Thermal and thermo-oxidative decomposition and decomposition kinetics of flame retardant high impact polystyrene (HIPS) with triphenyl phosphate (TPP) and novolac type epoxy resin (NE) were characterized using t...Thermal and thermo-oxidative decomposition and decomposition kinetics of flame retardant high impact polystyrene (HIPS) with triphenyl phosphate (TPP) and novolac type epoxy resin (NE) were characterized using thermo-gravimetric experiment. And the flammability was determined by limited oxygen indices (LOI). The LOI results show that TPP and NE had a good synthetic effect on the flame retardancy of HIPS. Compared with pure HIPS, the LOI values of HIPS/NE and HIPS/TPP only increased by about 5%, and the LOI value of HIPS/TPP/NE reached 42.3%, nearly 23% above that of HIPS. All materials showed one main decomposition step, as radical HIPS scission predominated during anaerobic decomposition. TPP increased the activity energy effectively while NE affected the thermal-oxidative degradation more with the help of the char formation. With both TPP and NE, the materials could have a comparable good result of both thermal and thermal-oxidative degradation, which could contribute to their effect on the flame retardancy.展开更多
Calcium alginate fibers were prepared by wet spinning of sodium alginate into a coagulating bath containing calcium chloride.The thermal degradation and flame retardancy of calcium alginate fibers were investigated wi...Calcium alginate fibers were prepared by wet spinning of sodium alginate into a coagulating bath containing calcium chloride.The thermal degradation and flame retardancy of calcium alginate fibers were investigated with thermal gravimetry(TG),X-ray diffraction(XRD),limiting oxygen index(LOI) and cone calorimeter(CONE).The results show that calcium alginate fibers are inherently flame retardant with a LOI value of 34,and the heat release rate(HRR),total heat release(THR),CO and CO_2 concentrations during com...展开更多
The non-isothermal degradation kinetics of N,N'-di(diethoxythiophosphoryl)-1,4-phenylenediamine in N2 was studied by TG-DTG techniques.The kinetic parameters,including the activation energy and pre-exponential fact...The non-isothermal degradation kinetics of N,N'-di(diethoxythiophosphoryl)-1,4-phenylenediamine in N2 was studied by TG-DTG techniques.The kinetic parameters,including the activation energy and pre-exponential factor of the degradation process for the title compound were calculated by means of the Kissinger and Flynn-Wall-Ozawa(FWO)method and the thermal degradation mechanism of the title compound was also studied with the Satava-Sestak methods.The results indicate that the activation energy and pre-exponential factor are 152.61 kJ/mol and 9.06×101 4s -1with the Kissinger method and 154.08 kJ/mol with the Flynn-Wall-Ozawa method,respectively.It has been shown that the degradation of the title compound follows a kinetic model of one-dimensional diffusion or parabolic law,the kinetic function is G(α)=α2and the reaction order is n=2.展开更多
Silicone rubber(SR)is widely used in the field of electronic packaging because of its low dielectric properties.In this work,the porosity of the SR was improved,and the dielectric constant of the SR foam was reduced b...Silicone rubber(SR)is widely used in the field of electronic packaging because of its low dielectric properties.In this work,the porosity of the SR was improved,and the dielectric constant of the SR foam was reduced by adding expanded microspheres(EM).Then,the thermal conductivity of the system was improved by combining the modified boron nitride(f-BN).The results showed that after the f-BN was added,the dielectric constant and dielectric loss were much lower than those of pure SR.Micron-sized modified boron nitride(f-mBN)improved the dielectric and thermal conductivity of the SR foam better than that of nano-sized modified boron nitride(f-nBN),but f-nBN improved the volume resistivity,tensile strength,and thermal stability of the SR better than f-mBN.When the mass ratio of f-mBN and fnBN is 2:1,the thermal conductivity of the SR foam reaches the maximum value of 0.808 W·m^(-1)·K^(-1),which is 6.5 times that before the addition.The heat release rate and fire growth index are the lowest,and the improvement in flame retardancy is mainly attributed to the high thermal stability and physical barrier of f-BN.展开更多
