期刊文献+
共找到183篇文章
< 1 2 10 >
每页显示 20 50 100
Heat Flow Distribution and Thermal Mechanism Analysis of the Gonghe Basin based on Gravity and Magnetic Methods
1
作者 WANG Zhuo ZENG Zhaofa +4 位作者 LIU Zhuo ZHAO Xueyu LI Jing BAI Lige ZHANG Ling 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2021年第6期1892-1901,共10页
Geothermal resource is indispensable as a clean, renewable, stable and cheap resource. Nowadays in China, the Gonghe Basin, located in northeastern Qinghai Province, has been thought to be a promising geothermal area.... Geothermal resource is indispensable as a clean, renewable, stable and cheap resource. Nowadays in China, the Gonghe Basin, located in northeastern Qinghai Province, has been thought to be a promising geothermal area. To explore geothermal energy potential in and around the Gonghe Basin, geophysical means including magnetic and gravity methods were used to plot distribution. Firstly, we inversed Moho depth and Curie point depth in and around the basin using gravity and magnetic data, respectively, through an improved Parker–Oldenburg algorithm. Secondly, seven different thermal models were established, considering radiogenic heat, basement depth, anomalous heat source and simulated corresponding temperature field and heat flow. These were analyzed numerically and we found the high heat flow in the Gonghe Basin coacted with radiogenic heat, an anomalous heat source and conductive heat. The distribution of seismic activities indicates that the Langshan–Wuwei–Gonghe Fault might have provided channels for transporting heat effectively. 展开更多
关键词 geothermal energy heat flow thermal mechanism Curie point depth Moho Depth Gonghe Qinghai–Tibet Plateau
下载PDF
Effect of inorganic salt on the thermal degradation of nitrocellulose and reaction mechanism of its mixture
2
作者 Guo-zhong Xu Xu Gao +2 位作者 Mi Li Zhong-xuan Han Lin Jiang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第9期111-118,共8页
In this study,to better understand the reaction mechanism between inorganic salts and nitrocellulose,CaCO_(3) and Li_(2)CO_(3) were evaluated with respect to their effects on the thermal degradation of NC in nitrogen ... In this study,to better understand the reaction mechanism between inorganic salts and nitrocellulose,CaCO_(3) and Li_(2)CO_(3) were evaluated with respect to their effects on the thermal degradation of NC in nitrogen atmosphere using TG/DSC at three different heating rates(2,5,10 K/min).The numerical relationship between activation energy(E)and conversion rate was obtained by FWO and KAS method,and it was discovered that CaCO_(3) could improve the thermal stability of NC.Activation energy values were calculated by Kissinger method,and it was found that NC that contain Li2CO3had the highest activation energy while NC containing CaCO3had the lowest E value.By combining the thermal analysis data with Malek method,the most probable mechanism model of thermal degradation is obtained as Sesták-Berggren model,which expression is f(α)=α^(m)(1-α)^(n).As a result of this study,there are certain guiding principles that can be applied to the pyrolysis reaction model and to the actual production process of nitrocellulose. 展开更多
关键词 thermal analysis thermal decomposition mechanism Malek method NITROCELLULOSE Inorganic salt
下载PDF
A creep model for ultra-deep salt rock considering thermal-mechanical damage under triaxial stress conditions
3
作者 Chao Liang Jianfeng Liu +3 位作者 Jianxiong Yang Huining Xu Zhaowei Chen Lina Ran 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第2期588-596,共9页
To investigate the specific creep behavior of ultra-deep buried salt during oil and gas exploitation,a set of triaxial creep experiments was conducted at elevated temperatures with constant axial pressure and unloadin... To investigate the specific creep behavior of ultra-deep buried salt during oil and gas exploitation,a set of triaxial creep experiments was conducted at elevated temperatures with constant axial pressure and unloading confining pressure conditions.Experimental results show that the salt sample deforms more significantly with the increase of applied temperature and deviatoric loading.The accelerated creep phase is not occurring until the applied temperature reaches 130℃,and higher temperature is beneficial