Developing degradable films is an important means for resolving the problem of film pollution; however, in recent years, there have been only few studies related to the thermal analysis of degradable plastic films. Th...Developing degradable films is an important means for resolving the problem of film pollution; however, in recent years, there have been only few studies related to the thermal analysis of degradable plastic films. This research detailed the composition and pyrolysis of one kind of ordinary and three kinds of degradable plastic films using the differential thermal analysis (DTA) technique. The results showed that degradable films and ordinary film had similar DTA curves, which reflected their similar compositions; however, small differences were measured, which were due to the added constituents of the degradable films. The pyrolysis reaction orders of each film were about 0.93. The pyrolysis activation energies and pre-exponential factors followed the order of ordinary film 〉 photodegradable film 〉 photodegradable calcium carbonate film 〉 biodegradable film. The results of this research laid the foundation for new theories for harnessing soil pollution caused by plastic films.展开更多
The paper reports the synthetic procedure and character of Copper(II) binuclearcoordination compound of 1,4-bis-(1'-phenyl-3'-methyl-5'-pyrazolone Thenon-isothermal kinetics of thermal decomposition of the...The paper reports the synthetic procedure and character of Copper(II) binuclearcoordination compound of 1,4-bis-(1'-phenyl-3'-methyl-5'-pyrazolone Thenon-isothermal kinetics of thermal decomposition of the complex has been stUdied from the TG-DTGcurves by means of the Achar et al. and Coats-Redfern methods,the most probab1e kinetic equation canbe expressed as dofdtrAe -E / RT * l /(2Q).The corresponding kinetic compensation effect expressions arefound to be lnuA=0. 1794E+0. 1689.The non-isothermal thermal decomposition process of the complex isone-dimensional diffusion.But electrochemical studies of the complex(Cu2L'2)from cyclic voltamrnetriccurves by means of powder microelectrodes technique'',shows one two-electron irreversible process.展开更多
The thermal decomposition of a new antitumor agent,4-{5-[3,4-dimethyl-5-(3,4,5-trimethoxyphenyl)thiophen-2-yl]-2-methoxyphenyl}morpholine was studied by Differential Scanning Calorimetry(DSC)and Thermogravimetry(TG)/D...The thermal decomposition of a new antitumor agent,4-{5-[3,4-dimethyl-5-(3,4,5-trimethoxyphenyl)thiophen-2-yl]-2-methoxyphenyl}morpholine was studied by Differential Scanning Calorimetry(DSC)and Thermogravimetry(TG)/Derivative Thermogravimetry(DTG)methods at a flow rate of nitrogen gas of 120 mL/min,The kinetic parameters were obtained from the analysis of the corresponding curves by Kissinger's method,Ozawa's method and the integral method,The results indicate that the apparent activation energy and pre-exponential constants of the decomposition reaction are 106.67 kJ/mol and 10^6.19s^(-1),respectively.展开更多
The title complex, formulated as Co(tda)(5-mphen)(H2O)(H2tda=thiodiglycolic acid, 5-mphen= 5-methyl-1,10-phenanthroline), was synthesized and characterized by elemental analysis, IR spectroscopy, X-ray single ...The title complex, formulated as Co(tda)(5-mphen)(H2O)(H2tda=thiodiglycolic acid, 5-mphen= 5-methyl-1,10-phenanthroline), was synthesized and characterized by elemental analysis, IR spectroscopy, X-ray single crystal diffraction, and TG-DTG techniques. The complex crystallized in monoclinic space group C2/c, with parameters of a=1.8142(2) nm, b=0.78251(9) nm, c=2.4624(3) nm,β=93.809(2)°, V=3.4880(7) nm^3, Z=8, Dc=1.579 g/cm^3, the final R indices[1〉2σ(1)] are R1=0.0469, wR2=0.1021, R indices for all data are R1=0.0835, wR2=0.1169. The central Co^2+ cation is coordinated in a distorted octahedral geometry with the ligand tda, 5-mphen, and water molecule. The coordination complex possesses a three-dimensional framework by means of hydrogen bonds and π-π stacking interactions. According to TG-DTG curves, the possible thermal decomposition mechanisms, the possible kinetic parameters, and equation of dehydration stage of the complex are obtained, that is, Ea=110.98 kJ/mol, lg(A/s^-1)=8.554, da/dT= 10^8.5546/β.3(1-α)[-1n(1-α)]^2/3.exp(-13349/T), respectively.展开更多
The thermal decomposition kinetics of high iron gibbsite ore was investigated under non-isothermal conditions.Popescu method was applied to analyzing the thermal decomposition mechanism.The results show that the most ...The thermal decomposition kinetics of high iron gibbsite ore was investigated under non-isothermal conditions.Popescu method was applied to analyzing the thermal decomposition mechanism.The results show that the most probable thermal decomposition mechanism is the three-dimensional diffusion model of Jander equation,and the mechanism code is D3.The activation energy and pre-exponential factor for thermal decomposition of high iron gibbsite ore calculated by the Popescu method are 75.36 kJ/mol and 1.51×10-5 s-(-1),respectively.The correctness of the obtained mechanism function is validated by the activation energy acquired by the iso-conversional method.Popescu method is a rational and reliable method for the analysis of the thermal decomposition mechanism of high iron gibbsite ore.展开更多
