interaction of mechanical and thermal deformation is developed using a semi-analytic method for steady-state rolling contact.Creepage types in ... In this study,a three-dimensional thermo-elastic model that considers the interaction of mechanical and thermal deformation is developed using a semi-analytic method for steady-state rolling contact.Creepage types in all directions are considered in this model.For verification,the numerical analysis results of shear traction and temperature increase are compared separately with existing numerical results,and the consistency is confirmed.The analysis results include heat flux,temperature increase,contact pressure,and shear traction.Under severe rolling conditions,the thermal effect changes the behavior of the contact interface significantly.Furthermore,the effects of creepage,rolling speed,and conformity under different rolling and creep conditions are investigated. 展开更多
关键词 CREEP frictional heat rolling contact SPIN thermal deformation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部