to the occurrence of accelerated creep.To describe the specific creep behavior,a novel three-dimensional(3D)creep constitutive model is developed that incorporates the thermal and mechanical variables into mechanical elements.Subsequently,the standard particle swarm optimization(SPSO)method is adopted to fit the experimental data,and the sensibility of key model parameters is analyzed to further illustrate the model function.As a result,the model can accurately predict the creep behavior of salt under the coupled thermo-mechanical effect in deep-buried condition.Based on the research results,the creep mechanical behavior of wellbore shrinkage is predicted in deep drilling projects crossing salt layer,which has practical implications for deep rock mechanics problems. 展开更多
关键词 Creep experiments Creep model thermal and mechanical damage Fractional derivative
下载PDF
Composite Panels from the Combination of Rice Husk and Wood Chips with a Natural Resin Based on Tannins Reinforced with Sugar Cane Molasses Intended for Building Insulation: Physico-Mechanical and Thermal Properties
4
作者 Paul Nestor Djomou Djonga Rosellyne Serewane Deramne +2 位作者 Gustave Assoualaye Ahmat Tom Tégawendé Justin Zaida 《Journal of Materials Science and Chemical Engineering》 2024年第2期19-30,共12页
The objective of this work is to develop new biosourced insulating composites from rice husks and wood chips that can be used in the building sector. It appears from the properties of the precursors that rice chips an... The objective of this work is to develop new biosourced insulating composites from rice husks and wood chips that can be used in the building sector. It appears from the properties of the precursors that rice chips and husks are materials which can have good thermal conductivity and therefore the combination of these precursors could make it possible to obtain panels with good insulating properties. With regard to environmental and climatic constraints, the composite panels formulated at various rates were tested and the physico-mechanical and thermal properties showed that it was essential to add a crosslinker in order to increase certain solicitation. an incorporation rate of 12% to 30% made it possible to obtain panels with low thermal conductivity, a low surface water absorption capacity and which gives the composite good thermal insulation and will find many applications in the construction and real estate sector. Finally, new solutions to improve the fire reaction of the insulation panels are tested which allows to identify suitable solutions for the developed composites. In view of the flame tests, the panels obtained are good and can effectively combat fire safety in public buildings. 展开更多
关键词 Composite Panels Tannins Reinforced Sugar Cane Molasses Building Insulation Mechanical and thermal Properties
下载PDF
Seasonal Variations of the East Asian Subtropical Westerly Jet and the Thermal Mechanism 被引量:3
5
作者 况雪源 张耀存 刘健 《Acta meteorologica Sinica》 SCIE 2007年第2期192-203,共12页
The seasonal variations of the intensity and location of the East Asian subtropical westerly jet (EAWJ) and the thermal mechanism are analyzed by using NCEP/NCAR monthly reanalysis data from 1961 to 2000. It is foun... The seasonal variations of the intensity and location of the East Asian subtropical westerly jet (EAWJ) and the thermal mechanism are analyzed by using NCEP/NCAR monthly reanalysis data from 1961 to 2000. It is found that the seasonal variation of the EAWJ center not only has significant meridional migration, but also shows the rapid zonal displacements during June-July. Moreover, there exists zonal inconsistency in the northward shift process of the EAWJ axis. Analysis on the thermal mechanism of the EAWJ seasonal variations indicates that the annual cycle of the EAWJ seasonal variation matches very well with the structure of the meridional difference of air temperature, suggesting that the EAWJ seasonal variation is closely related to the inhomogeneous heating due to the solar radiation and the land-sea thermal contrast. Through investigating the relation between the EAWJ and the heat transport, it is revealed that the EAWJ weakens and shifts northward during the warming period from wintertime to summertime, whereas the EAWJ intensifies and shifts southward during the cooling period from summertime to wintertime. The meridional difference of the horizontal heat advection transport is the main factor determining the meridional temperature difference. The meridional shift of the EAWJ follows the location of the maximum meridional gradient of the horizontal heat advection transport. During the period from April to October, the diabatic heating plays the leading role in the zonal displacement of the EAWJ center. The diabatic heating of the Tibetan Plateau to the mid-upper troposphere leads to the rapid zonal displacement of the EAWJ center during June-July. 展开更多