Electrochemical oxidation of aqueous tris(1,3-dichloro-2-propyl)phosphate(TDCPP)by using Ti/SnO_(2)-Sb/La-PbO_(2)as anode was investigated for the first time,and the degradation mechanisms and toxicity changes of the ...Electrochemical oxidation of aqueous tris(1,3-dichloro-2-propyl)phosphate(TDCPP)by using Ti/SnO_(2)-Sb/La-PbO_(2)as anode was investigated for the first time,and the degradation mechanisms and toxicity changes of the degradation intermediates were further determined.Results suggested that electrochemical degradation of TDCPP followed pseudo-first-order kinetics,and the reaction rate constant(k)was 0.0332 min^(−1)at the applied current density of 10 mA/cm^(2)and Na_(2)SO_(4)concentration of 10 mmol/L.There was better TDCPP degradation performance at higher current density.Free hydroxy radical(•OH)was proved to play dominant role in TDCPP oxidation via quenching experiment,with a relative contribution rate of 60.1%.A total of five intermediates(M1,C_(6)H_(11)Cl_(4)O_(4)P;M2,C_(3)H_(7)Cl_(2)O_(4)P;M3,C_(9)H_(16)Cl_(5)O_(5)P;M4,C_(9)H_(14)Cl_(5)O_(6)P;M5,C_(6)H_(10)Cl_(3)O_(6)P)were identified,and the intermediates were further degraded prolonging with the reaction time.Flow cytometer results suggested that the toxicity of TDCPP and degradation intermediates significantly reduced,and the detoxification efficiency was achieved at 78.1%at 180 min.ECOSAR predictive model was used to assess the relative toxicity of TDCPP and the degradation intermediates.The EC_(50)to green algae was 3.59 mg/L for TDCPP,and the values raised to 84,574,54.6,391,and 8920 mg/L for M1,M2,M3,M4,and M5,respectively,indicating that the degradation intermediates are less toxic or not toxic.Electrochemical advanced oxidation process is a valid technology to degrade TDCPP and pose a good detoxification effect.展开更多
Benzoxazines have attracted wide attention from academics all over the world because of their unique properties.However,most of the production and preparation of benzoxazine resins depends on petroleum resources now,e...Benzoxazines have attracted wide attention from academics all over the world because of their unique properties.However,most of the production and preparation of benzoxazine resins depends on petroleum resources now,especially bisphenol A-based benzoxazine.Therefore,owing to the environmental impacts,the development of bio-based benzoxazines is gaining more and more interest to substitute petroleum-based benzoxazines.Similar to petroleum-based benzoxazines,most of bio-based benzoxazines suffer from flammability.Thus,it is necessary to endow bio-based benzoxazines with outstanding flame retardancy.The purpose of this review is to summarize the latest advance in flame retardant bio-based benzoxazines.First,three methods of the synthesis of bio-based benzoxazines are introduced briefly.Furthermore,the curing mechanism of benzoxazine and the effect of branched chains on the curing behavior are also discussed and summarized.Subsequently,this review focuses on fully bio-based benzoxazines,partly bio-based benzoxazines,and bio-based benzoxazine composite materials in terms of flame retardancy as well as thermal stability and some other special properties.Finally,we give a brief comment on the challenges and prospects of the future development of flame retardant bio-based benzoxazines.展开更多
The flame retardant mechanism of the copolyester phosphorus containing linked pendant groups was investigated by thermogravimetric (TG), X-ray photoelectron spectroscopy (XPS) and direct insertion probe pyrolysis ...The flame retardant mechanism of the copolyester phosphorus containing linked pendant groups was investigated by thermogravimetric (TG), X-ray photoelectron spectroscopy (XPS) and direct insertion probe pyrolysis mass spectrometry (DP-MS) technique. TG results show that the incorporation of phosphorus containing unit linked pendant groups can destabilize the copolyester due to the cleavage of P-CH2 bond, and phosphorus containing units cannot promote the char-formation of the copolyester during the thermal degradation of the copolyester. XPS spectra indicate that with the increase of the temperature, the P-CH2 bonds of the copolyester break down gradually, the concentration of phosphorus in the condensed phase products decrease gradually and the chemical state of phosphorus does not change in the temperature of 250-380 ℃. Direct pyrolysis MS suggests that the P-CH2 bonds cleavage occurs at pendant groups and species containing phosphorus can volatilize into the gas phase. A flame retardant mechanism is proposed for the gas phase mode of action of the halogen-free copolyester phosphorus containing linked pendant groups.展开更多
