期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Comparison and Optimization of Mid-low Temperature Cogeneration Systems for Flue Gas in Iron and Steel Plants 被引量:1
1
作者 ZHANG Li-hua WU Li-jun +1 位作者 ZHANG Xiao-hong JU Gui-dong 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2013年第11期33-40,共8页
Three generation systems, namely, steam Rankine cycle (SRC), organic Rankine cycle (ORC), and steam-organic combined Rankine cycle (S-ORC), were simulated using the Engineering Equation Solver fEES) to efficien... Three generation systems, namely, steam Rankine cycle (SRC), organic Rankine cycle (ORC), and steam-organic combined Rankine cycle (S-ORC), were simulated using the Engineering Equation Solver fEES) to efficiently utilize flue gas emissions from 200 to 450 ℃ in iron and steel plants. Based on the simulation results for thermal efficiency, exergy efficiency, and power generation, the performances of the three power generation systems were compared and analyzed. To further utilize waste heat from the turbine exhaust steam of the ORC system, cas- cade ()RC (CORC) was designed for heat sources above 300 ℃. Based on a comprehensive performance comparison, the application of the ORC using R141b is preferable for 200 to 300 ℃ flue gas. For 300 to 450 ℃ flue gas, CORC is an alternative technology to improve the efficiency and quality of waste heat utilization. For flue gas above 450 ℃, S-ORC can achieve higher efficiency and power generation than conventional SRC, with a relatively small negative pressure and high dryness of the turbine outlet steam. Hence, S-ORC can be considered as a substitute for SRC. 展开更多
关键词 mid-low temperature flue gas Rankine cycle thermal energy recovery generation system
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部