Based on the porous media theory and by taking into account the efects of the pore fuid viscidity, energy exchanges due to the additional thermal conduction and convection between solid and fuid phases, a mathematical...Based on the porous media theory and by taking into account the efects of the pore fuid viscidity, energy exchanges due to the additional thermal conduction and convection between solid and fuid phases, a mathematical model for the dynamic-thermo-hydro-mechanical coupling of a non-local thermal equilibrium fuid-saturated porous medium, in which the two constituents are assumed to be incompressible and immiscible, is established under the assumption of small de- formation of the solid phase, small velocity of the fuid phase and small temperature changes of the two constituents. The mathematical model of a local thermal equilibrium fuid-saturated porous medium can be obtained directly from the above one. Several Gurtin-type variational principles, especially Hu-Washizu type variational principles, for the initial boundary value problems of dy- namic and quasi-static responses are presented. It should be pointed out that these variational principles can be degenerated easily into the case of isothermal incompressible fuid-saturated elastic porous media, which have been discussed previously.展开更多
The nonlinear J-E characteristics under self-heating equilibrium for conductive composites based on high density polyethylene were studied. The results show that there are identical conduction mechanisms under self-he...The nonlinear J-E characteristics under self-heating equilibrium for conductive composites based on high density polyethylene were studied. The results show that there are identical conduction mechanisms under self-heating equilibrium for the composites with various initial resistivities determined by filler content or ambient temperature. The nonlinear conduction behavior was involved in the limited microstructure transformations of the conducting network induced by electrical field applied and the corresponding self-heating effect. A reversible thermal fuse (RTF) model was suggested to interpret the physical origin of the nonlinear J-E characteristics.展开更多
In this work we show that tending to thermal equilibrium in one system, at least in certain cases, is associated with the coherent dynamical evolution of this system in interaction with another identical system. The t...In this work we show that tending to thermal equilibrium in one system, at least in certain cases, is associated with the coherent dynamical evolution of this system in interaction with another identical system. The temperature varying effect with time is manifestly shown in our analyses.展开更多
Sensitivity analysis of thermal equilibrium parameters in the reservoir module of MIKE 11 model was conducted for the Wuxikou Reservoir in Jiangxi Province of China in order to apply the module to the environmental im...Sensitivity analysis of thermal equilibrium parameters in the reservoir module of MIKE 11 model was conducted for the Wuxikou Reservoir in Jiangxi Province of China in order to apply the module to the environmental impact assessment to accurately predict water temperature of reservoirs.Results showed that radiation parameter A and evaporation-first parameter were much more sensitive than other parameters.The values of the radiation parameter A ranged from 0.10 to 0.34.The values of evaporation-first parameter varied from 0 to 10.The sensitivity of solar absorption parameters was less than that of evaporation parameter,of which light attenuation values ranged from 0.5 to 0.7,and this parameter would not impact model results if it was more than 2.Constants in Beer's law ranged from 0.2 to 0.7.Radiation parameter B was not more sensitive than evaporation parameter and its reasonable range was higher than 0.48.The fitting curves showed consistent changing tendency for these parameters within the reasonable ranges.Additionally,all the thermal equilibrium parameters had much more important effects on surface water temperature than deep water temperature.Moreover,if no observed data could be obtained,the local empirical value would be used to input to the MIKE 11 model to simulate the changes in the discharged outflow-water temperature qualitatively.展开更多
Based on isentropic flow and thermal equilibrium assumptions, a model was derived to calculate discharge flow rate, which unified the rules of room temperature water discharge, high temperature and high pressure water...Based on isentropic flow and thermal equilibrium assumptions, a model was derived to calculate discharge flow rate, which unified the rules of room temperature water discharge, high temperature and high pressure water discharge, two-phase critical flow, saturated steam and superheated steam critical flow, and gave a method to calculate critical condition. Because of the influence of friction, the entropy is increased in the actual discharge process, and the discharge flow rate in thermal equilibrium condition can be obtained by the original model multiplied by an appropriate correction coefficient. The model calculated results agreed well with the experiment data of long nozzle critical flow.展开更多