Caged bicyclic phosphate (CBP) and its dimelamine salt (PDS) were synthesized and added to epoxy resins to obtain the flame retarded epoxy resin composites. The flammability of the composites was characterized by ...Caged bicyclic phosphate (CBP) and its dimelamine salt (PDS) were synthesized and added to epoxy resins to obtain the flame retarded epoxy resin composites. The flammability of the composites was characterized by the limiting oxygen index (LOI) and cone calorimeter tests. The LOI values of flame retarded composites increase consistently with the increase of flame retardant amounts, and they are almost the same when the loading of CBP is the same as that of PDS, although the phosphorus content of PDS is much lower than that of CBP. The total heat release increases in the order of CBP30/ER 〈 PDS30/ER 〈 PDS15/ER 〈 CBPI5/ER, whereas that of specific extinction area is CBP15/ER 〉 CBP30/ER 〉 PDS30/ER ≌ PDS15/ER. PDS exhibits more effective inhibition of oxidation of combustible gases. In the tests of thermogravimetric analyses (TG) and Fourier transform infrared spectroscopy (FT-IR), it is found that the degradation of the composites is influenced greatly by the addition of flame retardants. By scanning electron microscopy (SEM), a thick and tight char-layer is observed for PDS30/ER, resulting from the interaction of nitrogen species with phosphorus species. Therefore, the combination of CBP with melamine in the flame retarded system can improve the flame retardancy greatly.展开更多
Recycled polyethylene terephthalate (RPET) and recycle polypropylene (RPP) blends filled with a renewable filler, i.e. cockleshell-derived CaCO3 (CS) were prepared as an environmental friendly thermoplastic composite....Recycled polyethylene terephthalate (RPET) and recycle polypropylene (RPP) blends filled with a renewable filler, i.e. cockleshell-derived CaCO3 (CS) were prepared as an environmental friendly thermoplastic composite. The effects of CS particle size and content on thermal stability, mechanical performance and flame retardant properties of the blends were investigated. Thermogravimetric analysis was performed to elucidate the thermal decomposition kinetics of the filled composites. The iso-conversion of the Flynn-Wall-Ozawa was developed by the second order polynomial function for thermal oxidative degradation of the blends while peak derivative temperature from the Kissinger method was able to verify the mechanism of degradation in these blends. The results indicated that both CS and commercial grade CaCO3 improved thermal stability and enhanced the stiffness as well as impact performance of the blends. However, this could only be achieved when high filler content was present in the RPET/RPP blends.展开更多
基金Guangdong Province Natural Sciences Fundation(No.39672)
文摘Thermal and thermo-oxidative decomposition and decomposition kinetics of flame retardant high impact polystyrene (HIPS) with triphenyl phosphate (TPP) and novolac type epoxy resin (NE) were characterized using thermo-gravimetric experiment. And the flammability was determined by limited oxygen indices (LOI). The LOI results show that TPP and NE had a good synthetic effect on the flame retardancy of HIPS. Compared with pure HIPS, the LOI values of HIPS/NE and HIPS/TPP only increased by about 5%, and the LOI value of HIPS/TPP/NE reached 42.3%, nearly 23% above that of HIPS. All materials showed one main decomposition step, as radical HIPS scission predominated during anaerobic decomposition. TPP increased the activity energy effectively while NE affected the thermal-oxidative degradation more with the help of the char formation. With both TPP and NE, the materials could have a comparable good result of both thermal and thermal-oxidative degradation, which could contribute to their effect on the flame retardancy.
基金supported by the Special Program for Key Basic Research of the Ministry of Science and Technology of China(No.2006CB708603)the National Natural Science Foundation of China(No.50673046)Shandong Natural Science Foundation(No.Q2008B04)
文摘Calcium alginate fibers were prepared by wet spinning of sodium alginate into a coagulating bath containing calcium chloride.The thermal degradation and flame retardancy of calcium alginate fibers were investigated with thermal gravimetry(TG),X-ray diffraction(XRD),limiting oxygen index(LOI) and cone calorimeter(CONE).The results show that calcium alginate fibers are inherently flame retardant with a LOI value of 34,and the heat release rate(HRR),total heat release(THR),CO and CO_2 concentrations during com...