To develop new energy enhancement energetic materials with great combustion performance and thermal stability,two kinds of ternary thermite,Al/Fe_(2)O_(3)/CuO and Al/Fe_(2)O_(3)/Bi_(2)O_(3),were prepared and analyzed ...To develop new energy enhancement energetic materials with great combustion performance and thermal stability,two kinds of ternary thermite,Al/Fe_(2)O_(3)/CuO and Al/Fe_(2)O_(3)/Bi_(2)O_(3),were prepared and analyzed via mechanical ball milling.The samples were characterized by SEM,XRD,TG-DSC,constant volume and constant pressure combustion experiments.The first exothermic peaks of Al/Fe_(2)O_(3)/CuO and Al/Fe_(2)O_(3)/Bi_(2)O_(3) appear at 579°C and 564.5°C,respectively.The corresponding activation energies are similar.The corresponding mechanism functions are set as G(a) = [-ln(1-a)]^(3/4) and G(a) =[-ln(1-a)]2/3,respectively,which belong to the Avrami-Erofeev equation.Al/Fe_(2)O_(3)/CuO has better thermal safety.For small dose samples,its critical temperature of thermal explosion is 121.05°C higher than that of Al/Fe_(2)O_(3)/Bi_(2)O_(3).During combustion,the flame of Al/Fe_(2)O_(3)/CuO is spherical,and the main products are FeAl_(2)O_(4) and Cu.The flame of Al/Fe_(2)O_(3)/Bi_(2)O_(3)is jet-like,and the main products are Al_(2)O_(3),Bi and Fe.Al/Fe_(2)O_(3)/Bi_(2)O_(3)has better ignition and gas production performance.Its average ignition energy is 4.2 J lower than that of Al/Fe_(2)O_(3)/CuO.Its average step-up rate is 28.29 MPa/s,which is much higher than 6.84 MPa/s of Al/Fe_(2)O_(3)/CuO.This paper provides a reference for studying the thermal safety and combustion performance of ternary thermite.展开更多
The new complex of [Sm(p-MOBA)3bath]2·4H2O (p-MOBA, p-methoxybenzoate; bath, 4,7-diphenyl-l,10- phenanthroline) was synthesized and characterized by elemental analysis, molar conductance, IR, UV and XRD patte...The new complex of [Sm(p-MOBA)3bath]2·4H2O (p-MOBA, p-methoxybenzoate; bath, 4,7-diphenyl-l,10- phenanthroline) was synthesized and characterized by elemental analysis, molar conductance, IR, UV and XRD patterns. The thermal decomposition of the complex was studied under the non-isothermal condition by TG-DTG and IR techniques. The most probable mechanism function of the dehydration process was obtained from the analysis of DSC curves of the complex employing the double extrapolated method on the basis of integral isoconversional non-linear (NL-INT) and Tang-Wanjun integral equations. The integral function of the mechanism was [1 -- (1 -α/2]1/2 and the corresponding kinetic parameters (activation energy E and the pre-exponential factor A) were obtained.展开更多
The non-isothermal degradation kinetics of N,N'-di(diethoxythiophosphoryl)-1,4-phenylenediamine in N2 was studied by TG-DTG techniques.The kinetic parameters,including the activation energy and pre-exponential fact...The non-isothermal degradation kinetics of N,N'-di(diethoxythiophosphoryl)-1,4-phenylenediamine in N2 was studied by TG-DTG techniques.The kinetic parameters,including the activation energy and pre-exponential factor of the degradation process for the title compound were calculated by means of the Kissinger and Flynn-Wall-Ozawa(FWO)method and the thermal degradation mechanism of the title compound was also studied with the Satava-Sestak methods.The results indicate that the activation energy and pre-exponential factor are 152.61 kJ/mol and 9.06×101 4s -1with the Kissinger method and 154.08 kJ/mol with the Flynn-Wall-Ozawa method,respectively.It has been shown that the degradation of the title compound follows a kinetic model of one-dimensional diffusion or parabolic law,the kinetic function is G(α)=α2and the reaction order is n=2.展开更多
Thermal stability and thermal decomposition kinetics of 1-butyl-3-methylimidazolium dicyanamide ([bmin+][N(CN) ]2-) were investigated using both isothermal and non-isothermal thermogravimetric analyses (TGA) under hig...Thermal stability and thermal decomposition kinetics of 1-butyl-3-methylimidazolium dicyanamide ([bmin+][N(CN) ]2-) were investigated using both isothermal and non-isothermal thermogravimetric analyses (TGA) under high pure nitrogen as carrier gas. The long-term thermogravimetric studies revealed that the highest temperature used should be 110 °C, at which [bmin+][N(CN)2-] lost less than 10% by mass in 10 hours. The non-isothermal activation energy values determined using Friedman and ASTM methods were (150±13) and (147±2) kJ·mol –1 , respectively. Multivariate non-linear-regression methods showed that expanded Fn and CnB models were the best fit models with highest correlation coefficient of 0.9994, and the apparent activation energies were consistent with iso-conversional methods.展开更多
Three complexes, [Pr(NO3)3(HL)2] (1), [Nd(NO3)3(HL)2] (2) and [Er(NO3)3(HL)2] ·0.5H2O (3), were synthesized from the reaction of a Schiff base ligand 2-[ (4-methylphenylimino)methyl ]-6-methox...Three complexes, [Pr(NO3)3(HL)2] (1), [Nd(NO3)3(HL)2] (2) and [Er(NO3)3(HL)2] ·0.5H2O (3), were synthesized from the reaction of a Schiff base ligand 2-[ (4-methylphenylimino)methyl ]-6-methoxyphenol (C15 H15 NO2, HL) with Ln(NO3)3·6H2O (Ln = Pr, Nd, Er). Characterization by single-crystal X-ray diffraction technique, elemental analysis, molar conductance, FT-IR, UV-Vis, ^1H NMR and thermal analysis shows the title complexes are neutral molecules where the central Ln( Ⅲ) ion is ten-coordinated in biapical anti-hexahedron prism geometry, with four oxygen atoms of the phenolic hydroxy and methoxy groups in the two bidentate Schiff base ligands and six oxygen atoms provided by the three bidentate NO3 - anions. Additionally, the kinetic mechanism of thermal decomposition of complex 3 was determined with a TG-DTG curves by both integral and differential methods. The functions of thermal decomposition reaction mechanism and the equation of kinetic compensation effect were obtained.展开更多