Water is the most active component in all geological systems. It has an importanteffect on the physical properties of minerals and melts. It also plays a key role in the evolutionof the Earth. Accurate thermodynamics ...Water is the most active component in all geological systems. It has an importanteffect on the physical properties of minerals and melts. It also plays a key role in the evolutionof the Earth. Accurate thermodynamics data on water are currently confined to pressures below1.0 GPa and temperatures below 900℃. Presented in this paper are new data available on theP-T properties of water at pressures up t0 5. 0 GPa, developed from differential thermal analysis and ultrasonic wave amplitude analysis. It has been found that there may exist anotherternary point at 3. 0 GPa and that ultrasonic wave amplitude change of ice-water transitionshows two inflection points above 2. 0 GPa, consistent with the two peaks of differential thermal curves above 2. 0 GPa. It may be a new phenomenon which needs further study.展开更多
An explanation is given for the thermal equilibrium in the biosphere, which is based in the equality between the thermal energy received from the sun and the thermal energy reemitted from the atmosphere to the space. ...An explanation is given for the thermal equilibrium in the biosphere, which is based in the equality between the thermal energy received from the sun and the thermal energy reemitted from the atmosphere to the space. In order to understand the origin of the energy that gives rise to the processes and phenomena taking place in the biosphere, it is necessary to take into account the free energy represented by the product of temperature times the change in entropy, T△S, whose magnitude can be attributed to the variation experimented by the wavelengths (or, consequently, the frequencies) of the radiations composing the radiation spectrum received from the sun compared with the radiation spectrum reemitted from the biosphere into the space. A simple discussion allows to predict that the entropy increase driving the processes is connected with a spontaneous conversion of high frequency radiations (with lower “content” of entropy) in radiations of lower frequencies (with higher “content” of entropy). A consequence of this is that high frequency radiations would correspond to more ordered states and, therefore, to less probable states than those corresponding to radiations of lower frequencies.展开更多
The thermal conductivity of uranium dioxide in the temperature range of 300–2400 K was estimated by non-equilibrium molecular dynamics calculation using Fourier law.The Kawamura function was adopted as the interatomi...The thermal conductivity of uranium dioxide in the temperature range of 300–2400 K was estimated by non-equilibrium molecular dynamics calculation using Fourier law.The Kawamura function was adopted as the interatomic potential function.The calculated thermal conductivities are found to be strongly dependent on the temperature of the simulation cube.The thermal conductivity simulation results are compared with the experiment results and agreed well with the experimental results when the temperature is above 600 K.The thermal conductivities scale effects are found to be existed in uranium dioxide nanometer thin film.The approximate mean free paths of phonons in different temperatures can be examined.展开更多
Nonflame combustion technology (NFCT) is a harmonious energy utilization technology. There are not environmental-unfriendly gases such as NOx, CO2 discharged in the whole combustion process. Combustion processes rea...Nonflame combustion technology (NFCT) is a harmonious energy utilization technology. There are not environmental-unfriendly gases such as NOx, CO2 discharged in the whole combustion process. Combustion processes realizes zero emission through this technology. Fe2O3 is involved as oxygen carrier, is examined thermodynamically, and the thermodynamic data of the redox reactions are calculated. Using the criteria of minimizing the Gibbs free energy, the equilibrium composition was investigated. The equilibrium analysis shows that producing complete oxidized resultants must have high molar ratio of Fe2O3/CH4. If quantity of Fe2O3 is not sufficient, more partial oxidized products such as CO, H2, even C will be produced.展开更多
