Using the first-principles method, we investigate the thermal stability of cation point defects in LaAlO3 bulk and films. The calculated densities of states indicate that cation vacancies and antisites act as acceptor...Using the first-principles method, we investigate the thermal stability of cation point defects in LaAlO3 bulk and films. The calculated densities of states indicate that cation vacancies and antisites act as acceptors. The formation energies show that cation vacancies are energetically favorable in bulk LaAIO3 under O-rich conditions, while the AILa antisites are stable in reducing atmosphere. However, the same behavior does not appear in the case of LaAlO3 films. For LaO-terminated LaAlOa fihns, La or AI vacancies remain energetically favorable under O-rich and O-deficient conditions. For an AlO2-terminated surface, under O-rich condition the La interstitial atom is repelled from the outmost layer after optimization, which releases more stress leading to the decrease of total energy of the system. An AI interstitial atom has a smaller radius so that it can stay in distorted films and becomes more stable under O-deficient conditions, and the Al interstitial atoms can be another possible carrier source contribution to the conductivity of n-type interface under an ultrahigh vacuum. La and Al antisites have similar formation energy regardless of oxygen pressure. The results would be helpful to understand the defect structures of LaAlOa-related materials.展开更多
Based on the NCEP/NCAR reanalysis data for the period of 1948-2004 and the monthly rainfall data at 160 stations in China from 1951 to 2004, the relationships among the land-ocean temperature anomaly difference in the...Based on the NCEP/NCAR reanalysis data for the period of 1948-2004 and the monthly rainfall data at 160 stations in China from 1951 to 2004, the relationships among the land-ocean temperature anomaly difference in the mid-lower troposphere in spring (April-May), the mei-yu rainfall in the Yangtze River- Huaihe River basin, and the activities of the South China Sea summer monsoon (SCSSM) are analyzed by using correlation and composite analyses. Results show that a significant positive correlation exists between mei-yu rainfall and air temperature in the middle latitudes above the western Pacific, while a significant negative correlation is located to the southwest of the Baikal Lake. When the land-ocean thermal anomaly difference is stronger in spring, the western Pacific subtropical high (WPSH) will be weaker and retreat eastward in summer (June-July), and the SCSSM will be stronger and advance further north, resulting in deficient moisture along the mei-yu front and below-normal precipitation in the mid and lower reaches of the Yangtze River, and vice versa for the weaker difference case. The effects and relative importance of the land and ocean anomalous heating on monsoon variability is also compared. It is found that the land and ocean thermal anomalies are both closely related to the summer circulation and mei-yu rainfall and SCSSM intensity, whereas the land heating anomaly is more important than ocean heating in changing the land-ocean thermal contrast and hence the summer monsoon intensity.展开更多
The interdecadal factors affecting the summer monsoon winds over Somalia and the South China Sea were studied. Global geopotential heights and wind velocity fields of the 850-hPa and 200-hPa pressure levels, as well a...The interdecadal factors affecting the summer monsoon winds over Somalia and the South China Sea were studied. Global geopotential heights and wind velocity fields of the 850-hPa and 200-hPa pressure levels, as well as sea surface temperature anomaly data and correlation coefficients were analyzed. The monsoons over Somalia and the South China Sea were found to be two different monsoon systems, operating on different mechanisms and being affected by different oceanatmosphere interactions. The intensity of the Asian subtropical summer monsoon is influenced by the intensity of the summer monsoon over Somalia in the month of June and by the intensity of the summer monsoon over the South China Sea in the months of June and July. The summer monsoon wind strength over Somalia is affected by regional factors, such as the heating of the Tibetan plateau, and by global mechanisms, such as the subtropical heat exchange with Antarctica. The summer monsoon over the South China Sea is affected by different ocean-atmosphere interactions. The Somalia and subtropical summer monsoons have wind blowing down the pressure gradient from area over ocean to that over land, like typical summer monsoons. The South China Sea summer monsoon has winds that blow down the pressure gradient from area over land to that over ocean. The South China Sea summer monsoon is affected by the Kuroshio Current off the east coast of Japan.展开更多
