The solder joint reliability of a 0.5mm lead pitch, 240-pin quad flat package(QFP) was studied by nonlinear finite element analysis(FEA). The stress/strain distributions within the solder joints and the maximum plas...The solder joint reliability of a 0.5mm lead pitch, 240-pin quad flat package(QFP) was studied by nonlinear finite element analysis(FEA). The stress/strain distributions within the solder joints and the maximum plastic strain range of the solder joints were determined. Based on the calculated maximum plastic strain range the thermal fatigue life of the solder joints was calculated using Coffin-Manson equation. The influences of shape parameters including volume of solder joint, pad size and stand-off on the thermal fatigue life of the solder joints were also studied. The results show that the stress and strain distribution in the solder joint are not uniform; the interface between the lead and the solder joint is the high stress and strain region; the maximum stress and stain occur at the topmost point where the solder joint intersects with the inner side of the lead. The solder joint cracks should occur firstly at this point and propagate along the interface between the solder and the lead. The solder joint with the pad size of 1.25mm×0.35mm, the stand-off of 0.02mm and the solder volume of 0.026mm^3 has longer fatigue life than that of any others. These optimal parameters have been applied in practice to assemble the 240-pin, 0.5mm pitch QFP.展开更多
In this study, a new unified creep constitutive relation and a mod- ified energy-based fatigue model have been established respectively to describe the creep flow and predict the fatigue life of Sn-Pb solders. It is f...In this study, a new unified creep constitutive relation and a mod- ified energy-based fatigue model have been established respectively to describe the creep flow and predict the fatigue life of Sn-Pb solders. It is found that the relation successfully elucidates the creep mechanism related to current constitutive relations. The model can be used to describe the temperature and frequency dependent low cycle fatigue behavior of the solder. The relation and the model are further employed in part Ⅱ to develop the numerical simulation approach for the long-term reliability assessment of the plastic ball grid array (BGA) assembly.展开更多
By employing the minimum energy theorem, the Potential energy controlling equation, which consists of surface energy and gravitational energy for molten meniscus, was investigated. The soder joint geometry of molten t...By employing the minimum energy theorem, the Potential energy controlling equation, which consists of surface energy and gravitational energy for molten meniscus, was investigated. The soder joint geometry of molten tin-lead soder alloy for chip component and thin quad flat package were simulated with finite element method. The simulation results 0f solder joint geometry are coincident well with the experimental results. The solder joint geometry was applied to study the solder joint reliability for chip component RC3216.The thermal cycling tests revealed that the solder joint geometry plays an important ro1e in solder joint reliability.展开更多
This paper studies and compares the effects of pull-pull and 3-point bending cyclic loadings on the mechanical fa- tigue damage behaviors of a solder joint in a surface-mount electronic package. The comparisons are ba...This paper studies and compares the effects of pull-pull and 3-point bending cyclic loadings on the mechanical fa- tigue damage behaviors of a solder joint in a surface-mount electronic package. The comparisons are based on experimental investigations using scanning electron microscopy (SEM) in-situ technology and nonlinear finite element modeling, respec- tively. The compared results indicate that there are different threshold levels of plastic strain for the initial damage of solder joints under two cyclic applied loads; meanwhile, fatigue crack initiation occurs at different locations, and the accumulation of equivalent plastic strain determines the trend and direction of fatigue crack propagation. In addition, simulation results of the fatigue damage process of solder joints considering a constitutive model of damage initiation criteria for ductile materials and damage evolution based on accumulating inelastic hysteresis energy are identical to the experimental results. The actual fatigue life of the solder joint is almost the same and demonstrates that the FE modeling used in this study can provide an accurate prediction of solder joint fatigue failure.展开更多
HALT(highly accelerated life test) is a new reliability test technique.This paper uses nonlinear finite element method to analyze the stress strain characteristic of solder joints of PQFP(plastic quad flat packaging) ...HALT(highly accelerated life test) is a new reliability test technique.This paper uses nonlinear finite element method to analyze the stress strain characteristic of solder joints of PQFP(plastic quad flat packaging) and BGA(ball grid array) under thermal cycle test,and studies influences of profile parameters of the thermal cycle,such as hot and cold soak temperature,hot and cold soak time and temperature change rate,on elastic strain range,accumulated plastic strain,fatigue life and test efficiency of two types of solder joints.Based on the above research and experimental verification,this paper presents the method to build an optimal thermal cycling profile for HALT of electronic components.展开更多
