期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
General three-dimensional thermal illusion metamaterials
1
作者 刘天丰 王兆宸 +1 位作者 朱展 胡润 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期41-47,共7页
Thermal illusion aims to create fake thermal signals or hide the thermal target from the background thermal field to mislead infrared observers,and illusion thermotics was proposed to regulate heat flux with artificia... Thermal illusion aims to create fake thermal signals or hide the thermal target from the background thermal field to mislead infrared observers,and illusion thermotics was proposed to regulate heat flux with artificially structured metamaterials for thermal illusion.Most theoretical and experimental works on illusion thermotics focus on two-dimensional materials,while heat transfer in real three-dimensional(3D)objects remains elusive,so the general 3D illusion thermotics is urgently demanded.In this study,we propose a general method to design 3D thermal illusion metamaterials with varying illusions at different sizes and positions.To validate the generality of the 3D method for thermal illusion metamaterials,we realize thermal functionalities of thermal shifting,splitting,trapping,amplifying and compressing.In addition,we propose a special way to simplify the design method under the condition that the size of illusion target is equal to the size of original heat source.The 3D thermal illusion metamaterial paves a general way for illusion thermotics and triggers the exploration of illusion metamaterials for more functionalities and applications. 展开更多
关键词 thermal illusion thermal metamaterials transformation thermotics
下载PDF
Two-dimensional thermal illusion device with arbitrary shape based on complementary media
2
作者 夏舸 寇蔚 +1 位作者 杨立 杜永成 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第10期289-294,共6页
On the basis of transformation thermodynamics and compensation medium theory, we develop a method to design a two-dimensional thermal illusion device with arbitrary shape, and the general expression of thermal conduct... On the basis of transformation thermodynamics and compensation medium theory, we develop a method to design a two-dimensional thermal illusion device with arbitrary shape, and the general expression of thermal conductivity in the each region is obtained. Simulation results show that when an object is covered with the thermal illusion device, it will accurately perform the same temperature distribution signature as another object we have predetermined. Owing to the property of deceiving and interfering with the observer, the thermal illusion device can achieve generalized thermal stealth by using thermal metamaterials, which may have a potential application in military field. 展开更多
关键词 transformation thermodynamics compensation medium thermal illusion device temperature distribution
下载PDF
Selective thermal emission and infrared camouflage based on layered media
3
作者 Qingxiang JI Xueyan CHEN +5 位作者 Vincent LAUDE Jun LIANG Guodong FANG Changguo WANG Rasoul ALAEE Muamer KADIC 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2023年第3期212-219,共8页
Infrared camouflage based on artificial thermal metasurfaces has recently attracted significant attention.By eliminating thermal radiation differences between the object and the background,it is possible to hide a giv... Infrared camouflage based on artificial thermal metasurfaces has recently attracted significant attention.By eliminating thermal radiation differences between the object and the background,it is possible to hide a given object from infrared detection.Infrared camouflage is an important element that increases the survivability of aircraft and missiles,by reducing target susceptibility to infrared guided threats.Herein,a simple and practicable design is theoretically presented based on a multilayer film for infrared stealth,with distinctive advantages of scalability,flexible fabrication,and structural simplicity.The multilayer medium consists of silicon substrate,carbon layer and zinc sulfide film,the optical properties of which are determined by transfer matrix method.By locally changing the thickness of the coating film,the spatial tunability and continuity in thermal emission are demonstrated.A continuous change of emissive power is further obtained and consequently implemented to achieve thermal camouflage functionality.In addition,other functionalities,like thermal illusion and thermal coding,are demonstrated by thickness-engineered multilayer films. 展开更多
关键词 Heat transfer manipulation Infrared camouflage Multilayer media Selective thermal emission thermal illusion Transfer matrix method
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部