A different pressure thermally coupled reactive distillation column(DPT-RD) for the hydrolysis of methyl acetate(Me Ac) is developed, and its design and optimization procedures are investigated. The sensitivity analys...A different pressure thermally coupled reactive distillation column(DPT-RD) for the hydrolysis of methyl acetate(Me Ac) is developed, and its design and optimization procedures are investigated. The sensitivity analysis is carried out to minimize the energy consumption, which is associated with the total annual cost(TAC). The influence of the proposed DPTRD scheme on energy consumption and economic efficiency are evaluated in comparison with the conventional reactive distillation column(CRD). Both the DPT-RD and CRD are simulated with the Aspen Plus?, and it can be observed that for the DPT-RD the energy consumption and the TAC are reduced, and the thermodynamic efficiency is increased as compared with the CRD process.展开更多
The United Arab Emirates (UAE) has undergone major urban transformation after the establishment of the country in 1971. One noticeable change is urban expansion in terms of massive infrastructure, including new reside...The United Arab Emirates (UAE) has undergone major urban transformation after the establishment of the country in 1971. One noticeable change is urban expansion in terms of massive infrastructure, including new residential areas, highways, airports, and sophisticated transportation systems. Major landscape changes and disturbances, such as urban development, are among the major contributors to global climate change. Urban areas can be 3.5<span style="white-space:nowrap;">°</span>C - 4.5<span style="white-space:nowrap;">°</span>C warmer than neighboring rural areas, a phenomenon known as urban heat islands (UHIs). As such, urban development in the UAE was expected to follow a similar pattern and to be a major contributor to the country’s impact on global climate change. Analyses of multi-temporal (1988-2017) land surface temperature (LST) data obtained from Landsat satellite datasets over a desert city in the UAE showed unexpected results. Urbanization of desert surfaces in the study area led to a decrease of 3<span style="white-space:nowrap;">°</span>C - 5<span style="white-space:nowrap;">°</span>C in the overall LST. This was attributed to the associated expansion of green spaces in the newly developed urban areas, the expansion of date plantations and perhaps a cooling in the previously desert surface. Therefore, the UHI effect was not well demonstrated in the studied desert surfaces converted to urban areas.展开更多
This work focuses on the relationship between flexibility of molecular chains and thermal properties of polyurethane elastomer(PUE), which laid the foundation of further research about how to improve thermal propert...This work focuses on the relationship between flexibility of molecular chains and thermal properties of polyurethane elastomer(PUE), which laid the foundation of further research about how to improve thermal properties of PUE. A series of PUE samples with different flexibility of molecular chains was prepared by using 1,4-butanediol(1,4-BDO)/bisphenol-a(BPA) blends with different mole ratios including9/1, 8/2, 7/3, 6/4 and 5/5. As comparison, PUE extended with pure 1,4-BDO and BPA was also synthesized.These samples were characterized by differential scanning calorimetry(DSC), thermogravimetric analysis(TGA), dynamic mechanical analysis(DMA), etc. The results showed that with the decrease in flexibility of molecular chains the glass transition temperature(Tg) increased and low-temperature properties became worse. Besides, all samples had a certain degree of microphase separation, and soft segments in some samples were crystallized, i.e. the decreasing flexibility of molecular chains led to the impossibility of chains tightly packing and crystalline domains forming so that the degree of microphase separation decreased and the thermal properties became worse.展开更多
This paper proposes an index of land-sea thermal difference(ILSTD)that describes its zonal and meridional strength responsible for East Asian monsoon circulation to study its relation to the East Asian monsoon circula...This paper proposes an index of land-sea thermal difference(ILSTD)that describes its zonal and meridional strength responsible for East Asian monsoon circulation to study its relation to the East Asian monsoon circulation and the summer rainfall over China on an interannual basis.Results are as follows:(1)ILSTD can be used to measure the strength of East Asian summer monsoon in such a way that the strong(weak)ILSTD years are associated with strong(weak)summer monsoon circulation.(2)The index also reflects well summer rainfall anomaly over the eastern part of China. In the strong index years,rain belt is mainly located over the northern China,and serious drought emerges in the Jianghuai valleys and mid-lower reaches of the Changjiang River,along with increase of rainfall in North and South China,but in the weak years it is contrary.(3)Besides,the index has obvious QBO and quasi 4-year oscillations,but the periods and amplitudes have significant changes on an interdecadal basis.展开更多
