In order to improve the detection accuracy of Doppler asymmetric spatial heterodyne(DASH)interferometer in harsh temperatures,an opto-mechanical-thermal integration analysis is carried out.Firstly,the correlation betw...In order to improve the detection accuracy of Doppler asymmetric spatial heterodyne(DASH)interferometer in harsh temperatures,an opto-mechanical-thermal integration analysis is carried out.Firstly,the correlation between the interference phase and temperature is established according to the working principle and the phase algorithm of the interferometer.Secondly,the optical mechanical thermal analysis model and thermal deformation data acquisition model are designed.The deformation data of the interference module and the imaging optical system at different temperatures are given by temperature load simulation analysis,and the phase error caused by thermal deformation is obtained by fitting.Finally,based on the wind speed error caused by thermal deformation of each component,a reasonable temperature control scheme is proposed.The results show that the interference module occupies the main cause,the temperature must be controlled within(20±0.05)℃,and the temperature control should be carried out for the temperature sensitive parts,and the wind speed error caused by the part is 3.8 m/s.The thermal drift between the magnification of the imaging optical system and the thermal drift of the relative position between the imaging optical system and the detector should occupy the secondary cause,which should be controlled within(20±2)℃,and the wind speed error caused by the part is 3.05 m/s.In summary,the wind measurement error caused by interference module,imaging optical system,and the relative position between the imaging optical system and the detector can be controlled within 6.85 m/s.The analysis and temperature control schemes presented in this paper can provide theoretical basis for DASH interferometer engineering applications.展开更多
Defects in cast-in-situ piles have an adverse impact on load transfer at the pile‒soil interface and pile bearing capacity. In recent years, thermal integrity profiling (TIP) has been developed to measure temperature ...Defects in cast-in-situ piles have an adverse impact on load transfer at the pile‒soil interface and pile bearing capacity. In recent years, thermal integrity profiling (TIP) has been developed to measure temperature profiles of cast-in-situ piles, enabling the detection of structural defects or anomalies at the early stage of construction. However, using this integrity testing method to evaluate potential defects in cast-in-situ piles requires a comprehensive understanding of the mechanism of hydration heat transfer from piles to surrounding soils. In this study, small-scale model tests were conducted in laboratory to investigate the performance of TIP in detecting pile integrity. Fiber-optic distributed temperature sensing (DTS) technology was used to monitor detailed temperature variations along model piles in sand. Additionally, sensors were installed in sand to measure water content and matric suction. An interpretation method against available DTS-based thermal profiles was proposed to reveal the potential defective regions. It shows that the temperature difference between normal and defective piles is more obvious in wet sand. In addition, there is a critical zone of water migration in sand due to the water absorption behavior of cement and temperature transfer-induced water migration in the early-age concrete setting. These findings could provide important insight into the improvement of the TIP testing method for field applications.展开更多
An algorithm for integrating the constitutive equations in thermal framework is presented, in which the plastic deformation gradient is chosen as the integration variable. Compared with the classic algorithm, a key fe...An algorithm for integrating the constitutive equations in thermal framework is presented, in which the plastic deformation gradient is chosen as the integration variable. Compared with the classic algorithm, a key feature of this new approach is that it can describe the finite deformation of crystals under thermal conditions. The obtained plastic deformation gradient contains not only plastic defor- mation but also thermal effects. The governing equation for the plastic deformation gradient is obtained based on ther- mal multiplicative decomposition of the total deformation gradient. An implicit method is used to integrate this evo- lution equation to ensure stability. Single crystal 1 100 aluminum is investigated to demonstrate practical applications of the model. The effects of anisotropic properties, time step, strain rate and temperature are calculated using this integration model.展开更多