The thermal decomposition kinetics of urushiol-Cu, urushiol-Nd and urushiol-Ti chelatepolymers has been studied by non-isothermal thermogravimetry. The results suggest that thethermal decomposition kinetics of three c...The thermal decomposition kinetics of urushiol-Cu, urushiol-Nd and urushiol-Ti chelatepolymers has been studied by non-isothermal thermogravimetry. The results suggest that thethermal decomposition kinetics of three chelate polymers are all of first order. Their averageactivation energy values of the thermal decomposition calculated by Ozawa-(I) method are 110,79, 136. 98 and 163. 64 kJ mol^(-1) respectively, which increase linearly with the metal valence of themetal chelate polymers展开更多
The thermal decomposition processes of Wangjiatan siderite samples were studied in nitrogen by thermogravimetric(TG)analysis.The mechanism of thermal decomposition of the siderite obeyed an F n kinetic law and the n...The thermal decomposition processes of Wangjiatan siderite samples were studied in nitrogen by thermogravimetric(TG)analysis.The mechanism of thermal decomposition of the siderite obeyed an F n kinetic law and the n-order was between 1.16 and 1.29.The results from non-isothermal experiments show that the size of particles has an obvious effect on the logarithm of pre-exponential factor in kinetics parameter of the thermal decomposition of Wangjiatan siderite.A linear relationship is shown between the size of particles and the logarithm of pre-exponential factor.An F 1 kinetic model containing size factor describes the thermal decomposition of Wangjiatan siderite well.展开更多
The purity of the brazing alloys applied is necessary to be improved with the increasing cleanness of steel. Calcium is easily brought into the widely ased brazing alloy, Ag-Cu-Zn, during the producing process. This p...The purity of the brazing alloys applied is necessary to be improved with the increasing cleanness of steel. Calcium is easily brought into the widely ased brazing alloy, Ag-Cu-Zn, during the producing process. This paper aims at revealing the effect of calcium on the melting behavior of the brazing alloy. The thermal analysis kinetics of silver alloy with trace calcium was studied by using differential scanning calorimetry ( DSC ) , and the enthalpy peaks were analyzed by differential methods. The rate constant of phase transformation in the probable brazing temperature range goes up with increasing calcium content, according to the values of the apparent activation energy, E, and the frequeney constant, A. It is concluded that the calcium addition could improve the melting performance of Ag-Cu-Zn brazing alloy.展开更多
This work aims to investigate the intrinsic kinetics of thermal dimerization of C_5 fraction in the reactive distillation process. Experiments are conducted in an 1000-m L stainless steel autoclave under some selected...This work aims to investigate the intrinsic kinetics of thermal dimerization of C_5 fraction in the reactive distillation process. Experiments are conducted in an 1000-m L stainless steel autoclave under some selected design conditions. By means of the weighted least squares method, the intrinsic kinetics of thermal dimerization of C_5 fraction is established, and the corresponding pre-exponential factor as well as the activation energy are determined. For example, the pre-exponential factor A is equal to 4.39×105 and the activation energy E4 a is equal to 6.58×10J/mol for the cyclopentadiene dimerization reaction. The comparison between the experimental and calculated results shows that the kinetics model derived in this work is accurate and reliable, which can be used in the design of reactive distillation columns.展开更多
The title complex, Zn(C24H13NO)2Cl21, has been synthesized by the reaction of zinc chloride with Schiff base ligand N-salicylidene-p-toluidine and its structure was determined by single-crystal X-ray diffraction. Th...The title complex, Zn(C24H13NO)2Cl21, has been synthesized by the reaction of zinc chloride with Schiff base ligand N-salicylidene-p-toluidine and its structure was determined by single-crystal X-ray diffraction. The crystal is of monoclinic, space group Cc with a = 14.896(3), b = 12.506(2), c = 15.352(3) A,β = 114.711 (4)°, V = 2598.0(8) A^3, C28H26ZnCl2N2O2, Mr = 558.80, Z = 4, Dc = 1 .429 g/cm^3,μ = 1.179 mm^-1, Flack parameter = 0.027(19), F(000) = 1152, R = 0.0709 and wR = 0.1041 for 3117 observed reflections (Ⅰ 〉 2σ(Ⅰ)). In complex 1, the center Zn ion is four-coordinated by two O atoms from two Schiff base ligands and two Cl atoms in a distorted tetrahedral geometry. Additionally, the thermal decomposition of complex 1 as well as its kinetic mechanisms and equations is studied under the non-isothermal integral and differential methods in air by TG-DTG curves.展开更多