Using the CCM3/NCAR, a series of numerical experiments are designed to explore the effect of ocean-land interlaced distributions of Africa-Arabian Sea-India Peninsula-Bay of Bengal (BOB)-Indo-China Peninsula- South ...Using the CCM3/NCAR, a series of numerical experiments are designed to explore the effect of ocean-land interlaced distributions of Africa-Arabian Sea-India Peninsula-Bay of Bengal (BOB)-Indo-China Peninsula- South China Sea on the formation of the Asian summer monsoon circulation (ASMC). The results show that the thermal difference between African or Indian Subcontinent and nearby areas including the Indian Ocean, Arabian Sea, and part of BOB is the primary mechanism that maintains the Indian monsoon circulation. In the experiment getting rid of these two continents, the Indian monsoon system (IMS) members, i.e., the Somali cross-equatorial jet (40°E) and the southwesterly monsoon over the Arabian Sea and BOB, almost disappear. Moreover, the Hadley circulation weakens dominantly. It also proves that Africa has greater effect than Indian Subcontinent on the IMS. However, the existence of Indo-China Peninsula and Australia strengthens the East Asian monsoon system (EAMS). The thermal contrast between Indo-China Peninsula and SCS, Australia and western Pacific Ocean plays an important role in the formation of the tropical monsoon to the south of the EAMS. When the Indo-China Peninsula is masked in the experiment, the cross-equatorial flow (105°E and 125°E) vanishes, so does the southwesterly monsoon usually found over East Asia, and EAMS is enfeebled significantly. In addition, the impacts of these thermal contrasts on the distribution of the summer precipitation and surface temperature are investigated.展开更多
基金Supported by the Hebei Provincial Young Top-Notch Talent Support Program under Grant No BJRC2016the Innovative Funding Project of Graduates of Hebei University under Grant No hbu2018ss62the Midwest Universities Comprehensive Strength Promotion Project
文摘Using the first-principles method, we investigate the thermal stability of cation point defects in LaAlO3 bulk and films. The calculated densities of states indicate that cation vacancies and antisites act as acceptors. The formation energies show that cation vacancies are energetically favorable in bulk LaAIO3 under O-rich conditions, while the AILa antisites are stable in reducing atmosphere. However, the same behavior does not appear in the case of LaAlO3 films. For LaO-terminated LaAlOa fihns, La or AI vacancies remain energetically favorable under O-rich and O-deficient conditions. For an AlO2-terminated surface, under O-rich condition the La interstitial atom is repelled from the outmost layer after optimization, which releases more stress leading to the decrease of total energy of the system. An AI interstitial atom has a smaller radius so that it can stay in distorted films and becomes more stable under O-deficient conditions, and the Al interstitial atoms can be another possible carrier source contribution to the conductivity of n-type interface under an ultrahigh vacuum. La and Al antisites have similar formation energy regardless of oxygen pressure. The results would be helpful to understand the defect structures of LaAlOa-related materials.
基金supported by the National Basic Research Program ofChina (Grant No. 2004CB418300)the National Natural Science Foundation of China (Grant No. 40675042)
文摘Based on the NCEP/NCAR reanalysis data for the period of 1948-2004 and the monthly rainfall data at 160 stations in China from 1951 to 2004, the relationships among the land-ocean temperature anomaly difference in the mid-lower troposphere in spring (April-May), the mei-yu rainfall in the Yangtze River- Huaihe River basin, and the activities of the South China Sea summer monsoon (SCSSM) are analyzed by using correlation and composite analyses. Results show that a significant positive correlation exists between mei-yu rainfall and air temperature in the middle latitudes above the western Pacific, while a significant negative correlation is located to the southwest of the Baikal Lake. When the land-ocean thermal anomaly difference is stronger in spring, the western Pacific subtropical high (WPSH) will be weaker and retreat eastward in summer (June-July), and the SCSSM will be stronger and advance further north, resulting in deficient moisture along the mei-yu front and below-normal precipitation in the mid and lower reaches of the Yangtze River, and vice versa for the weaker difference case. The effects and relative importance of the land and ocean anomalous heating on monsoon variability is also compared. It is found that the land and ocean thermal anomalies are both closely related to the summer circulation and mei-yu rainfall and SCSSM intensity, whereas the land heating anomaly is more important than ocean heating in changing the land-ocean thermal contrast and hence the summer monsoon intensity.