To explore new light-weight integrated thermal protection system panel configuration and gain good insight into the responses mechanism,heat transfer and structural field analysis for one single-layer and four double-...To explore new light-weight integrated thermal protection system panel configuration and gain good insight into the responses mechanism,heat transfer and structural field analysis for one single-layer and four double-layer corrugated core panels were performed. The obtained the temperature,buckling,stress and deflection responses were compared,and the deflection and stress distributions as well as thermal buckling mode at the time were discussed for the considered configurations when the temperature difference between the top and bottom face sheet was maximum. The results demonstrated that the non-orthogonal and hat-stiffened double-layer structures provide superior performance to resist thermal buckling deformation in comparison with other configurations. The useful information is provided for the forthcoming optimization in which thermal buckling is considered as critical design driver.展开更多
Break junctions are important in generating nanosensors and single molecular devices. The mechanically con- trollable break junction is the most widely used method for a break junction due to its simplicity and stabil...Break junctions are important in generating nanosensors and single molecular devices. The mechanically con- trollable break junction is the most widely used method for a break junction due to its simplicity and stability. However, the bandwidths of traditional devices are limited to about a few hertz. Moreover, when using traditional methods it is hard to allow independent control of more than one junction. Here we propose on-chip thermally controllable break junctions to overcome these challenges. This is verified by using finite element analysis. Adopting microelectromechanical systems produces features of high bandwidth and independent controllability to this new break junction system. The proposed method will have a wide range of applications on on-chip high speed independent controllable and highly integrated single molecule devices.展开更多
The yttrium iron garnet(YIG) thin films prepared by the sol-gel method and rapid thermal annealing(RTA) process for integrated inductor are investigated. The X-ray diffraction(XRD) results indicate that the YIG ...The yttrium iron garnet(YIG) thin films prepared by the sol-gel method and rapid thermal annealing(RTA) process for integrated inductor are investigated. The X-ray diffraction(XRD) results indicate that the YIG film annealed above 650 ℃ is poly-crystalline with single-phase garnet structure. Moreover, it can be found that the initial permeability μi, saturation magnetization MS and coercivity Hc of these YIG films increase with increasing RTA temperature. Low temperature annealing after crystallization can further improve the magnetic properties of YIG film. Thereby, a planar integrated inductor in the presence of Si substrate/SiO2 layer/Y2.8Bi0.2Fe5O12 thin film/Cu spiral coil structure is fabricated successfully by the standard IC processes. Due to the magnetic enhancement originated from YIG film, the inductance L and quality factor Q of the inductor with YIG film are improved in a certain frequency range.展开更多
Organic optoelectronic integrated devices(OIDs) with ultraviolet(UV) photodetectivity and different color emitting were constructed by using a thermally activated delayed fluorescence(TADF) material 4, 5-bis(ca...Organic optoelectronic integrated devices(OIDs) with ultraviolet(UV) photodetectivity and different color emitting were constructed by using a thermally activated delayed fluorescence(TADF) material 4, 5-bis(carbazol-9-yl)-1, 2-dicyanobenzene(2 CzPN) as host. The OIDs doping with typical red phosphorescent dye [tris(1-phenylisoquinoline)iridium(Ⅲ), Ir(piq)3], orange phosphorescent dye {bis[2-(4-tertbutylphenyl)benzothiazolato-N,C-(2')]iridium(acetylacetonate),(tbt)2 Ir(acac)}, and blue phosphorescent dye [bis(2, 4-di-fluorophenylpyridinato)-tetrakis(1-pyrazolyl)borate iridium(Ⅲ), FIr6] were investigated and compared. The(tbt)2 Ir(acac)-doped orange device showed better performance than those of red and blue devices, which was ascribed to more effective energy transfer. Meanwhile, at a low dopant concentration of 3 wt.%, the(tbt)2 Ir(acac)-doped OIDs showed the maximum luminance, current efficiency, power efficiency of 70786 cd/m^2, 39.55 cd/A, and 23.92 lm/W, respectively, and a decent detectivity of 1.07 × 10^11 Jones at a bias of -2 V under the UV-350 nm illumination. This work may arouse widespread interest in constructing high efficiency and luminance OIDs based on doping phosphorescent dye.展开更多