In this study of temperature rising in vehicular twin-tube hydraulic gas-precharged shock absorbers,thermodynamic analyses were conducted via simulations.Equations on heat conduction,heat convection as well as radiati...In this study of temperature rising in vehicular twin-tube hydraulic gas-precharged shock absorbers,thermodynamic analyses were conducted via simulations.Equations on heat conduction,heat convection as well as radiation were derived by applying certain laws governing heat transfer;an equivalent thermal resistance network model of a shock absorber undergoing heat transfer was established innovatively;moreover,the shock absorber’s thermodynamic model of control volume system was built by using the first law of thermodynamics;and finally,time required for shock absorber to reach thermal equilibrium and corresponding value of steady temperature were calculated by programming.In this way,a lower thermal equilibrium temperature will be achieved,hence help to improve reliability of shock absorbers in work by offering low ambient temperature,by reducing amplitudes and frequencies of external incentives exerted on them and by increasing flow rate of ambient air passing around them.展开更多
We study the quantum discord of the bipartite Heisenberg model with the Dzyaloshinski-Moriya (DM) interaction in thermal equilibrium state and discuss the effect of the DM interaction on the quantum discord. The qua...We study the quantum discord of the bipartite Heisenberg model with the Dzyaloshinski-Moriya (DM) interaction in thermal equilibrium state and discuss the effect of the DM interaction on the quantum discord. The quantum entanglement of the system is also discussed and compared with quantum discord. Our results show that the quantum discord may reveal more properties of the system than quantum entanglement and the DM interaction may play an important role in the Heisenberg model.展开更多
We study the quantum discord in a two-spin-1/2 XXZ model in thermal equilibrium at temperature T in the presence of an external magnetic field B. Special attention is paid to the dependence of quantum discord on the t...We study the quantum discord in a two-spin-1/2 XXZ model in thermal equilibrium at temperature T in the presence of an external magnetic field B. Special attention is paid to the dependence of quantum discord on the temperature T and magnetic field B. It is found that quantum thermal discord is more robust than concurrence against temperature, in the sense that quantum thermal discord does not vanish at finite temperatures, but concurrence vanishes completely at a critical temperature.展开更多
Relativistic momentum and energy equations of electrons in an intense laser field are derived with Hamilton-Jacobi equation.For initial electrons in non-equilibrium or Maxwellian equilibrium distributions in preplasma...Relativistic momentum and energy equations of electrons in an intense laser field are derived with Hamilton-Jacobi equation.For initial electrons in non-equilibrium or Maxwellian equilibrium distributions in preplasmas,suprathermal electron energy distributions are obtained analytically and numerically.The calculation results agree well with the experiments.展开更多
The high temperature gas occurs behind shock or near the wall surface of vehicle in the hypersonic flight. As the temperature exceeds 2 000 K, 4 000 K, respectively, O2 and N2 molecules are successively dissociated. B...The high temperature gas occurs behind shock or near the wall surface of vehicle in the hypersonic flight. As the temperature exceeds 2 000 K, 4 000 K, respectively, O2 and N2 molecules are successively dissociated. Because of variable components at dif- ferent temperatures and pressures, the dissociated air is no longer a perfect gas, In this paper, a new method is developed to calculate accurate thermal physical parameters with the dissociation degree providing the thermochemical equilibrium procedure. Based on the dissociation degree, it is concluded that few numbers of equations and the solutions are easily obtained. In addition, a set of formulas relating the parameter to the dissociation degree are set up four-species, O2 molecule The thermodynamic properties of dissociated air containing and N2 molecule, O atom and N atom, are studied with the new method, and the results are consistent with those with the traditional equilibrium constant method. It is shown that this method is reliable for solving thermal physical parameters easily and directly.展开更多
Decomposition of carbon tetrachloride was studied theoretically in the most commonly used thermal plasma atmosphere such as H2, N2, O2 and water steam. A code developed by the National Aeronautics and Space Administra...Decomposition of carbon tetrachloride was studied theoretically in the most commonly used thermal plasma atmosphere such as H2, N2, O2 and water steam. A code developed by the National Aeronautics and Space Administration (NASA) was adopted to calculate the chemical equilibrium distribution and energy consumption of the decomposition of CC;4 in the H2, N2, O2 and water steam atmosphere thermal plasma respectively, with a temperature range of 500 K to 5000 K. In the neutral condition (H2, N2, atmosphere) formation of solid carbon was observed and in the oxygen-atmosphere (O2 and water steam) solid carbon formation disappeared through controlling the ratio of C/O. This indicates that the formation of polycyclic aromatic hydrocarbons (PAHs) is impossible theoretically. The energy consumption in the N2 atmosphere was much higher than that in the H2, O2 and water steam atmosphere at 1500 K.展开更多