基金This research was supported by the National Natural Science Foundation of China(No.40136010)carried out at the Ocean University of China as part of the US National Science Foundation REU in M arine Science and Engineering in China,under Grant Number OISR-0229657.
文摘The interdecadal factors affecting the summer monsoon winds over Somalia and the South China Sea were studied. Global geopotential heights and wind velocity fields of the 850-hPa and 200-hPa pressure levels, as well as sea surface temperature anomaly data and correlation coefficients were analyzed. The monsoons over Somalia and the South China Sea were found to be two different monsoon systems, operating on different mechanisms and being affected by different oceanatmosphere interactions. The intensity of the Asian subtropical summer monsoon is influenced by the intensity of the summer monsoon over Somalia in the month of June and by the intensity of the summer monsoon over the South China Sea in the months of June and July. The summer monsoon wind strength over Somalia is affected by regional factors, such as the heating of the Tibetan plateau, and by global mechanisms, such as the subtropical heat exchange with Antarctica. The summer monsoon over the South China Sea is affected by different ocean-atmosphere interactions. The Somalia and subtropical summer monsoons have wind blowing down the pressure gradient from area over ocean to that over land, like typical summer monsoons. The South China Sea summer monsoon has winds that blow down the pressure gradient from area over land to that over ocean. The South China Sea summer monsoon is affected by the Kuroshio Current off the east coast of Japan.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.21276279,21476261)the Key Technologies Development Project of Qingdao Economic and Technological Development Zone(Grant No.2013-1-57)+1 种基金the Fundamental Research Funds for the Central Universities(No.14CX05030ANo.14CX06108A).
文摘A different pressure thermally coupled reactive distillation column(DPT-RD) for the hydrolysis of methyl acetate(Me Ac) is developed, and its design and optimization procedures are investigated. The sensitivity analysis is carried out to minimize the energy consumption, which is associated with the total annual cost(TAC). The influence of the proposed DPTRD scheme on energy consumption and economic efficiency are evaluated in comparison with the conventional reactive distillation column(CRD). Both the DPT-RD and CRD are simulated with the Aspen Plus?, and it can be observed that for the DPT-RD the energy consumption and the TAC are reduced, and the thermodynamic efficiency is increased as compared with the CRD process.
文摘The United Arab Emirates (UAE) has undergone major urban transformation after the establishment of the country in 1971. One noticeable change is urban expansion in terms of massive infrastructure, including new residential areas, highways, airports, and sophisticated transportation systems. Major landscape changes and disturbances, such as urban development, are among the major contributors to global climate change. Urban areas can be 3.5<span style="white-space:nowrap;">°</span>C - 4.5<span style="white-space:nowrap;">°</span>C warmer than neighboring rural areas, a phenomenon known as urban heat islands (UHIs). As such, urban development in the UAE was expected to follow a similar pattern and to be a major contributor to the country’s impact on global climate change. Analyses of multi-temporal (1988-2017) land surface temperature (LST) data obtained from Landsat satellite datasets over a desert city in the UAE showed unexpected results. Urbanization of desert surfaces in the study area led to a decrease of 3<span style="white-space:nowrap;">°</span>C - 5<span style="white-space:nowrap;">°</span>C in the overall LST. This was attributed to the associated expansion of green spaces in the newly developed urban areas, the expansion of date plantations and perhaps a cooling in the previously desert surface. Therefore, the UHI effect was not well demonstrated in the studied desert surfaces converted to urban areas.