A novel building integrated photovoltaic thermal(BIPVT)roofing panel has been designed considering both solar energy harvesting efficiency and thermal performance.The thermal system reduces the operating temperature o...A novel building integrated photovoltaic thermal(BIPVT)roofing panel has been designed considering both solar energy harvesting efficiency and thermal performance.The thermal system reduces the operating temperature of the cells by means of a hydronic loop integrated into the backside of the panel,thus resulting in maintaining the efficiency of the solar panels at their feasible peak while also harvesting the generated heat for use in the building.The performance of the proposed system has been evaluated using physical experiments by conducting case studies to investigate the energy harvesting efficiency,thermal performance of the panel,and temperature differences of inlet/outlet working liquid with various liquid flow rates.The physical experiments have been simulated by coupling the finite element method(FEM)and finite volume method(FVM)for heat and mass transfer in the operation.Results show that the thermal system successfully reduced the surface temperature of the solar module from 88℃to as low as 55℃.Accordingly,the output power that has been decreased from 14.89 W to 10.69 W can be restored by 30.2%to achieve 13.92 W.On the other hand,the outlet water from this hydronic system reaches 45.4℃which can be used to partially heat domestic water use.Overall,this system provides a versatile framework for the design and optimization of the BIPVT systems.展开更多
As the increasing desire for more compact,portable devices outpaces Moore’s law,innovation in packaging and system design has played a significant role in the continued miniaturization of electronic systems.Integrati...As the increasing desire for more compact,portable devices outpaces Moore’s law,innovation in packaging and system design has played a significant role in the continued miniaturization of electronic systems.Integrating more active and passive components into the package itself,as the case for system-on-package(SoP),has shown very promising results in overall size reduction and increased performance of electronic systems.With this ability to shrink electrical systems comes the many challenges of sustaining,let alone improving,reliability and performance.The fundamental signal,power,and thermal integrity issues are discussed in detail,along with published techniques from around the industry to mitigate these issues in SoP applications.展开更多
To eliminate anomalies and improve the performance of a space station remote manipulator(SSRM) used in a dynamically changeable thermal environment, we analyze the thermodynamic behavior of an SSRM that considers an i...To eliminate anomalies and improve the performance of a space station remote manipulator(SSRM) used in a dynamically changeable thermal environment, we analyze the thermodynamic behavior of an SSRM that considers an integrated thermal protection system(ITPS). Solar radiative heat gain and loss become equally significant as conductive heat transfers through the interior of the SSRM on orbit. A thermodynamic model of the SSRM with a sandwich ITPS structure is established on the coupling between harmonic drive and changeable thermal environment. A motion precision is proposed to evaluate thermodynamic behavior under continuously changeable thermal circumstances. Simulation results indicate that the ITPS with a corrugated sandwich structure reduces the maximum amplitude of angular position errors to 41.6%, which helps improve the motion precision of the SSRM. The feasible regions for the SSRM in the Low Earth Orbit(LEO) and Geostationary Earth Orbit(GEO) are analyzed, which shows that the proportion of feasible region in LEO is significantly larger than that in GEO.展开更多
The spectral purity of fiber lasers has become a critical issue in both optical sensing and communication fields.As a result of ultra-narrow intrinsic linewidth, stimulated thermal Rayleigh scattering(STRS) has presen...The spectral purity of fiber lasers has become a critical issue in both optical sensing and communication fields.As a result of ultra-narrow intrinsic linewidth, stimulated thermal Rayleigh scattering(STRS) has presented special potential to compress the linewidth of fiber lasers. To suppress stimulated Brillouin scattering(SBS), the most dominant disturbance for STRS in optical fibers, a semi-quantitative estimation has been established to illuminate the mechanism of suppressing SBS in a periodic tapered fiber, and it agrees with experimental results. Finally, a linewidth compression device based on STRS is integrated into a single-longitudinal-mode ring-cavity fiber laser with secondary cavities, and its linewidth is verified to be 200 Hz through a self-heterodyne detecting and Voigt fitting method.展开更多