The thermal behaviors of clusters [Ag3WS3Br](PPh3)3 and [Cu3WS3Br](PPh3)3 (PPh3=triphenyl phosphine) in a nitrogen atmosphere were studied under the non-isothermal conditions by simultaneous TG-DTG-DSC and EDS techniq...The thermal behaviors of clusters [Ag3WS3Br](PPh3)3 and [Cu3WS3Br](PPh3)3 (PPh3=triphenyl phosphine) in a nitrogen atmosphere were studied under the non-isothermal conditions by simultaneous TG-DTG-DSC and EDS techniques. The results showed that the evolution of PPh3 generally proceeded before the release of the other moiety in one or two step-mode. The mechanisms, the kinetic and the thermodynamic parameters for decomposition of PPh3 of both clusters were determined and calculated by jointly using several methods, which showed that its evolu-tion was controlled by Avrami-Erofeev equation. The results also showed that there was no new stable phase com-posed of W-Ag(Cu)-S-Br after release of organic moiety PPh3 and that CVD method was not applicable to their further processing.展开更多
Monodispersed MgO microspheres were successfully synthesized by a simple solvothermal method using PEG-400 as solvent. The samples were characterized by X-ray diffraction(XRD) and scanning electron microscopy(SEM). Th...Monodispersed MgO microspheres were successfully synthesized by a simple solvothermal method using PEG-400 as solvent. The samples were characterized by X-ray diffraction(XRD) and scanning electron microscopy(SEM). The results reveal that the precusor was monoclinic Mg5(CO3)4(OH)2·4H2O and composed of nanosheets with the thickness of about 250 nm. By calcining the precusor at 500 °C for 5 min, cubic MgO with similar morphology was obtained. According to the SEM images, it is found that the volume ratio of PEG-400 to deionized water is considered as a crucial factor in the evolution of the morphology. Based on the SEM images obtained under different experimental conditions, a possible growth mechanism which involves self-assembly process was proposed. The thermal decomposition process of MgO precusor was studied by thermogravimetry-differential thermogravimetry(TG-DTG) at different heating rates in air. Thermal analysis kinetics results show that the most probale mechanism models of MgO precusor are An and D3, respectively. In addition, isothermal prediction was studied to quantitatively characterize the thermal decomposition process.展开更多
The complex of Eu(IH) with 1-(6-hydroxy- 1-naphthyl)- 1,3-butanedione (HNBD) was prepared for the first time and characterized by elemental analysis, IR, UV, fluorescence spectrum, and DTA-TG-DTG techniques. The...The complex of Eu(IH) with 1-(6-hydroxy- 1-naphthyl)- 1,3-butanedione (HNBD) was prepared for the first time and characterized by elemental analysis, IR, UV, fluorescence spectrum, and DTA-TG-DTG techniques. The IR and UV-visible spectra showed that Eu(Ⅲ) ion was coordinated to the HNBD ligand. The fluorescence spectrum showed the presence of Eu^3+ characteristic emission. The TG-DTA-DTG curves showed that the thermal decomposition of the anhydrous complex was a two-stage process and the final residue was Eu2O3. The thermal decomposition kinetic parameters of the complex were evaluated from TG-DTG data by using three kinds of integral methods (Coat-Redfem equation, Horowitz and Metzger equation, Madhusudanan-Krishnan-Ninan equation). The kinetic parameters of the first stage are E^* = 164.02 kJ.moll, A = 1.31 × 10^15 s^-l, AS^*= 42.27 J·K^-l·mol^-l, △H^* = 159.51 kJ·mol^-l, △G^*= 136.54 kJ·mol^-l, and n = 3.1, those of the second stage are E^*= 128.52 kJ·mol^-l, A = 1.44× 106 s^-1, △S^*= - 136.89 J·K^-l·mol^-l, △H^* = 120.41 kJ·mol^-l, △G^*= 283.85 kJ·mol^-l, and n = 1.1.展开更多
A novel compound 3-nitro-4-diazo-5-oxypyrazole was synthesized by the nitration of 4-amino-3,5-dinitropyrazole using nitrification agents of fuming nitric acid and trifluoroacetic anhydride. The compound was purified ...A novel compound 3-nitro-4-diazo-5-oxypyrazole was synthesized by the nitration of 4-amino-3,5-dinitropyrazole using nitrification agents of fuming nitric acid and trifluoroacetic anhydride. The compound was purified by column chromatography and characterized by IR, NMR, MS and elemental analysis. Two different single crystals obtained by culturing with ethyl acetate as a solvent were measured by X-ray single-crystal diffractometer. The molecular weight of C3HN5O3 is 155.09 and the two crystals belong to monoclinic system, space groups P21/n and P21/c. For 1: a = 5.5007(2), b = 9.0691(4), c = 11.4158(4) A, β = 92.710°, V = 568.85 A3, Z = 4, Dc = 1.811 g/cm3, μ = 0.162 mm-1, F(000) = 312 and the final deviation factor is 0.0213. Crystals 1 and 2 have similar unit cell parameters, except that a = 10.1828(12), b = 5.5925(6), c = 10.5574(10) A and β = 108.330(4)° in crystal 2. The thermal behavior of the compound was studied by TG-DSC and melting endothermic peak and decomposition exothermic peak are at 425.7 and 534.5 K in DSC curve. The activation energy and pre-exponential factor of the exothermic decomposition reaction of the title compound obtained by Kissinger method and Flynn-Wall-Ozawa method are 50.38 k J/mol, 4.59 × 1022 s^(-1) and 55.89 k J/mol.展开更多