Focusing on electronic products,this paper establishes a finite element model for printed circuit board(PCB)assembling with enhanced ball grid array(EBGA)component under vibration environment.Based on this model,it st...Focusing on electronic products,this paper establishes a finite element model for printed circuit board(PCB)assembling with enhanced ball grid array(EBGA)component under vibration environment.Based on this model,it studies relations between fatigue rate of solder joint and temperature,vibration frequency.Moreover,it analyzes propagation of micro-crack produced by thermal cycle under vibration stress.The results offer a method to optimize the thermal cycle and vibration integrated profile and to combine vibration test and thermal cycling for highly accelerated life test(HALT).展开更多
基金Project(02336060) supported by the Natural Science Foundation of Guangxi Province , China
文摘The solder joint reliability of a 0.5mm lead pitch, 240-pin quad flat package(QFP) was studied by nonlinear finite element analysis(FEA). The stress/strain distributions within the solder joints and the maximum plastic strain range of the solder joints were determined. Based on the calculated maximum plastic strain range the thermal fatigue life of the solder joints was calculated using Coffin-Manson equation. The influences of shape parameters including volume of solder joint, pad size and stand-off on the thermal fatigue life of the solder joints were also studied. The results show that the stress and strain distribution in the solder joint are not uniform; the interface between the lead and the solder joint is the high stress and strain region; the maximum stress and stain occur at the topmost point where the solder joint intersects with the inner side of the lead. The solder joint cracks should occur firstly at this point and propagate along the interface between the solder and the lead. The solder joint with the pad size of 1.25mm×0.35mm, the stand-off of 0.02mm and the solder volume of 0.026mm^3 has longer fatigue life than that of any others. These optimal parameters have been applied in practice to assemble the 240-pin, 0.5mm pitch QFP.
基金The project supported by the National Natural Science Foundation of China (59705008)
文摘In this study, a new unified creep constitutive relation and a mod- ified energy-based fatigue model have been established respectively to describe the creep flow and predict the fatigue life of Sn-Pb solders. It is found that the relation successfully elucidates the creep mechanism related to current constitutive relations. The model can be used to describe the temperature and frequency dependent low cycle fatigue behavior of the solder. The relation and the model are further employed in part Ⅱ to develop the numerical simulation approach for the long-term reliability assessment of the plastic ball grid array (BGA) assembly.
文摘By employing the minimum energy theorem, the Potential energy controlling equation, which consists of surface energy and gravitational energy for molten meniscus, was investigated. The soder joint geometry of molten tin-lead soder alloy for chip component and thin quad flat package were simulated with finite element method. The simulation results 0f solder joint geometry are coincident well with the experimental results. The solder joint geometry was applied to study the solder joint reliability for chip component RC3216.The thermal cycling tests revealed that the solder joint geometry plays an important ro1e in solder joint reliability.
基金Project supported by the National Basic Research Program of China(Grant No.2010CB631006)the National Natural Science Foundation of China(GrantNos.11072124 and 11272173)
文摘This paper studies and compares the effects of pull-pull and 3-point bending cyclic loadings on the mechanical fa- tigue damage behaviors of a solder joint in a surface-mount electronic package. The comparisons are based on experimental investigations using scanning electron microscopy (SEM) in-situ technology and nonlinear finite element modeling, respec- tively. The compared results indicate that there are different threshold levels of plastic strain for the initial damage of solder joints under two cyclic applied loads; meanwhile, fatigue crack initiation occurs at different locations, and the accumulation of equivalent plastic strain determines the trend and direction of fatigue crack propagation. In addition, simulation results of the fatigue damage process of solder joints considering a constitutive model of damage initiation criteria for ductile materials and damage evolution based on accumulating inelastic hysteresis energy are identical to the experimental results. The actual fatigue life of the solder joint is almost the same and demonstrates that the FE modeling used in this study can provide an accurate prediction of solder joint fatigue failure.
基金Sponsored by National Advanced Research Project of China (41319030101)
文摘HALT(highly accelerated life test) is a new reliability test technique.This paper uses nonlinear finite element method to analyze the stress strain characteristic of solder joints of PQFP(plastic quad flat packaging) and BGA(ball grid array) under thermal cycle test,and studies influences of profile parameters of the thermal cycle,such as hot and cold soak temperature,hot and cold soak time and temperature change rate,on elastic strain range,accumulated plastic strain,fatigue life and test efficiency of two types of solder joints.Based on the above research and experimental verification,this paper presents the method to build an optimal thermal cycling profile for HALT of electronic components.
基金Sponsored by the National Advanced Research Project of China(41319030101)
文摘Focusing on electronic products,this paper establishes a finite element model for printed circuit board(PCB)assembling with enhanced ball grid array(EBGA)component under vibration environment.Based on this model,it studies relations between fatigue rate of solder joint and temperature,vibration frequency.Moreover,it analyzes propagation of micro-crack produced by thermal cycle under vibration stress.The results offer a method to optimize the thermal cycle and vibration integrated profile and to combine vibration test and thermal cycling for highly accelerated life test(HALT).