关键词 East Asian subtropical westerly jet (EAWJ) seasonal variation thermal mechanism
原文传递
Syntheses,Crystal Structures and Kinetic Mechanisms of Thermal Decomposition of Rare Earth Complexes with Schiff Base Derived from o-Vanillin and p-Toluidine 被引量:5
6
作者 赵国良 冯云龙 温一航 《Journal of Rare Earths》 SCIE EI CAS CSCD 2006年第3期268-275,共8页
Three complexes, [Pr(NO3)3(HL)2] (1), [Nd(NO3)3(HL)2] (2) and [Er(NO3)3(HL)2] ·0.5H2O (3), were synthesized from the reaction of a Schiff base ligand 2-[ (4-methylphenylimino)methyl ]-6-methox... Three complexes, [Pr(NO3)3(HL)2] (1), [Nd(NO3)3(HL)2] (2) and [Er(NO3)3(HL)2] ·0.5H2O (3), were synthesized from the reaction of a Schiff base ligand 2-[ (4-methylphenylimino)methyl ]-6-methoxyphenol (C15 H15 NO2, HL) with Ln(NO3)3·6H2O (Ln = Pr, Nd, Er). Characterization by single-crystal X-ray diffraction technique, elemental analysis, molar conductance, FT-IR, UV-Vis, ^1H NMR and thermal analysis shows the title complexes are neutral molecules where the central Ln( Ⅲ) ion is ten-coordinated in biapical anti-hexahedron prism geometry, with four oxygen atoms of the phenolic hydroxy and methoxy groups in the two bidentate Schiff base ligands and six oxygen atoms provided by the three bidentate NO3 - anions. Additionally, the kinetic mechanism of thermal decomposition of complex 3 was determined with a TG-DTG curves by both integral and differential methods. The functions of thermal decomposition reaction mechanism and the equation of kinetic compensation effect were obtained. 展开更多
关键词 O-VANILLIN P-TOLUIDINE Schiff base crystal structure kinetic mechanism of thermal decomposition rare earths
下载PDF
Thermal decomposition mechanism and non-isothermal kinetics of the polyoxometalate of ciprofloxacin with 12-tungstoboric acid 被引量:1
7
作者 WANGDunjia FANGZhengdong HANDeyan 《Rare Metals》 SCIE EI CAS CSCD 2005年第1期15-21,共7页
The polyoxometalate complex (CPFX-HCl)(4)H5BW12O40-12H(2)O was prepared in aqueous solution for the first time, and characterized by elemental analysis, IR spectrum, and TG-DTG. The TG-DTG curves showed that its therm... The polyoxometalate complex (CPFX-HCl)(4)H5BW12O40-12H(2)O was prepared in aqueous solution for the first time, and characterized by elemental analysis, IR spectrum, and TG-DTG. The TG-DTG curves showed that its thermal decomposition was a four-step process consisting of the simultaneous collapse of Keggin anion. The intermediate and residue of the decomposition were identified by mean of TG-DTG, IR, and XRD technique. The non-isothermal kinetic data were analyzed by the Achar method and Coats-Redfern method. The apparent activation energy (E) and the pre-exponential factor (In A) of each decomposition were obtained. The most probable thermal decomposition reaction mechanisms were proposed by comparison of the kinetic parameters. The kinetic equation for both the second stage and the third stage can be expressed as d alpha/dt = Ae(-E/RT) -(1 - alpha)(2), and the fourth stage d alpha/dt = Ae(-E/RT) -(1 - alpha). And their mathematic expressions of the kinetic compensation effects of thermal decomposition reaction were also determined. 展开更多
关键词 physical chemistry thermal decomposition mechanism non-isothermal kinetics TG-DTG polyoxometalate complex CIPROFLOXACIN tungstoborate
下载PDF
Synthesis, Crystal Structure and Kinetic Mechanism of Thermal Decomposition of a Zinc(II) Complex with N-Salicylidene-p-toluidine 被引量:2
8
作者 ZHAO Guo-Liang WEN Yi-Hang YU Yu-Ye 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 北大核心 2006年第5期609-615,共7页