Buildings account for a large amount of land use, energy and water consumption, and atmospheric pollution. For example, in the United States, they use 40% of the total national energy consumption (56% by residential d...Buildings account for a large amount of land use, energy and water consumption, and atmospheric pollution. For example, in the United States, they use 40% of the total national energy consumption (56% by residential dwellings), produce 38% of the total carbon dioxide emissions, and account for 12.2% of the total quantity of water consumed (2006). In this context, buildings with considerably reduced energy consumption are a key strategy to achieving energy savings and climate protection targets in both the residential and commercial/institutional sectors [1]. This article reviews a number of heating and cooling systems-existing and/or under development- available for residential buildings and briefly outlines some research projects and initiatives, as well as technical achievements in Canada and other developed countries over the last few years.展开更多
A detailed thermal power plant model was developed to evaluate power plant waste heat usage in terms of the operating parameters,energy consumption,water consumption,and pollutant emissions.This model was used to anal...A detailed thermal power plant model was developed to evaluate power plant waste heat usage in terms of the operating parameters,energy consumption,water consumption,and pollutant emissions.This model was used to analyze the bypass flue gas energy cascade utilization design which provides excellent energy savings and emission reductions.This paper then presents a design to use the low-temperature waste heat and to extract water from the flue gas.The low-grade heat can be recovered from a coal-fired unit using absorption heat pumps to increase the air preheating.This method significantly reduces the turbine steam extraction in the low pressure stages which increases the turbine power and reduces the coal consumption.This design has a small heat transfer temperature difference between the air preheater and the air warmer,resulting in a smaller exergy loss.The power output of the present design was 1024.28 MW with a coal consumption savings of 3.69 g·(kWh)^(−1).In addition,the present design extracts moisture out of the flue gas to produce 46.48 t·h^(−1)of water.The main goal of this work is to provide a theoretical analysis for studying complex thermal power plant systems and various energy conservation and CO_(2)reduction options for conventional power plants.展开更多
文摘In order to improve the detection accuracy of Doppler asymmetric spatial heterodyne(DASH)interferometer in harsh temperatures,an opto-mechanical-thermal integration analysis is carried out.Firstly,the correlation between the interference phase and temperature is established according to the working principle and the phase algorithm of the interferometer.Secondly,the optical mechanical thermal analysis model and thermal deformation data acquisition model are designed.The deformation data of the interference module and the imaging optical system at different temperatures are given by temperature load simulation analysis,and the phase error caused by thermal deformation is obtained by fitting.Finally,based on the wind speed error caused by thermal deformation of each component,a reasonable temperature control scheme is proposed.The results show that the interference module occupies the main cause,the temperature must be controlled within(20±0.05)℃,and the temperature control should be carried out for the temperature sensitive parts,and the wind speed error caused by the part is 3.8 m/s.The thermal drift between the magnification of the imaging optical system and the thermal drift of the relative position between the imaging optical system and the detector should occupy the secondary cause,which should be controlled within(20±2)℃,and the wind speed error caused by the part is 3.05 m/s.In summary,the wind measurement error caused by interference module,imaging optical system,and the relative position between the imaging optical system and the detector can be controlled within 6.85 m/s.The analysis and temperature control schemes presented in this paper can provide theoretical basis for DASH interferometer engineering applications.
基金The authors grate fully acknowledge the financial support provided by the National Natural Science Foundation of China(Grant Nos.42225702 and 42077235)the Open Research Project Program of the State Key Laboratory of Internet of Things for Smart City(University of Macao),China(Grant No.SKUoTSC(UM)-2021-2023/0RP/GA10/2022).
