期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Experimental Study on the Thermal Performances of a Tube-Type Indirect Evaporative Cooler
1
作者 Tiezhu Sun Huan Sun +2 位作者 Tingzheng Tang Yongcheng Yan Peixuan Li 《Fluid Dynamics & Materials Processing》 EI 2023年第10期2519-2531,共13页
The so-called indirect evaporative cooling technology is widely used in air conditioning applications.The thermal characterization of tube-type indirect evaporative coolers,however,still presents challenges which need... The so-called indirect evaporative cooling technology is widely used in air conditioning applications.The thermal characterization of tube-type indirect evaporative coolers,however,still presents challenges which need to be addressed to make this technology more reliable and easy to implement.This experimental study deals with the performances of a tube-type indirect evaporative cooler based on an aluminum tube with a 10 mm diameter.In particular,the required tests were carried out considering a range of dry-bulb temperatures between 16℃ and 18℃ and a temperature difference between the wet-bulb and dry-bulb temperature of 2℃∼4℃.The integrated convective heat transfer coefficient inside the tube in the drenching condition has been found to lie in the range between 36.10 and 437.4(W/(m^(2)⋅K)). 展开更多
关键词 Tubular indirect evaporative cooler integrated convection heat transfer coefficient evaporative cooling thermal engineering calculation energy saving
下载PDF
Examination of the Thermal Cloaking Effectiveness with Layered Engineering Materials
2
作者 胡润 胡锦炎 +3 位作者 吴睿康 谢斌 余兴建 罗小兵 《Chinese Physics Letters》 SCIE CAS CSCD 2016年第4期72-75,共4页
The concentrically layered thermal cloaks with isotropic materials could realize the equivalent thermal cloaking effect with Pendry's cloak, while the effectiveness is scarcely investigated quantitatively. Here we ex... The concentrically layered thermal cloaks with isotropic materials could realize the equivalent thermal cloaking effect with Pendry's cloak, while the effectiveness is scarcely investigated quantitatively. Here we examine the cloaking effectiveness quantitatively by evaluating the standard deviation of the temperature difference between the simulated plane with the layered thermal cloak and Pendry's thermal cloak. The design rules for the isotropic materials in terms of thermal conductivity and layer thickness are presented. The present method could quan- titatively evaluate the cloaking effectiveness, and could open avenues for analyzing the cloaking effect, detecting the (anti-) cloaks, etc. 展开更多
关键词 of in on STD Examination of the thermal Cloaking Effectiveness with Layered engineering Materials with
下载PDF
Novel Technology and Products: Fluidized Bed Incineration and Energy Recovery for Waste Disposal——Developed by the Institute for Thermal Power Engineering, Zhejiang University
3
《China's Foreign Trade》 1997年第7期34-35,共2页
The waste referred to includes solid waste and sludge. Solid waste is mainly from urban garbage and industrial waste. Sludge is from water treatment factories, paper mills, chemical factories, pharmaceutical factories... The waste referred to includes solid waste and sludge. Solid waste is mainly from urban garbage and industrial waste. Sludge is from water treatment factories, paper mills, chemical factories, pharmaceutical factories, rivers and lakes. The waste and sludge are very harmful to water organisms, human health and drinking water, and directly affect the environment. Sludge and waste also occupy large areas of land. There are several methods to treat waste and sludge, such as burial, chemical treatment and incineration. Incineration is more effective than the 展开更多
关键词 In Novel Technology and Products Zhejiang University Developed by the Institute for thermal Power engineering Fluidized Bed Incineration and Energy Recovery for Waste Disposal
下载PDF
SIMULATION IN THERMAL DESIGN FOR ELECTRONIC CONTROL UNIT OF ELECTRONIC UNIT PUMP 被引量:1
4
作者 XU Quankui ZHU Keqing ZHUO Bin MAO Xiaojian WANG Junxi 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2008年第5期1-7,共7页
The high working junction temperature of power component is the most common reason of its failure. So the thermal design is of vital importance in electronic control unit (ECU) design. By means of circuit simulation... The high working junction temperature of power component is the most common reason of its failure. So the thermal design is of vital importance in electronic control unit (ECU) design. By means of circuit simulation, the thermal design of ECU for electronic unit pump (EUP) fuel system is applied. The power dissipation model of each power component in the ECU is created and simulated. According to the analyses of simulation results, the factors which affect the power dissipation of components are analyzed. Then the ways for reducing the power dissipation of power components are carried out. The power dissipation of power components at different engine state is calculated and analyzed. The maximal power dissipation of each power component in all possible engine state is also carried out based on these simulations. A cooling system is designed based on these studies. The tests show that the maximum total power dissipation of ECU drops from 43.2 W to 33.84 W after these simulations and optimizations. These applications of simulations in thermal design of ECU can greatly increase the quality of the design, save the design cost and shorten design time 展开更多
关键词 Diesel engine Electronic unit pump Electronic control unit Circuit simulation thermal design
下载PDF
Geotechnical characterization of peat-based landfill cover materials 被引量:2
5
作者 Afshin Khoshand Mamadou Fall 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2016年第5期596-604,共9页
Natural methane (CH4) oxidation that is carried out through the use of landfill covers (biocovers) is a promising method for reducing CH4 emissions from landfills. Previous studies on peat-based landfill covers ha... Natural methane (CH4) oxidation that is carried out through the use of landfill covers (biocovers) is a promising method for reducing CH4 emissions from landfills. Previous studies on peat-based landfill covers have mainly focused on their biochemical properties (e.g. CH4 oxidation capacity). However, the utilization of peat as a cover material also requires a solid understanding of its geotechnical properties (thermal, hydraulic, and mechanical), which are critical to the performance of any biocover. Therefore, the objective of this context is to investigate and assess the geotechnical properties of peat-based cover materials (peat, peat–sand mixture), including compaction, consolidation, and hydraulic and thermal conductivities. The studied materials show high compressibility to the increase of vertical stress, with compression index (Cc) values ranging from 0.16 to 0.358. The compressibility is a function of sand content such that the peat–sand mixture (1:3) has the lowest Cc value. Both the thermal and hydraulic conductivities are functions of moisture content, dry density, and sand content. The hydraulic conductivity varies from 1.74 × 10^-9 m/s to 7.35 × 10^-9 m/s, and increases with the increase in sand content. The thermal conductivity of the studied samples varies between 0.54 W/(m K) and 1.41 W/(m K) and it increases with the increases in moisture and sand contents. Increases in sand content generally increase the mechanical behavior of peat-based covers; however, they also cause relatively high hydraulic and thermal conductivities which are not favored properties for biocovers. 展开更多
关键词 Landfill Geotechnical engineering Landfill cover Peat Compaction Compressibility Hydraulic and thermal conductivity
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部