The title complex, Zn(C24H13NO)2Cl21, has been synthesized by the reaction of zinc chloride with Schiff base ligand N-salicylidene-p-toluidine and its structure was determined by single-crystal X-ray diffraction. Th... The title complex, Zn(C24H13NO)2Cl21, has been synthesized by the reaction of zinc chloride with Schiff base ligand N-salicylidene-p-toluidine and its structure was determined by single-crystal X-ray diffraction. The crystal is of monoclinic, space group Cc with a = 14.896(3), b = 12.506(2), c = 15.352(3) A,β = 114.711 (4)°, V = 2598.0(8) A^3, C28H26ZnCl2N2O2, Mr = 558.80, Z = 4, Dc = 1 .429 g/cm^3,μ = 1.179 mm^-1, Flack parameter = 0.027(19), F(000) = 1152, R = 0.0709 and wR = 0.1041 for 3117 observed reflections (Ⅰ 〉 2σ(Ⅰ)). In complex 1, the center Zn ion is four-coordinated by two O atoms from two Schiff base ligands and two Cl atoms in a distorted tetrahedral geometry. Additionally, the thermal decomposition of complex 1 as well as its kinetic mechanisms and equations is studied under the non-isothermal integral and differential methods in air by TG-DTG curves. 展开更多
关键词 zinc(Ⅱ) complex N-salicylidene-p-toluidine crystal structure kinetic mechanism of thermal decomposition
下载PDF
Infl uencing Mechanism and Interaction of Muscovite on Thermal Decomposition of Ammonium Polyphosphate 被引量:3
9
作者 胡盛 CHEN Fei +2 位作者 LI Junguo 沈强 ZHANG Lianmeng 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2016年第2期334-339,共6页
The interaction mechanism and phase evolution of ammonium polyphosphate(APP)mixed with muscovite(APP/muscovite)were studied by TG,XRD and SEM,respectively,during heating.When the temperature is not higher than 300... The interaction mechanism and phase evolution of ammonium polyphosphate(APP)mixed with muscovite(APP/muscovite)were studied by TG,XRD and SEM,respectively,during heating.When the temperature is not higher than 300 ℃,muscovite has no effect on the thermaldecomposition of APP,and the initialdecomposition temperature of APP/muscovite at 283 ℃ is basically the same as the APP at 295 ℃,and the main thermaldecomposition products are polyphosphoric acid and NH_4H_2PO_4 at 300 ℃.The polyphosphoric acid,the decomposition products of APP,can enable K and Siout of muscovite and interact with muscovite chemically to generate Al_2O_3·2SiO_2,α-SiO_2 and phosphates(AlPO_4 and K_5P_3O_(10))compounds during 400 ℃-800 ℃,which own obvious adhesive phenomenon and porous structure with the apparent porosity of 58.4%.Further reactions between phosphates other than reactions among Al_2O_3·2SiO_2 and α-SiO_2 can generate KAlP_2O_7 at 1 000 ℃ and the density of residualproduct is improved by low melting point phosphate filling pore to form relatively dense structure and decrease the apparent porosity to 44.4%.The flame resistant and self-supported ceramic materials are expected to enhance the fire-retarding synergistic effect between APP and muscovite. 展开更多
关键词 ammonium polyphosphate(APP) muscovite thermal decomposition influencing mechanism interaction
下载PDF
Characterization of Failure Mechanisms of Duplex and Graded Thermal Barrier Coatings Exposed to Thermal Shock Test 被引量:1
10
作者 A.F.Waheed and H.M.Soliman(Dept. of Metallurgy, Nuclear Research Center, Atomic Energy Authority, Cairo, Egypt) 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1996年第1期35-40,共6页
The beginning of failure of a (ZrO2-7%Y2O3)/(Ni-22%Co-17%Cr-12.5%Al-0.6%Y) duplex andgraded coating systems on lnconel 617 and IN738LC in burner rig tests has been characterized.The test conditions are 40 s heating up... The beginning of failure of a (ZrO2-7%Y2O3)/(Ni-22%Co-17%Cr-12.5%Al-0.6%Y) duplex andgraded coating systems on lnconel 617 and IN738LC in burner rig tests has been characterized.The test conditions are 40 s heating up to 75O℃ substrate temperature followed by 80 s aircooling. Failure is considered at the appearance of the first bright spot during heating period.Stresses due to thermal expansion mismatch strains on cooling are the probable cause of life-limiting in this conditions of testing. 展开更多
关键词 Co MILLER Characterization of Failure mechanisms of Duplex and Graded thermal Barrier Coatings Exposed to thermal Shock Test
下载PDF
Preparation,Structural Characterization and Thermal Decomposition Mechanism of Rare Earth Salts of 3-Nitro-1,2,4-Triazol-5-One
11
作者 张同来 李福平 《Journal of Rare Earths》 SCIE EI CAS CSCD 1995年第1期10-15,共6页