文摘Defects in cast-in-situ piles have an adverse impact on load transfer at the pile‒soil interface and pile bearing capacity. In recent years, thermal integrity profiling (TIP) has been developed to measure temperature profiles of cast-in-situ piles, enabling the detection of structural defects or anomalies at the early stage of construction. However, using this integrity testing method to evaluate potential defects in cast-in-situ piles requires a comprehensive understanding of the mechanism of hydration heat transfer from piles to surrounding soils. In this study, small-scale model tests were conducted in laboratory to investigate the performance of TIP in detecting pile integrity. Fiber-optic distributed temperature sensing (DTS) technology was used to monitor detailed temperature variations along model piles in sand. Additionally, sensors were installed in sand to measure water content and matric suction. An interpretation method against available DTS-based thermal profiles was proposed to reveal the potential defective regions. It shows that the temperature difference between normal and defective piles is more obvious in wet sand. In addition, there is a critical zone of water migration in sand due to the water absorption behavior of cement and temperature transfer-induced water migration in the early-age concrete setting. These findings could provide important insight into the improvement of the TIP testing method for field applications.
基金supported by the Key Project of the National Natural Science Foundation of China(10932003)Project of Chinese National Programs for Fundamental Research and Development(2012CB619603 and 2010CB832700)"04" Great Project of Ministry of Industrialization and Information of China (2011ZX04001-21)
文摘An algorithm for integrating the constitutive equations in thermal framework is presented, in which the plastic deformation gradient is chosen as the integration variable. Compared with the classic algorithm, a key feature of this new approach is that it can describe the finite deformation of crystals under thermal conditions. The obtained plastic deformation gradient contains not only plastic defor- mation but also thermal effects. The governing equation for the plastic deformation gradient is obtained based on ther- mal multiplicative decomposition of the total deformation gradient. An implicit method is used to integrate this evo- lution equation to ensure stability. Single crystal 1 100 aluminum is investigated to demonstrate practical applications of the model. The effects of anisotropic properties, time step, strain rate and temperature are calculated using this integration model.
基金Sponsored by the National Natural Science Foundation of China(Grant No.11102054)Postdoctoral Science-research Developmental Foundation of Heilongjiang Province(Grant No.LBH-Q12101)the Fundamental Research Funds for the Central Universities(Grant No.HIT.NSRIF.2014026)
文摘To explore new light-weight integrated thermal protection system panel configuration and gain good insight into the responses mechanism,heat transfer and structural field analysis for one single-layer and four double-layer corrugated core panels were performed. The obtained the temperature,buckling,stress and deflection responses were compared,and the deflection and stress distributions as well as thermal buckling mode at the time were discussed for the considered configurations when the temperature difference between the top and bottom face sheet was maximum. The results demonstrated that the non-orthogonal and hat-stiffened double-layer structures provide superior performance to resist thermal buckling deformation in comparison with other configurations. The useful information is provided for the forthcoming optimization in which thermal buckling is considered as critical design driver.
基金Supported by the National Key Basic Research Program of China under Grant No 2013CB921800the National Natural Science Foundation of China under Grant Nos 11227901,91021005,11274299,11104262 and 10834005the Strategic Priority Research Program(B)of the Chinese Academy of Sciences under Grant No XDB01030400
文摘Break junctions are important in generating nanosensors and single molecular devices. The mechanically con- trollable break junction is the most widely used method for a break junction due to its simplicity and stability. However, the bandwidths of traditional devices are limited to about a few hertz. Moreover, when using traditional methods it is hard to allow independent control of more than one junction. Here we propose on-chip thermally controllable break junctions to overcome these challenges. This is verified by using finite element analysis. Adopting microelectromechanical systems produces features of high bandwidth and independent controllability to this new break junction system. The proposed method will have a wide range of applications on on-chip high speed independent controllable and highly integrated single molecule devices.