In order to evaluate the thermal oxidation degradation behavior of lubricant with different antioxidants,the thermal kinetics equation based on the anlyses of thermogravimetry(TG),differential thermal analysis(DTA),an...In order to evaluate the thermal oxidation degradation behavior of lubricant with different antioxidants,the thermal kinetics equation based on the anlyses of thermogravimetry(TG),differential thermal analysis(DTA),and differential scanning calorimetry(DSC)was established,respectively,to calculate the activation energy of lubricant thermal-oxidative reaction.The thermal analyses of TG and DTA were employed to determine the thermal decomposition properties of ester oils trimethylolpropane trioleate(TMPTO)with butyl-octyl-diphenylamine/octadecyl 3-(3,5-di-tert-butyl-4-hydroxyphenyl)propanoate/amine-phenol combination antioxidant.The activation energy of the lubricating oil adding antioxidant is increased relative to the TMPTO base oil,and the order of activation energy are Ec(93.732 kJ·mol^(-1))>Ed(88.71 kJ·mol^(-1))>Eb(58.41 kJ·mol^(-1))>Ea(46.32 kJ·mol^(-1)).The experimental results show that octadecyl 3-(3,5-di-tert-butyl-4-hydroxyphenyl)propanoate in TMPTO has favorable resistance to thermal oxidation and decomposition.The thermal analysis method of DSC accurately reflects the heat exchange of lubricant thermal-oxidative reaction.The order of activation energy is calculated to ED(144.385 kJ·mol^(-1))>EC(110.05 kJ·mol^(-1))>EB(97.187 kJ·mol^(-1))>EA(66.02 kJ·mol^(-1)).It is illustrated that the amine-phenol combination antioxidant has the best thermal oxidation resistance,which is the same as what the oxidation onset temperature effected.展开更多
基金Project supported by the Major State Basic Research Development Program of China (973 Program)(No.2005-CB121102)State Key Laboratory of Soil Erosion and Dryland Farming on Loess Plateau of China (No.10501-138)
文摘Developing degradable films is an important means for resolving the problem of film pollution; however, in recent years, there have been only few studies related to the thermal analysis of degradable plastic films. This research detailed the composition and pyrolysis of one kind of ordinary and three kinds of degradable plastic films using the differential thermal analysis (DTA) technique. The results showed that degradable films and ordinary film had similar DTA curves, which reflected their similar compositions; however, small differences were measured, which were due to the added constituents of the degradable films. The pyrolysis reaction orders of each film were about 0.93. The pyrolysis activation energies and pre-exponential factors followed the order of ordinary film 〉 photodegradable film 〉 photodegradable calcium carbonate film 〉 biodegradable film. The results of this research laid the foundation for new theories for harnessing soil pollution caused by plastic films.
文摘The paper reports the synthetic procedure and character of Copper(II) binuclearcoordination compound of 1,4-bis-(1'-phenyl-3'-methyl-5'-pyrazolone Thenon-isothermal kinetics of thermal decomposition of the complex has been stUdied from the TG-DTGcurves by means of the Achar et al. and Coats-Redfern methods,the most probab1e kinetic equation canbe expressed as dofdtrAe -E / RT * l /(2Q).The corresponding kinetic compensation effect expressions arefound to be lnuA=0. 1794E+0. 1689.The non-isothermal thermal decomposition process of the complex isone-dimensional diffusion.But electrochemical studies of the complex(Cu2L'2)from cyclic voltamrnetriccurves by means of powder microelectrodes technique'',shows one two-electron irreversible process.
基金SUPPORTED BY THE NATIONAL YOUNG SCHOLAR AWARD OF NSFC(NO.30125043).
文摘The thermal decomposition of a new antitumor agent,4-{5-[3,4-dimethyl-5-(3,4,5-trimethoxyphenyl)thiophen-2-yl]-2-methoxyphenyl}morpholine was studied by Differential Scanning Calorimetry(DSC)and Thermogravimetry(TG)/Derivative Thermogravimetry(DTG)methods at a flow rate of nitrogen gas of 120 mL/min,The kinetic parameters were obtained from the analysis of the corresponding curves by Kissinger's method,Ozawa's method and the integral method,The results indicate that the apparent activation energy and pre-exponential constants of the decomposition reaction are 106.67 kJ/mol and 10^6.19s^(-1),respectively.
基金Supported by the National Natrual Science Foundation of China(No.20771089)
文摘The title complex, formulated as Co(tda)(5-mphen)(H2O)(H2tda=thiodiglycolic acid, 5-mphen= 5-methyl-1,10-phenanthroline), was synthesized and characterized by elemental analysis, IR spectroscopy, X-ray single crystal diffraction, and TG-DTG techniques. The complex crystallized in monoclinic space group C2/c, with parameters of a=1.8142(2) nm, b=0.78251(9) nm, c=2.4624(3) nm,β=93.809(2)°, V=3.4880(7) nm^3, Z=8, Dc=1.579 g/cm^3, the final R indices[1〉2σ(1)] are R1=0.0469, wR2=0.1021, R indices for all data are R1=0.0835, wR2=0.1169. The central Co^2+ cation is coordinated in a distorted octahedral geometry with the ligand tda, 5-mphen, and water molecule. The coordination complex possesses a three-dimensional framework by means of hydrogen bonds and π-π stacking interactions. According to TG-DTG curves, the possible thermal decomposition mechanisms, the possible kinetic parameters, and equation of dehydration stage of the complex are obtained, that is, Ea=110.98 kJ/mol, lg(A/s^-1)=8.554, da/dT= 10^8.5546/β.3(1-α)[-1n(1-α)]^2/3.exp(-13349/T), respectively.