基金the China Petroleum&Chemical Science and Technology Foundation(No.205026)the Tianjin Science andTechnology Plan Foundation,China(No.06TXTJJC14400).
文摘The non-isothermal degradation kinetics of N,N'-di(diethoxythiophosphoryl)-1,4-phenylenediamine in N2 was studied by TG-DTG techniques.The kinetic parameters,including the activation energy and pre-exponential factor of the degradation process for the title compound were calculated by means of the Kissinger and Flynn-Wall-Ozawa(FWO)method and the thermal degradation mechanism of the title compound was also studied with the Satava-Sestak methods.The results indicate that the activation energy and pre-exponential factor are 152.61 kJ/mol and 9.06×101 4s -1with the Kissinger method and 154.08 kJ/mol with the Flynn-Wall-Ozawa method,respectively.It has been shown that the degradation of the title compound follows a kinetic model of one-dimensional diffusion or parabolic law,the kinetic function is G(α)=α2and the reaction order is n=2.
基金supported by the Natural Science Foundation of Anhui Province(2108085QE211)National Natural Science Foundation of China(22205229)Science Foundation of China University of Petroleum,Beijing(2462024QNXZ001).
文摘Silicone rubber(SR)is widely used in the field of electronic packaging because of its low dielectric properties.In this work,the porosity of the SR was improved,and the dielectric constant of the SR foam was reduced by adding expanded microspheres(EM).Then,the thermal conductivity of the system was improved by combining the modified boron nitride(f-BN).The results showed that after the f-BN was added,the dielectric constant and dielectric loss were much lower than those of pure SR.Micron-sized modified boron nitride(f-mBN)improved the dielectric and thermal conductivity of the SR foam better than that of nano-sized modified boron nitride(f-nBN),but f-nBN improved the volume resistivity,tensile strength,and thermal stability of the SR better than f-mBN.When the mass ratio of f-mBN and fnBN is 2:1,the thermal conductivity of the SR foam reaches the maximum value of 0.808 W·m^(-1)·K^(-1),which is 6.5 times that before the addition.The heat release rate and fire growth index are the lowest,and the improvement in flame retardancy is mainly attributed to the high thermal stability and physical barrier of f-BN.
基金This study was financially supported by National Science Foundation(Nos.41907294,52000028 and 51878169)the Guangdong Innovation Team Project for Colleges and Universities(No.2016KCXTD023).
文摘Electrochemical oxidation of aqueous tris(1,3-dichloro-2-propyl)phosphate(TDCPP)by using Ti/SnO_(2)-Sb/La-PbO_(2)as anode was investigated for the first time,and the degradation mechanisms and toxicity changes of the degradation intermediates were further determined.Results suggested that electrochemical degradation of TDCPP followed pseudo-first-order kinetics,and the reaction rate constant(k)was 0.0332 min^(−1)at the applied current density of 10 mA/cm^(2)and Na_(2)SO_(4)concentration of 10 mmol/L.There was better TDCPP degradation performance at higher current density.Free hydroxy radical(•OH)was proved to play dominant role in TDCPP oxidation via quenching experiment,with a relative contribution rate of 60.1%.A total of five intermediates(M1,C_(6)H_(11)Cl_(4)O_(4)P;M2,C_(3)H_(7)Cl_(2)O_(4)P;M3,C_(9)H_(16)Cl_(5)O_(5)P;M4,C_(9)H_(14)Cl_(5)O_(6)P;M5,C_(6)H_(10)Cl_(3)O_(6)P)were identified,and the intermediates were further degraded prolonging with the reaction time.Flow cytometer results suggested that the toxicity of TDCPP and degradation intermediates significantly reduced,and the detoxification efficiency was achieved at 78.1%at 180 min.ECOSAR predictive model was used to assess the relative toxicity of TDCPP and the degradation intermediates.The EC_(50)to green algae was 3.59 mg/L for TDCPP,and the values raised to 84,574,54.6,391,and 8920 mg/L for M1,M2,M3,M4,and M5,respectively,indicating that the degradation intermediates are less toxic or not toxic.Electrochemical advanced oxidation process is a valid technology to degrade TDCPP and pose a good detoxification effect.
基金We gratefully acknowledge financial support from the National Natural Science Foundation of China(Grant No.22075265)the Youth Innovation Promotion Association of the Chinese Academy of Sciences(Grant No.2021459).