基金Funded by the National Natural Science Foundation of China(No.11174226)
文摘The yttrium iron garnet(YIG) thin films prepared by the sol-gel method and rapid thermal annealing(RTA) process for integrated inductor are investigated. The X-ray diffraction(XRD) results indicate that the YIG film annealed above 650 ℃ is poly-crystalline with single-phase garnet structure. Moreover, it can be found that the initial permeability μi, saturation magnetization MS and coercivity Hc of these YIG films increase with increasing RTA temperature. Low temperature annealing after crystallization can further improve the magnetic properties of YIG film. Thereby, a planar integrated inductor in the presence of Si substrate/SiO2 layer/Y2.8Bi0.2Fe5O12 thin film/Cu spiral coil structure is fabricated successfully by the standard IC processes. Due to the magnetic enhancement originated from YIG film, the inductance L and quality factor Q of the inductor with YIG film are improved in a certain frequency range.
基金Project supported by the National Natural Science Foundation of China(Grant No.61675041)the National Science Funds for Creative Research Groups of China(Grant No.61421002)
文摘Organic optoelectronic integrated devices(OIDs) with ultraviolet(UV) photodetectivity and different color emitting were constructed by using a thermally activated delayed fluorescence(TADF) material 4, 5-bis(carbazol-9-yl)-1, 2-dicyanobenzene(2 CzPN) as host. The OIDs doping with typical red phosphorescent dye [tris(1-phenylisoquinoline)iridium(Ⅲ), Ir(piq)3], orange phosphorescent dye {bis[2-(4-tertbutylphenyl)benzothiazolato-N,C-(2')]iridium(acetylacetonate),(tbt)2 Ir(acac)}, and blue phosphorescent dye [bis(2, 4-di-fluorophenylpyridinato)-tetrakis(1-pyrazolyl)borate iridium(Ⅲ), FIr6] were investigated and compared. The(tbt)2 Ir(acac)-doped orange device showed better performance than those of red and blue devices, which was ascribed to more effective energy transfer. Meanwhile, at a low dopant concentration of 3 wt.%, the(tbt)2 Ir(acac)-doped OIDs showed the maximum luminance, current efficiency, power efficiency of 70786 cd/m^2, 39.55 cd/A, and 23.92 lm/W, respectively, and a decent detectivity of 1.07 × 10^11 Jones at a bias of -2 V under the UV-350 nm illumination. This work may arouse widespread interest in constructing high efficiency and luminance OIDs based on doping phosphorescent dye.
基金the National Science Foundation IIP#1941244,CMMI#1762891U.S.Department of Agriculture NIFA#2021-67021-34201,whose support is gratefully acknowledged.
文摘A novel building integrated photovoltaic thermal(BIPVT)roofing panel has been designed considering both solar energy harvesting efficiency and thermal performance.The thermal system reduces the operating temperature of the cells by means of a hydronic loop integrated into the backside of the panel,thus resulting in maintaining the efficiency of the solar panels at their feasible peak while also harvesting the generated heat for use in the building.The performance of the proposed system has been evaluated using physical experiments by conducting case studies to investigate the energy harvesting efficiency,thermal performance of the panel,and temperature differences of inlet/outlet working liquid with various liquid flow rates.The physical experiments have been simulated by coupling the finite element method(FEM)and finite volume method(FVM)for heat and mass transfer in the operation.Results show that the thermal system successfully reduced the surface temperature of the solar module from 88℃to as low as 55℃.Accordingly,the output power that has been decreased from 14.89 W to 10.69 W can be restored by 30.2%to achieve 13.92 W.On the other hand,the outlet water from this hydronic system reaches 45.4℃which can be used to partially heat domestic water use.Overall,this system provides a versatile framework for the design and optimization of the BIPVT systems.
文摘As the increasing desire for more compact,portable devices outpaces Moore’s law,innovation in packaging and system design has played a significant role in the continued miniaturization of electronic systems.Integrating more active and passive components into the package itself,as the case for system-on-package(SoP),has shown very promising results in overall size reduction and increased performance of electronic systems.With this ability to shrink electrical systems comes the many challenges of sustaining,let alone improving,reliability and performance.The fundamental signal,power,and thermal integrity issues are discussed in detail,along with published techniques from around the industry to mitigate these issues in SoP applications.