Based on von Karman's plate theory, the axisymmetric thermal buckling and post-buckling of the functionally graded material (FGM) circular plates with in- plane elastic restraints under transversely non-uniform tem...Based on von Karman's plate theory, the axisymmetric thermal buckling and post-buckling of the functionally graded material (FGM) circular plates with in- plane elastic restraints under transversely non-uniform temperature rise are studied. The properties of the FGM media are varied through the thickness based on a simple power law. The governing equations are numerically solved by a shooting method. The results of the critical buckling temperature, post-buckling equilibrium paths, and configurations for the in-plane elastically restrained plates are presented. The effects of the in-plane elastic restraints, material property gradient, and temperature variation on the responses of thermal buckling and post-buckling are examined in detail.展开更多
A Farmer ion chamber with an air cavity volume is the most widely used dosimeter for accurate dose determinations in radiotherapy. The quantity of ionization in the cavity volume occurred a given radiation dose has to...A Farmer ion chamber with an air cavity volume is the most widely used dosimeter for accurate dose determinations in radiotherapy. The quantity of ionization in the cavity volume occurred a given radiation dose has to be corrected to the cavity air temperature according to a dosimetry protocol because the mass of air in the cavity volume is subject to atmospheric variations. In the present study, we aim to measure the thermal equilibration time in the cavity volume of a Farmer ion chamber for the routine dosimetry. The Farmer ion chamber’s electrode was replaced by a thin thermocouple and coated by the PMMA for a waterproofing so that the measurement of the temperature in the cavity performed in water. As a result of the measurement, A Farmer ion chamber in thermal equilibrium with waterproofing equilibrates rapidly, followed by an exponential fall-off. In water, equilibration to less than 10% of the initial temperature difference required only a few minutes. Thermal equilibrium time is hardly affected by the room temperature change.展开更多
Phase equilibrium in the ternary CuO-PbO-Ag system has been investigated using differential thermal analysis(DTA),thermogravimetry(TG),scanning electron microscopy(SEM) and X-ray diffraction(XRD) techniques.In the ter...Phase equilibrium in the ternary CuO-PbO-Ag system has been investigated using differential thermal analysis(DTA),thermogravimetry(TG),scanning electron microscopy(SEM) and X-ray diffraction(XRD) techniques.In the ternary CuO-PbO-Ag system,there is a eutectic reaction CuO+PbO+Ag=L at 750℃ and a composition of 12.04 mol.% Ag,16.35 mol.% CuO and 71.61 mol.% PbO.Two miscibility gaps near the two binary tie lines PbO-Ag and CuO-Ag were detected. No binary or ternary compound was detected in the ternary system.SEM and energy dispersive spectroscopy(EDS) confirm the presence of two liquid phases and the eutectic point.展开更多
基金Project supported by the National Natural Science Foundation of China(No.10272070)and the Development Foun-dation of the Education Commission of Shanghai,China.
文摘Based on the porous media theory and by taking into account the efects of the pore fuid viscidity, energy exchanges due to the additional thermal conduction and convection between solid and fuid phases, a mathematical model for the dynamic-thermo-hydro-mechanical coupling of a non-local thermal equilibrium fuid-saturated porous medium, in which the two constituents are assumed to be incompressible and immiscible, is established under the assumption of small de- formation of the solid phase, small velocity of the fuid phase and small temperature changes of the two constituents. The mathematical model of a local thermal equilibrium fuid-saturated porous medium can be obtained directly from the above one. Several Gurtin-type variational principles, especially Hu-Washizu type variational principles, for the initial boundary value problems of dy- namic and quasi-static responses are presented. It should be pointed out that these variational principles can be degenerated easily into the case of isothermal incompressible fuid-saturated elastic porous media, which have been discussed previously.
基金the National Advanced Material Committee of China (NAMCC),国家自然科学基金
文摘The nonlinear J-E characteristics under self-heating equilibrium for conductive composites based on high density polyethylene were studied. The results show that there are identical conduction mechanisms under self-heating equilibrium for the composites with various initial resistivities determined by filler content or ambient temperature. The nonlinear conduction behavior was involved in the limited microstructure transformations of the conducting network induced by electrical field applied and the corresponding self-heating effect. A reversible thermal fuse (RTF) model was suggested to interpret the physical origin of the nonlinear J-E characteristics.