基金supported financially by the National Natural Science Foundation of China (Grant No. 51372200)Program for New Century Excellent Talents in University of Ministry of Education of China (Grant No. NCET-12-1045)+2 种基金Special Program for local serving from Education Department of Shaanxi Provincial Government (Grant No. 2013JC19)Program for Innovation Team in Xi’an University of Technology (Grant No. 108-25605T401)Ph.D. Innovation Fund Projects of Xi’an University of Technology (Fund No. 310-252071501)
文摘This work focuses on the relationship between flexibility of molecular chains and thermal properties of polyurethane elastomer(PUE), which laid the foundation of further research about how to improve thermal properties of PUE. A series of PUE samples with different flexibility of molecular chains was prepared by using 1,4-butanediol(1,4-BDO)/bisphenol-a(BPA) blends with different mole ratios including9/1, 8/2, 7/3, 6/4 and 5/5. As comparison, PUE extended with pure 1,4-BDO and BPA was also synthesized.These samples were characterized by differential scanning calorimetry(DSC), thermogravimetric analysis(TGA), dynamic mechanical analysis(DMA), etc. The results showed that with the decrease in flexibility of molecular chains the glass transition temperature(Tg) increased and low-temperature properties became worse. Besides, all samples had a certain degree of microphase separation, and soft segments in some samples were crystallized, i.e. the decreasing flexibility of molecular chains led to the impossibility of chains tightly packing and crystalline domains forming so that the degree of microphase separation decreased and the thermal properties became worse.
基金Supported by the South China Sea Monsoon Experiment,Climbing Programme"A"of China.
文摘This paper proposes an index of land-sea thermal difference(ILSTD)that describes its zonal and meridional strength responsible for East Asian monsoon circulation to study its relation to the East Asian monsoon circulation and the summer rainfall over China on an interannual basis.Results are as follows:(1)ILSTD can be used to measure the strength of East Asian summer monsoon in such a way that the strong(weak)ILSTD years are associated with strong(weak)summer monsoon circulation.(2)The index also reflects well summer rainfall anomaly over the eastern part of China. In the strong index years,rain belt is mainly located over the northern China,and serious drought emerges in the Jianghuai valleys and mid-lower reaches of the Changjiang River,along with increase of rainfall in North and South China,but in the weak years it is contrary.(3)Besides,the index has obvious QBO and quasi 4-year oscillations,but the periods and amplitudes have significant changes on an interdecadal basis.
基金Supported by the National Natural Science Foundation of China under Grant Nos. 40375014 and 40475029.
文摘Using the CCM3/NCAR, a series of numerical experiments are designed to explore the effect of ocean-land interlaced distributions of Africa-Arabian Sea-India Peninsula-Bay of Bengal (BOB)-Indo-China Peninsula- South China Sea on the formation of the Asian summer monsoon circulation (ASMC). The results show that the thermal difference between African or Indian Subcontinent and nearby areas including the Indian Ocean, Arabian Sea, and part of BOB is the primary mechanism that maintains the Indian monsoon circulation. In the experiment getting rid of these two continents, the Indian monsoon system (IMS) members, i.e., the Somali cross-equatorial jet (40°E) and the southwesterly monsoon over the Arabian Sea and BOB, almost disappear. Moreover, the Hadley circulation weakens dominantly. It also proves that Africa has greater effect than Indian Subcontinent on the IMS. However, the existence of Indo-China Peninsula and Australia strengthens the East Asian monsoon system (EAMS). The thermal contrast between Indo-China Peninsula and SCS, Australia and western Pacific Ocean plays an important role in the formation of the tropical monsoon to the south of the EAMS. When the Indo-China Peninsula is masked in the experiment, the cross-equatorial flow (105°E and 125°E) vanishes, so does the southwesterly monsoon usually found over East Asia, and EAMS is enfeebled significantly. In addition, the impacts of these thermal contrasts on the distribution of the summer precipitation and surface temperature are investigated.