基金Project(51374058)supported by the National Natural Science Foundation of China
文摘The thermal decomposition kinetics of high iron gibbsite ore was investigated under non-isothermal conditions.Popescu method was applied to analyzing the thermal decomposition mechanism.The results show that the most probable thermal decomposition mechanism is the three-dimensional diffusion model of Jander equation,and the mechanism code is D3.The activation energy and pre-exponential factor for thermal decomposition of high iron gibbsite ore calculated by the Popescu method are 75.36 kJ/mol and 1.51×10-5 s-(-1),respectively.The correctness of the obtained mechanism function is validated by the activation energy acquired by the iso-conversional method.Popescu method is a rational and reliable method for the analysis of the thermal decomposition mechanism of high iron gibbsite ore.
基金supported by the National Natural Science Foundation of China, project number: 51704302the Natural Science Foundation of Shaanxi Province, China, project number: Grant No.2020JC-50。
文摘To develop new energy enhancement energetic materials with great combustion performance and thermal stability,two kinds of ternary thermite,Al/Fe_(2)O_(3)/CuO and Al/Fe_(2)O_(3)/Bi_(2)O_(3),were prepared and analyzed via mechanical ball milling.The samples were characterized by SEM,XRD,TG-DSC,constant volume and constant pressure combustion experiments.The first exothermic peaks of Al/Fe_(2)O_(3)/CuO and Al/Fe_(2)O_(3)/Bi_(2)O_(3) appear at 579°C and 564.5°C,respectively.The corresponding activation energies are similar.The corresponding mechanism functions are set as G(a) = [-ln(1-a)]^(3/4) and G(a) =[-ln(1-a)]2/3,respectively,which belong to the Avrami-Erofeev equation.Al/Fe_(2)O_(3)/CuO has better thermal safety.For small dose samples,its critical temperature of thermal explosion is 121.05°C higher than that of Al/Fe_(2)O_(3)/Bi_(2)O_(3).During combustion,the flame of Al/Fe_(2)O_(3)/CuO is spherical,and the main products are FeAl_(2)O_(4) and Cu.The flame of Al/Fe_(2)O_(3)/Bi_(2)O_(3)is jet-like,and the main products are Al_(2)O_(3),Bi and Fe.Al/Fe_(2)O_(3)/Bi_(2)O_(3)has better ignition and gas production performance.Its average ignition energy is 4.2 J lower than that of Al/Fe_(2)O_(3)/CuO.Its average step-up rate is 28.29 MPa/s,which is much higher than 6.84 MPa/s of Al/Fe_(2)O_(3)/CuO.This paper provides a reference for studying the thermal safety and combustion performance of ternary thermite.
基金Project supported by the National Natural Science Foundation of China (Nos. 21073053, 21073052 and 20773034), the Natural Science Foundation of Hebei Province (Nos. B2007000237, E2009000307) and Education Department Scientic Research Fund from Hebei Province (No. 2008469).
文摘The new complex of [Sm(p-MOBA)3bath]2·4H2O (p-MOBA, p-methoxybenzoate; bath, 4,7-diphenyl-l,10- phenanthroline) was synthesized and characterized by elemental analysis, molar conductance, IR, UV and XRD patterns. The thermal decomposition of the complex was studied under the non-isothermal condition by TG-DTG and IR techniques. The most probable mechanism function of the dehydration process was obtained from the analysis of DSC curves of the complex employing the double extrapolated method on the basis of integral isoconversional non-linear (NL-INT) and Tang-Wanjun integral equations. The integral function of the mechanism was [1 -- (1 -α/2]1/2 and the corresponding kinetic parameters (activation energy E and the pre-exponential factor A) were obtained.
基金the China Petroleum&Chemical Science and Technology Foundation(No.205026)the Tianjin Science andTechnology Plan Foundation,China(No.06TXTJJC14400).
文摘The non-isothermal degradation kinetics of N,N'-di(diethoxythiophosphoryl)-1,4-phenylenediamine in N2 was studied by TG-DTG techniques.The kinetic parameters,including the activation energy and pre-exponential factor of the degradation process for the title compound were calculated by means of the Kissinger and Flynn-Wall-Ozawa(FWO)method and the thermal degradation mechanism of the title compound was also studied with the Satava-Sestak methods.The results indicate that the activation energy and pre-exponential factor are 152.61 kJ/mol and 9.06×101 4s -1with the Kissinger method and 154.08 kJ/mol with the Flynn-Wall-Ozawa method,respectively.It has been shown that the degradation of the title compound follows a kinetic model of one-dimensional diffusion or parabolic law,the kinetic function is G(α)=α2and the reaction order is n=2.
基金Supported by the National Natural Science Foundation of China (20703014) the Outstanding Youth Foundation of HenanProvince (074100510005)
文摘Thermal stability and thermal decomposition kinetics of 1-butyl-3-methylimidazolium dicyanamide ([bmin+][N(CN) ]2-) were investigated using both isothermal and non-isothermal thermogravimetric analyses (TGA) under high pure nitrogen as carrier gas. The long-term thermogravimetric studies revealed that the highest temperature used should be 110 °C, at which [bmin+][N(CN)2-] lost less than 10% by mass in 10 hours. The non-isothermal activation energy values determined using Friedman and ASTM methods were (150±13) and (147±2) kJ·mol –1 , respectively. Multivariate non-linear-regression methods showed that expanded Fn and CnB models were the best fit models with highest correlation coefficient of 0.9994, and the apparent activation energies were consistent with iso-conversional methods.