基金National Natural Science Foundation of China under Grant No.10775097the Specialized Research Fund for the Doctorial Progress of Higher Education(SRFDP)
文摘In this work we show that tending to thermal equilibrium in one system, at least in certain cases, is associated with the coherent dynamical evolution of this system in interaction with another identical system. The temperature varying effect with time is manifestly shown in our analyses.
基金Under the auspices of Research&Development Special Fund for Public Welfare Industry of Ministry of Environmental Protection(No.201309062201309003)
文摘Sensitivity analysis of thermal equilibrium parameters in the reservoir module of MIKE 11 model was conducted for the Wuxikou Reservoir in Jiangxi Province of China in order to apply the module to the environmental impact assessment to accurately predict water temperature of reservoirs.Results showed that radiation parameter A and evaporation-first parameter were much more sensitive than other parameters.The values of the radiation parameter A ranged from 0.10 to 0.34.The values of evaporation-first parameter varied from 0 to 10.The sensitivity of solar absorption parameters was less than that of evaporation parameter,of which light attenuation values ranged from 0.5 to 0.7,and this parameter would not impact model results if it was more than 2.Constants in Beer's law ranged from 0.2 to 0.7.Radiation parameter B was not more sensitive than evaporation parameter and its reasonable range was higher than 0.48.The fitting curves showed consistent changing tendency for these parameters within the reasonable ranges.Additionally,all the thermal equilibrium parameters had much more important effects on surface water temperature than deep water temperature.Moreover,if no observed data could be obtained,the local empirical value would be used to input to the MIKE 11 model to simulate the changes in the discharged outflow-water temperature qualitatively.
文摘Based on isentropic flow and thermal equilibrium assumptions, a model was derived to calculate discharge flow rate, which unified the rules of room temperature water discharge, high temperature and high pressure water discharge, two-phase critical flow, saturated steam and superheated steam critical flow, and gave a method to calculate critical condition. Because of the influence of friction, the entropy is increased in the actual discharge process, and the discharge flow rate in thermal equilibrium condition can be obtained by the original model multiplied by an appropriate correction coefficient. The model calculated results agreed well with the experiment data of long nozzle critical flow.
文摘Water is the most active component in all geological systems. It has an importanteffect on the physical properties of minerals and melts. It also plays a key role in the evolutionof the Earth. Accurate thermodynamics data on water are currently confined to pressures below1.0 GPa and temperatures below 900℃. Presented in this paper are new data available on theP-T properties of water at pressures up t0 5. 0 GPa, developed from differential thermal analysis and ultrasonic wave amplitude analysis. It has been found that there may exist anotherternary point at 3. 0 GPa and that ultrasonic wave amplitude change of ice-water transitionshows two inflection points above 2. 0 GPa, consistent with the two peaks of differential thermal curves above 2. 0 GPa. It may be a new phenomenon which needs further study.
文摘An explanation is given for the thermal equilibrium in the biosphere, which is based in the equality between the thermal energy received from the sun and the thermal energy reemitted from the atmosphere to the space. In order to understand the origin of the energy that gives rise to the processes and phenomena taking place in the biosphere, it is necessary to take into account the free energy represented by the product of temperature times the change in entropy, T△S, whose magnitude can be attributed to the variation experimented by the wavelengths (or, consequently, the frequencies) of the radiations composing the radiation spectrum received from the sun compared with the radiation spectrum reemitted from the biosphere into the space. A simple discussion allows to predict that the entropy increase driving the processes is connected with a spontaneous conversion of high frequency radiations (with lower “content” of entropy) in radiations of lower frequencies (with higher “content” of entropy). A consequence of this is that high frequency radiations would correspond to more ordered states and, therefore, to less probable states than those corresponding to radiations of lower frequencies.