基金supported by the National Natural Science Foundation of China(Grant No.11272171)Education Ministry Doctoral Fund of China(Grant No.20120002110070)
文摘To eliminate anomalies and improve the performance of a space station remote manipulator(SSRM) used in a dynamically changeable thermal environment, we analyze the thermodynamic behavior of an SSRM that considers an integrated thermal protection system(ITPS). Solar radiative heat gain and loss become equally significant as conductive heat transfers through the interior of the SSRM on orbit. A thermodynamic model of the SSRM with a sandwich ITPS structure is established on the coupling between harmonic drive and changeable thermal environment. A motion precision is proposed to evaluate thermodynamic behavior under continuously changeable thermal circumstances. Simulation results indicate that the ITPS with a corrugated sandwich structure reduces the maximum amplitude of angular position errors to 41.6%, which helps improve the motion precision of the SSRM. The feasible regions for the SSRM in the Low Earth Orbit(LEO) and Geostationary Earth Orbit(GEO) are analyzed, which shows that the proportion of feasible region in LEO is significantly larger than that in GEO.
基金National Natural Science Foundation of China(NSFC)(51575140,61377084)Science Fund for Distinguished Young Scholars of Harbin(RC2016JQ006007)
文摘The spectral purity of fiber lasers has become a critical issue in both optical sensing and communication fields.As a result of ultra-narrow intrinsic linewidth, stimulated thermal Rayleigh scattering(STRS) has presented special potential to compress the linewidth of fiber lasers. To suppress stimulated Brillouin scattering(SBS), the most dominant disturbance for STRS in optical fibers, a semi-quantitative estimation has been established to illuminate the mechanism of suppressing SBS in a periodic tapered fiber, and it agrees with experimental results. Finally, a linewidth compression device based on STRS is integrated into a single-longitudinal-mode ring-cavity fiber laser with secondary cavities, and its linewidth is verified to be 200 Hz through a self-heterodyne detecting and Voigt fitting method.
文摘Buildings account for a large amount of land use, energy and water consumption, and atmospheric pollution. For example, in the United States, they use 40% of the total national energy consumption (56% by residential dwellings), produce 38% of the total carbon dioxide emissions, and account for 12.2% of the total quantity of water consumed (2006). In this context, buildings with considerably reduced energy consumption are a key strategy to achieving energy savings and climate protection targets in both the residential and commercial/institutional sectors [1]. This article reviews a number of heating and cooling systems-existing and/or under development- available for residential buildings and briefly outlines some research projects and initiatives, as well as technical achievements in Canada and other developed countries over the last few years.
基金The authors acknowledge financial support from the National Natural Science Foundation of China(No.51876057)the NSFC Projects of International Cooperation and Exchanges(No.52061125101)the Fundamental Research Funds for the Central Universities(No.2022JG006).
文摘A detailed thermal power plant model was developed to evaluate power plant waste heat usage in terms of the operating parameters,energy consumption,water consumption,and pollutant emissions.This model was used to analyze the bypass flue gas energy cascade utilization design which provides excellent energy savings and emission reductions.This paper then presents a design to use the low-temperature waste heat and to extract water from the flue gas.The low-grade heat can be recovered from a coal-fired unit using absorption heat pumps to increase the air preheating.This method significantly reduces the turbine steam extraction in the low pressure stages which increases the turbine power and reduces the coal consumption.This design has a small heat transfer temperature difference between the air preheater and the air warmer,resulting in a smaller exergy loss.The power output of the present design was 1024.28 MW with a coal consumption savings of 3.69 g·(kWh)^(−1).In addition,the present design extracts moisture out of the flue gas to produce 46.48 t·h^(−1)of water.The main goal of this work is to provide a theoretical analysis for studying complex thermal power plant systems and various energy conservation and CO_(2)reduction options for conventional power plants.