文摘Benzoxazines have attracted wide attention from academics all over the world because of their unique properties.However,most of the production and preparation of benzoxazine resins depends on petroleum resources now,especially bisphenol A-based benzoxazine.Therefore,owing to the environmental impacts,the development of bio-based benzoxazines is gaining more and more interest to substitute petroleum-based benzoxazines.Similar to petroleum-based benzoxazines,most of bio-based benzoxazines suffer from flammability.Thus,it is necessary to endow bio-based benzoxazines with outstanding flame retardancy.The purpose of this review is to summarize the latest advance in flame retardant bio-based benzoxazines.First,three methods of the synthesis of bio-based benzoxazines are introduced briefly.Furthermore,the curing mechanism of benzoxazine and the effect of branched chains on the curing behavior are also discussed and summarized.Subsequently,this review focuses on fully bio-based benzoxazines,partly bio-based benzoxazines,and bio-based benzoxazine composite materials in terms of flame retardancy as well as thermal stability and some other special properties.Finally,we give a brief comment on the challenges and prospects of the future development of flame retardant bio-based benzoxazines.
文摘The flame retardant mechanism of the copolyester phosphorus containing linked pendant groups was investigated by thermogravimetric (TG), X-ray photoelectron spectroscopy (XPS) and direct insertion probe pyrolysis mass spectrometry (DP-MS) technique. TG results show that the incorporation of phosphorus containing unit linked pendant groups can destabilize the copolyester due to the cleavage of P-CH2 bond, and phosphorus containing units cannot promote the char-formation of the copolyester during the thermal degradation of the copolyester. XPS spectra indicate that with the increase of the temperature, the P-CH2 bonds of the copolyester break down gradually, the concentration of phosphorus in the condensed phase products decrease gradually and the chemical state of phosphorus does not change in the temperature of 250-380 ℃. Direct pyrolysis MS suggests that the P-CH2 bonds cleavage occurs at pendant groups and species containing phosphorus can volatilize into the gas phase. A flame retardant mechanism is proposed for the gas phase mode of action of the halogen-free copolyester phosphorus containing linked pendant groups.
基金This work was supported by the financial support of the Commission of Science and Technology of Shanghai Municipality(No.05nm05039 and No.05QMX1413).
文摘Caged bicyclic phosphate (CBP) and its dimelamine salt (PDS) were synthesized and added to epoxy resins to obtain the flame retarded epoxy resin composites. The flammability of the composites was characterized by the limiting oxygen index (LOI) and cone calorimeter tests. The LOI values of flame retarded composites increase consistently with the increase of flame retardant amounts, and they are almost the same when the loading of CBP is the same as that of PDS, although the phosphorus content of PDS is much lower than that of CBP. The total heat release increases in the order of CBP30/ER 〈 PDS30/ER 〈 PDS15/ER 〈 CBPI5/ER, whereas that of specific extinction area is CBP15/ER 〉 CBP30/ER 〉 PDS30/ER ≌ PDS15/ER. PDS exhibits more effective inhibition of oxidation of combustible gases. In the tests of thermogravimetric analyses (TG) and Fourier transform infrared spectroscopy (FT-IR), it is found that the degradation of the composites is influenced greatly by the addition of flame retardants. By scanning electron microscopy (SEM), a thick and tight char-layer is observed for PDS30/ER, resulting from the interaction of nitrogen species with phosphorus species. Therefore, the combination of CBP with melamine in the flame retarded system can improve the flame retardancy greatly.
文摘Recycled polyethylene terephthalate (RPET) and recycle polypropylene (RPP) blends filled with a renewable filler, i.e. cockleshell-derived CaCO3 (CS) were prepared as an environmental friendly thermoplastic composite. The effects of CS particle size and content on thermal stability, mechanical performance and flame retardant properties of the blends were investigated. Thermogravimetric analysis was performed to elucidate the thermal decomposition kinetics of the filled composites. The iso-conversion of the Flynn-Wall-Ozawa was developed by the second order polynomial function for thermal oxidative degradation of the blends while peak derivative temperature from the Kissinger method was able to verify the mechanism of degradation in these blends. The results indicated that both CS and commercial grade CaCO3 improved thermal stability and enhanced the stiffness as well as impact performance of the blends. However, this could only be achieved when high filler content was present in the RPET/RPP blends.