Eleven rare earth salts of 3-nitro-1, 2 , 4-triazol-5-one (NTO) was prepared by using aqueous solutions of lithium salt of NTO and corresponding rare earth nitrates. The formulae of these salts are determined as RE(NT... Eleven rare earth salts of 3-nitro-1, 2 , 4-triazol-5-one (NTO) was prepared by using aqueous solutions of lithium salt of NTO and corresponding rare earth nitrates. The formulae of these salts are determined as RE(NTO)3. nH2O, where RE is Y, La, Ce, Pr, Nd, Sm, Eu, Gd,Tb, Dy or Yb, and n is 6, 7, 7, 7, 8, 7, 7, 7, 5, 5 and 6 correspondingly. Their thermal decomposition mechanism was studied by using DSC, TG-DTG and FT-IR techniques under linearly increasing temperature. 展开更多
关键词 Rare earth metal NTO salt PREPARATION Structure thermal decomposition mechanism
下载PDF
Performance of High Thermal Conductivity Dense Silica Bricks and Their High Thermal Conductivity Mechanism
12
作者 SUN Yang ZHANG Xiuhua +3 位作者 HU Hao LIU Xiang LIU Ying CHEN Bo 《China's Refractories》 CAS 2022年第1期30-34,共5页
High thermal conductivity dense silica bricks have the higher thermal conductivity than ordinary silica bricks,which is conducive to the realization of energy saving and emission reduction in the iron and steel indust... High thermal conductivity dense silica bricks have the higher thermal conductivity than ordinary silica bricks,which is conducive to the realization of energy saving and emission reduction in the iron and steel industry.The performance of ordinary silica bricks and high thermal conductivity dense silica bricks was compared,and the high thermal conductivity mechanism was analyzed.The results show that(1)compared with ordinary silica bricks,high thermal conductivity dense silica bricks have the characteristics of higher thermal conductivity,lower apparent porosity,higher tridymite content,higher compressive strength,and higher thermal expansion;(2)by increasing the tridymite content and reducing the porosity,the close packing of honeycombα-tridymite improves the density and continuity of the SiO_(2)frame structure of the silica bricks,and the larger area perpendicular to the heat transfer direction improves the thermal conductivity of the bricks;(3)the densification of the silica bricks also increases the thermal expansion of the bricks,but they still meet the standard requirements. 展开更多
关键词 high thermal conductivity dense silica bricks PERFORMANCE thermal conductivity mechanism
下载PDF
Theoretical Studies on the Thermal Decomposition Mechanism of Potassium Nitroformate
13
作者 张福兰 黄辉胜 解晓华 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2016年第4期514-520,共7页
The microcosmic reaction mechanism of the thermal decomposition of potassium nitroformate(KNF) has been investigated by density functional theory within the generalized gradient approximation. The geometric structur... The microcosmic reaction mechanism of the thermal decomposition of potassium nitroformate(KNF) has been investigated by density functional theory within the generalized gradient approximation. The geometric structures of reactants, intermediates, transition states, and products are fully optimized. The frequency analysis approves the authenticity of intermediates and transition states. Our results show that there are four feasible reaction pathways. The main pathway of the reaction is KNF → B1 → TSB1 → B2 → TSB2 → B3 → TSB3 → B4 → KNO2 + NO2 + NO + CO, and the energy barrier of the rate-limiting step is 216.30 k J·mol^-1. The dominant products predicted theoretically are KNO2, NO2, NO, and CO, which is in agreement with the experiment. 展开更多
关键词 potassium nitroformate thermal decomposition reaction mechanism activation
下载PDF
Anisotropic strength,deformation and failure of gneiss granite under high stress and temperature coupled true triaxial compression
14
作者 Hongyuan Zhou Zaobao Liu +2 位作者 Fengjiao Liu Jianfu Shao Guoliang Li 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第3期860-876,共17页