基金Supported by the Dean Fund of Graduate University of Chinese Academy of Sciences(085101DM03)
文摘The thermal conductivity of uranium dioxide in the temperature range of 300–2400 K was estimated by non-equilibrium molecular dynamics calculation using Fourier law.The Kawamura function was adopted as the interatomic potential function.The calculated thermal conductivities are found to be strongly dependent on the temperature of the simulation cube.The thermal conductivity simulation results are compared with the experiment results and agreed well with the experimental results when the temperature is above 600 K.The thermal conductivities scale effects are found to be existed in uranium dioxide nanometer thin film.The approximate mean free paths of phonons in different temperatures can be examined.
基金Supported by the National Natural Science Foundation of China (No. 50574046, No. 50164002.) and Science & TechnologyFoundation of Baoshan Iron and Steel Co. Ltd, Natural Science Foundation of Yunnan province (No. 2004E0012Q), High SchoolDoctoral Subject Special Science and Research Foundation of Ministry of Education (NO. 20040674005)
文摘Nonflame combustion technology (NFCT) is a harmonious energy utilization technology. There are not environmental-unfriendly gases such as NOx, CO2 discharged in the whole combustion process. Combustion processes realizes zero emission through this technology. Fe2O3 is involved as oxygen carrier, is examined thermodynamically, and the thermodynamic data of the redox reactions are calculated. Using the criteria of minimizing the Gibbs free energy, the equilibrium composition was investigated. The equilibrium analysis shows that producing complete oxidized resultants must have high molar ratio of Fe2O3/CH4. If quantity of Fe2O3 is not sufficient, more partial oxidized products such as CO, H2, even C will be produced.
基金Sponsored by the Ministerial Level Advanced Research Foundation (0020707)
文摘In this study of temperature rising in vehicular twin-tube hydraulic gas-precharged shock absorbers,thermodynamic analyses were conducted via simulations.Equations on heat conduction,heat convection as well as radiation were derived by applying certain laws governing heat transfer;an equivalent thermal resistance network model of a shock absorber undergoing heat transfer was established innovatively;moreover,the shock absorber’s thermodynamic model of control volume system was built by using the first law of thermodynamics;and finally,time required for shock absorber to reach thermal equilibrium and corresponding value of steady temperature were calculated by programming.In this way,a lower thermal equilibrium temperature will be achieved,hence help to improve reliability of shock absorbers in work by offering low ambient temperature,by reducing amplitudes and frequencies of external incentives exerted on them and by increasing flow rate of ambient air passing around them.
基金supported by the National Natural Science Foundation of China (Grant Nos. 10905007 and 61078011)the Fundamental Research Funds for the Central Universities
文摘We study the quantum discord of the bipartite Heisenberg model with the Dzyaloshinski-Moriya (DM) interaction in thermal equilibrium state and discuss the effect of the DM interaction on the quantum discord. The quantum entanglement of the system is also discussed and compared with quantum discord. Our results show that the quantum discord may reveal more properties of the system than quantum entanglement and the DM interaction may play an important role in the Heisenberg model.
基金Project supported by the National Fundamental Research Program of China (Grant No. 2007CB925204)the National Natural Science Foundation of China (Grant No. 10775048)+1 种基金the Key Project of the Chinese Ministry of Education (Grant No. 206103)the Construction Program of the National Key Discipline
文摘We study the quantum discord in a two-spin-1/2 XXZ model in thermal equilibrium at temperature T in the presence of an external magnetic field B. Special attention is paid to the dependence of quantum discord on the temperature T and magnetic field B. It is found that quantum thermal discord is more robust than concurrence against temperature, in the sense that quantum thermal discord does not vanish at finite temperatures, but concurrence vanishes completely at a critical temperature.
基金Supported by the National Natural Science Foundation of China under Grant No.19854001the National High Technology Commttee in China.
文摘Relativistic momentum and energy equations of electrons in an intense laser field are derived with Hamilton-Jacobi equation.For initial electrons in non-equilibrium or Maxwellian equilibrium distributions in preplasmas,suprathermal electron energy distributions are obtained analytically and numerically.The calculation results agree well with the experiments.