文摘Three complexes, [Pr(NO3)3(HL)2] (1), [Nd(NO3)3(HL)2] (2) and [Er(NO3)3(HL)2] ·0.5H2O (3), were synthesized from the reaction of a Schiff base ligand 2-[ (4-methylphenylimino)methyl ]-6-methoxyphenol (C15 H15 NO2, HL) with Ln(NO3)3·6H2O (Ln = Pr, Nd, Er). Characterization by single-crystal X-ray diffraction technique, elemental analysis, molar conductance, FT-IR, UV-Vis, ^1H NMR and thermal analysis shows the title complexes are neutral molecules where the central Ln( Ⅲ) ion is ten-coordinated in biapical anti-hexahedron prism geometry, with four oxygen atoms of the phenolic hydroxy and methoxy groups in the two bidentate Schiff base ligands and six oxygen atoms provided by the three bidentate NO3 - anions. Additionally, the kinetic mechanism of thermal decomposition of complex 3 was determined with a TG-DTG curves by both integral and differential methods. The functions of thermal decomposition reaction mechanism and the equation of kinetic compensation effect were obtained.
基金This work is supported by the National Natural Science Foundation of China
文摘The thermal decomposition kinetics of urushiol-Cu, urushiol-Nd and urushiol-Ti chelatepolymers has been studied by non-isothermal thermogravimetry. The results suggest that thethermal decomposition kinetics of three chelate polymers are all of first order. Their averageactivation energy values of the thermal decomposition calculated by Ozawa-(I) method are 110,79, 136. 98 and 163. 64 kJ mol^(-1) respectively, which increase linearly with the metal valence of themetal chelate polymers
基金Supported by the 973 Program of China(No.2007CB613502)
文摘The thermal decomposition processes of Wangjiatan siderite samples were studied in nitrogen by thermogravimetric(TG)analysis.The mechanism of thermal decomposition of the siderite obeyed an F n kinetic law and the n-order was between 1.16 and 1.29.The results from non-isothermal experiments show that the size of particles has an obvious effect on the logarithm of pre-exponential factor in kinetics parameter of the thermal decomposition of Wangjiatan siderite.A linear relationship is shown between the size of particles and the logarithm of pre-exponential factor.An F 1 kinetic model containing size factor describes the thermal decomposition of Wangjiatan siderite well.
文摘The purity of the brazing alloys applied is necessary to be improved with the increasing cleanness of steel. Calcium is easily brought into the widely ased brazing alloy, Ag-Cu-Zn, during the producing process. This paper aims at revealing the effect of calcium on the melting behavior of the brazing alloy. The thermal analysis kinetics of silver alloy with trace calcium was studied by using differential scanning calorimetry ( DSC ) , and the enthalpy peaks were analyzed by differential methods. The rate constant of phase transformation in the probable brazing temperature range goes up with increasing calcium content, according to the values of the apparent activation energy, E, and the frequeney constant, A. It is concluded that the calcium addition could improve the melting performance of Ag-Cu-Zn brazing alloy.
文摘This work aims to investigate the intrinsic kinetics of thermal dimerization of C_5 fraction in the reactive distillation process. Experiments are conducted in an 1000-m L stainless steel autoclave under some selected design conditions. By means of the weighted least squares method, the intrinsic kinetics of thermal dimerization of C_5 fraction is established, and the corresponding pre-exponential factor as well as the activation energy are determined. For example, the pre-exponential factor A is equal to 4.39×105 and the activation energy E4 a is equal to 6.58×10J/mol for the cyclopentadiene dimerization reaction. The comparison between the experimental and calculated results shows that the kinetics model derived in this work is accurate and reliable, which can be used in the design of reactive distillation columns.
文摘The title complex, Zn(C24H13NO)2Cl21, has been synthesized by the reaction of zinc chloride with Schiff base ligand N-salicylidene-p-toluidine and its structure was determined by single-crystal X-ray diffraction. The crystal is of monoclinic, space group Cc with a = 14.896(3), b = 12.506(2), c = 15.352(3) A,β = 114.711 (4)°, V = 2598.0(8) A^3, C28H26ZnCl2N2O2, Mr = 558.80, Z = 4, Dc = 1 .429 g/cm^3,μ = 1.179 mm^-1, Flack parameter = 0.027(19), F(000) = 1152, R = 0.0709 and wR = 0.1041 for 3117 observed reflections (Ⅰ 〉 2σ(Ⅰ)). In complex 1, the center Zn ion is four-coordinated by two O atoms from two Schiff base ligands and two Cl atoms in a distorted tetrahedral geometry. Additionally, the thermal decomposition of complex 1 as well as its kinetic mechanisms and equations is studied under the non-isothermal integral and differential methods in air by TG-DTG curves.
文摘The thermal behaviors of clusters [Ag3WS3Br](PPh3)3 and [Cu3WS3Br](PPh3)3 (PPh3=triphenyl phosphine) in a nitrogen atmosphere were studied under the non-isothermal conditions by simultaneous TG-DTG-DSC and EDS techniques. The results showed that the evolution of PPh3 generally proceeded before the release of the other moiety in one or two step-mode. The mechanisms, the kinetic and the thermodynamic parameters for decomposition of PPh3 of both clusters were determined and calculated by jointly using several methods, which showed that its evolu-tion was controlled by Avrami-Erofeev equation. The results also showed that there was no new stable phase com-posed of W-Ag(Cu)-S-Br after release of organic moiety PPh3 and that CVD method was not applicable to their further processing.