The anisotropic mechanical behavior of rocks under high-stress and high-temperature coupled conditions is crucial for analyzing the stability of surrounding rocks in deep underground engineering.This paper is devoted ... The anisotropic mechanical behavior of rocks under high-stress and high-temperature coupled conditions is crucial for analyzing the stability of surrounding rocks in deep underground engineering.This paper is devoted to studying the anisotropic strength,deformation and failure behavior of gneiss granite from the deep boreholes of a railway tunnel that suffers from high tectonic stress and ground temperature in the eastern tectonic knot in the Tibet Plateau.High-temperature true triaxial compression tests are performed on the samples using a self-developed testing device with five different loading directions and three temperature values that are representative of the geological conditions of the deep underground tunnels in the region.Effect of temperature and loading direction on the strength,elastic modulus,Poisson’s ratio,and failure mode are analyzed.The method for quantitative identification of anisotropic failure is also proposed.The anisotropic mechanical behaviors of the gneiss granite are very sensitive to the changes in loading direction and temperature under true triaxial compression,and the high temperature seems to weaken the inherent anisotropy and stress-induced deformation anisotropy.The strength and deformation show obvious thermal degradation at 200℃due to the weakening of friction between failure surfaces and the transition of the failure pattern in rock grains.In the range of 25℃ 200℃,the failure is mainly governed by the loading direction due to the inherent anisotropy.This study is helpful to the in-depth understanding of the thermal-mechanical behavior of anisotropic rocks in deep underground projects. 展开更多
关键词 Anisotropic strength and deformation True triaxial compression thermal mechanical coupling Deep rock mechanics High temperature rock mechanics
下载PDF
Thermal decomposition mechanism and kinetics of bastnaesite in suspension roasting process:A comparative study in N_(2) and air atmospheres
15
作者 Wenbo Li Jijia Chen +2 位作者 Shaokai Cheng Junyan Sun Xiaolong Zhang 《Journal of Rare Earths》 SCIE EI CAS CSCD 2024年第9期1809-1816,I0006,共9页
To investigate the thermal decomposition behavior and reaction kinetics of bastnaesite in suspension roasting,the gas and solid products of bastnaesite roasted in N2 and air atmospheres were examined using a gas analy... To investigate the thermal decomposition behavior and reaction kinetics of bastnaesite in suspension roasting,the gas and solid products of bastnaesite roasted in N2 and air atmospheres were examined using a gas analyzer,X-ray diffraction(XRD),scanning electron microscopy(SEM),and energy dispersive spectrometry(EDS).Subsequently,the kinetic parameters of bastnaesite in the suspension roasting process were derived and calculated using the isothermal method.The results show that the decomposition product of bastnaesite in N_(2) is CeOF.However,once the roasting temperature exceeds 600℃,CO is generated in addition to CO_(2),and all the XRD diffraction peaks of CeOF are shifted to the right,indicating that CO_(2) can oxidize CeOF and lead to the transformation of Ce(Ⅲ) into Ce(Ⅳ).When roasted in air,the decomposition product CeOF can be completely converted to CeF3 and Ce_(7)O_(12) as it easily oxidizes.Additionally,the reaction rate of bastnaesite in air is higher than that of N_(2),and the starting reaction temperature is lower than that of N_(2).A large number of irregular cracks and holes appear on the surface of solid-phase products following suspension roasting,which are due to the thermal decomposition of bastnaesite that produces CO_(2) as well as the reconstruction of the lattice of the solid-phase products.The reaction kinetic model of bastnaesite roasted in N_(2)(temperature range 600-750℃) and air(temperatu re range 500-575℃) confo rms to the A_(3/2) model with the mechanism function G(α)=-ln(1-α)^(2/3),and the reaction activation energy is 59.78 kj/mol and lnA is 1.65 s^(-1) in N_(2) atmosphere.In air,the reaction activation energy is 100.30 kj/mol and lnA is 9.63 s^(-1). 展开更多
关键词 Rare earths BASTNAESITE Suspension roasting thermal decomposition mechanism Reaction kinetics
原文传递
A Nonlinear Explicit Model of A Non-Circular Subsea Tunnel-Liner System with An FGM Inverted Arch Under Mechanical Loading and Fire Fields
16
作者 HE Jie CHANG Guo-yong +1 位作者 LIU Yang LI Zhao-chao 《China Ocean Engineering》 SCIE EI CSCD 2024年第5期855-865,共11页