基金supported by the National Natural Science Foundation of China(Nos.11732011,11672205,and 11332007)the National Key Research and Development Program of China(No.2016YFA0401200)
文摘The high temperature gas occurs behind shock or near the wall surface of vehicle in the hypersonic flight. As the temperature exceeds 2 000 K, 4 000 K, respectively, O2 and N2 molecules are successively dissociated. Because of variable components at dif- ferent temperatures and pressures, the dissociated air is no longer a perfect gas, In this paper, a new method is developed to calculate accurate thermal physical parameters with the dissociation degree providing the thermochemical equilibrium procedure. Based on the dissociation degree, it is concluded that few numbers of equations and the solutions are easily obtained. In addition, a set of formulas relating the parameter to the dissociation degree are set up four-species, O2 molecule The thermodynamic properties of dissociated air containing and N2 molecule, O atom and N atom, are studied with the new method, and the results are consistent with those with the traditional equilibrium constant method. It is shown that this method is reliable for solving thermal physical parameters easily and directly.
文摘Decomposition of carbon tetrachloride was studied theoretically in the most commonly used thermal plasma atmosphere such as H2, N2, O2 and water steam. A code developed by the National Aeronautics and Space Administration (NASA) was adopted to calculate the chemical equilibrium distribution and energy consumption of the decomposition of CC;4 in the H2, N2, O2 and water steam atmosphere thermal plasma respectively, with a temperature range of 500 K to 5000 K. In the neutral condition (H2, N2, atmosphere) formation of solid carbon was observed and in the oxygen-atmosphere (O2 and water steam) solid carbon formation disappeared through controlling the ratio of C/O. This indicates that the formation of polycyclic aromatic hydrocarbons (PAHs) is impossible theoretically. The energy consumption in the N2 atmosphere was much higher than that in the H2, O2 and water steam atmosphere at 1500 K.
基金Project supported by the National Natural Science Foundation of China(Nos.11272278 and11672260)the China Postdoctoral Science Foundation(No.149558)
文摘Based on von Karman's plate theory, the axisymmetric thermal buckling and post-buckling of the functionally graded material (FGM) circular plates with in- plane elastic restraints under transversely non-uniform temperature rise are studied. The properties of the FGM media are varied through the thickness based on a simple power law. The governing equations are numerically solved by a shooting method. The results of the critical buckling temperature, post-buckling equilibrium paths, and configurations for the in-plane elastically restrained plates are presented. The effects of the in-plane elastic restraints, material property gradient, and temperature variation on the responses of thermal buckling and post-buckling are examined in detail.
文摘A Farmer ion chamber with an air cavity volume is the most widely used dosimeter for accurate dose determinations in radiotherapy. The quantity of ionization in the cavity volume occurred a given radiation dose has to be corrected to the cavity air temperature according to a dosimetry protocol because the mass of air in the cavity volume is subject to atmospheric variations. In the present study, we aim to measure the thermal equilibration time in the cavity volume of a Farmer ion chamber for the routine dosimetry. The Farmer ion chamber’s electrode was replaced by a thin thermocouple and coated by the PMMA for a waterproofing so that the measurement of the temperature in the cavity performed in water. As a result of the measurement, A Farmer ion chamber in thermal equilibrium with waterproofing equilibrates rapidly, followed by an exponential fall-off. In water, equilibration to less than 10% of the initial temperature difference required only a few minutes. Thermal equilibrium time is hardly affected by the room temperature change.
文摘Phase equilibrium in the ternary CuO-PbO-Ag system has been investigated using differential thermal analysis(DTA),thermogravimetry(TG),scanning electron microscopy(SEM) and X-ray diffraction(XRD) techniques.In the ternary CuO-PbO-Ag system,there is a eutectic reaction CuO+PbO+Ag=L at 750℃ and a composition of 12.04 mol.% Ag,16.35 mol.% CuO and 71.61 mol.% PbO.Two miscibility gaps near the two binary tie lines PbO-Ag and CuO-Ag were detected. No binary or ternary compound was detected in the ternary system.SEM and energy dispersive spectroscopy(EDS) confirm the presence of two liquid phases and the eutectic point.