基金Project(CL11034)supported by the Training Program of Innovation and Entrepreneurship for Undergraduates of ChinaProject(CSUZC2013033)supported by the Open-End Fund for the Valuable and Precision Instruments of Central South University,ChinaProject(201210533003)supported by National Training Programs of Innovation and Entrepreneurship for Undergraduates,China
文摘Monodispersed MgO microspheres were successfully synthesized by a simple solvothermal method using PEG-400 as solvent. The samples were characterized by X-ray diffraction(XRD) and scanning electron microscopy(SEM). The results reveal that the precusor was monoclinic Mg5(CO3)4(OH)2·4H2O and composed of nanosheets with the thickness of about 250 nm. By calcining the precusor at 500 °C for 5 min, cubic MgO with similar morphology was obtained. According to the SEM images, it is found that the volume ratio of PEG-400 to deionized water is considered as a crucial factor in the evolution of the morphology. Based on the SEM images obtained under different experimental conditions, a possible growth mechanism which involves self-assembly process was proposed. The thermal decomposition process of MgO precusor was studied by thermogravimetry-differential thermogravimetry(TG-DTG) at different heating rates in air. Thermal analysis kinetics results show that the most probale mechanism models of MgO precusor are An and D3, respectively. In addition, isothermal prediction was studied to quantitatively characterize the thermal decomposition process.
基金financially supported by the Important Foundation of the Educational Commission of Hubei Province (No. Z200622001)the Natural Science Foundation of the Educational Commission of Hubei Province, China (No. J200522002)
文摘The complex of Eu(IH) with 1-(6-hydroxy- 1-naphthyl)- 1,3-butanedione (HNBD) was prepared for the first time and characterized by elemental analysis, IR, UV, fluorescence spectrum, and DTA-TG-DTG techniques. The IR and UV-visible spectra showed that Eu(Ⅲ) ion was coordinated to the HNBD ligand. The fluorescence spectrum showed the presence of Eu^3+ characteristic emission. The TG-DTA-DTG curves showed that the thermal decomposition of the anhydrous complex was a two-stage process and the final residue was Eu2O3. The thermal decomposition kinetic parameters of the complex were evaluated from TG-DTG data by using three kinds of integral methods (Coat-Redfem equation, Horowitz and Metzger equation, Madhusudanan-Krishnan-Ninan equation). The kinetic parameters of the first stage are E^* = 164.02 kJ.moll, A = 1.31 × 10^15 s^-l, AS^*= 42.27 J·K^-l·mol^-l, △H^* = 159.51 kJ·mol^-l, △G^*= 136.54 kJ·mol^-l, and n = 3.1, those of the second stage are E^*= 128.52 kJ·mol^-l, A = 1.44× 106 s^-1, △S^*= - 136.89 J·K^-l·mol^-l, △H^* = 120.41 kJ·mol^-l, △G^*= 283.85 kJ·mol^-l, and n = 1.1.
文摘A novel compound 3-nitro-4-diazo-5-oxypyrazole was synthesized by the nitration of 4-amino-3,5-dinitropyrazole using nitrification agents of fuming nitric acid and trifluoroacetic anhydride. The compound was purified by column chromatography and characterized by IR, NMR, MS and elemental analysis. Two different single crystals obtained by culturing with ethyl acetate as a solvent were measured by X-ray single-crystal diffractometer. The molecular weight of C3HN5O3 is 155.09 and the two crystals belong to monoclinic system, space groups P21/n and P21/c. For 1: a = 5.5007(2), b = 9.0691(4), c = 11.4158(4) A, β = 92.710°, V = 568.85 A3, Z = 4, Dc = 1.811 g/cm3, μ = 0.162 mm-1, F(000) = 312 and the final deviation factor is 0.0213. Crystals 1 and 2 have similar unit cell parameters, except that a = 10.1828(12), b = 5.5925(6), c = 10.5574(10) A and β = 108.330(4)° in crystal 2. The thermal behavior of the compound was studied by TG-DSC and melting endothermic peak and decomposition exothermic peak are at 425.7 and 534.5 K in DSC curve. The activation energy and pre-exponential factor of the exothermic decomposition reaction of the title compound obtained by Kissinger method and Flynn-Wall-Ozawa method are 50.38 k J/mol, 4.59 × 1022 s^(-1) and 55.89 k J/mol.
基金Funded by the National Natural Science Foundation of China(52075391)the China Postdoctoral Science Foundation(2019M660596)。
文摘In order to evaluate the thermal oxidation degradation behavior of lubricant with different antioxidants,the thermal kinetics equation based on the anlyses of thermogravimetry(TG),differential thermal analysis(DTA),and differential scanning calorimetry(DSC)was established,respectively,to calculate the activation energy of lubricant thermal-oxidative reaction.The thermal analyses of TG and DTA were employed to determine the thermal decomposition properties of ester oils trimethylolpropane trioleate(TMPTO)with butyl-octyl-diphenylamine/octadecyl 3-(3,5-di-tert-butyl-4-hydroxyphenyl)propanoate/amine-phenol combination antioxidant.The activation energy of the lubricating oil adding antioxidant is increased relative to the TMPTO base oil,and the order of activation energy are Ec(93.732 kJ·mol^(-1))>Ed(88.71 kJ·mol^(-1))>Eb(58.41 kJ·mol^(-1))>Ea(46.32 kJ·mol^(-1)).The experimental results show that octadecyl 3-(3,5-di-tert-butyl-4-hydroxyphenyl)propanoate in TMPTO has favorable resistance to thermal oxidation and decomposition.The thermal analysis method of DSC accurately reflects the heat exchange of lubricant thermal-oxidative reaction.The order of activation energy is calculated to ED(144.385 kJ·mol^(-1))>EC(110.05 kJ·mol^(-1))>EB(97.187 kJ·mol^(-1))>EA(66.02 kJ·mol^(-1)).It is illustrated that the amine-phenol combination antioxidant has the best thermal oxidation resistance,which is the same as what the oxidation onset temperature effected.