This paper proposes an explicit scheme to analyze the failure of a subsea polyhedral tunnel-liner system with an inverted arch under mechanical loading and fire fields.The thin-walled liner is made of Functionally Gra... This paper proposes an explicit scheme to analyze the failure of a subsea polyhedral tunnel-liner system with an inverted arch under mechanical loading and fire fields.The thin-walled liner is made of Functionally Graded Materials(FGMs),which may improve the stability behavior of the tunnel-liner system.Hydrostatic pressure is inevitable in the liner since underground water may penetrate the cracks of the tunnel,and reach the outer surface of the liner.In addition,an elevated temperature loading is taken into account,considering that fire may occur in the tunnel-liner system.Under the combination of mechanical loading and thermal loading,the liner deforms into a single-lobe shape,which is depicted by a trigonometric function.The total potential energy is expressed quantitatively after the energy approach and thin-walled shell theory are used.The minimum potential energy is obtained when the critical buckling occurs.The critical buckling pressure is calculated,which considers the effect of the thermal field.The present analytical prediction is subsequently compared precisely with other closed-form solutions.Finally,the effects of several parameters,such as the geometric shapes,temperature variations,and volume fraction indices,are discussed to further survey the buckling performance of the nonlinear buckling of an FGM polyhedral liner with an inverted arch.One may address a polyhedral liner with fewer polyhedral sides,and a lower volume fraction index is recommended to rehabilitate cracked tunnels in engineering applications. 展开更多
关键词 tunnel-liner system with an inverted arch volume fraction index mechanical and thermal loadings rehabilitation BUCKLING
下载PDF
Breaking Through Bottlenecks for Thermally Conductive Polymer Composites:A Perspective for Intrinsic Thermal Conductivity,Interfacial Thermal Resistance and Theoretics 被引量:19
17
作者 Junwei Gu Kunpeng Ruan 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第7期118-126,共9页
Rapid development of energy,electrical and electronic technologies has put forward higher requirements for the thermal conductivities of polymers and their composites.However,the thermal conductivity coefficient(λ)va... Rapid development of energy,electrical and electronic technologies has put forward higher requirements for the thermal conductivities of polymers and their composites.However,the thermal conductivity coefficient(λ)values of prepared thermally conductive polymer composites are still difficult to achieve expectations,which has become the bottleneck in the fields of thermally conductive polymer composites.Aimed at that,based on the accumulation of the previous research works by related researchers and our research group,this paper proposes three possible directions for breaking through the bottlenecks:(1)preparing and synthesizing intrinsically thermally conductive polymers,(2)reducing the interfacial thermal resistance in thermally conductive polymer composites,and(3)establishing suitable thermal conduction models and studying inner thermal conduction mechanism to guide experimental optimization.Also,the future development trends of the three above-mentioned directions are foreseen,hoping to provide certain basis and guidance for the preparation,researches and development of thermally conductive polymers and their composites. 展开更多
关键词 thermally conductive polymer composites Intrinsic thermal conductivity Interfacial thermal resistance thermal conduction models thermal conduction mechanisms
下载PDF
The Effects of Stacking Sequence on Dynamic Mechanical Properties and Thermal Degradation of Kenaf/Jute Hybrid Composites 被引量:3
18
作者 Tabrej Khan Mohamed Thariq Hameed Sultan +5 位作者 Mohammad Jawaid Syafiqah Nur Azrie Safri Ain Umaira Md Shah Mohd Shukry Abdul Majid Nik Noriman Zulkepli Haliza Jaya 《Journal of Renewable Materials》 SCIE EI 2021年第1期73-84,共12页
This research focused on the dynamic mechanical and thermal properties of woven mat jute/kenaf/jute(J/K/J)and kenaf/jute/kenaf(K/J/K)hybrid composites.Dynamic mechanical analysis(DMA)and Thermo-gravimetric Analysis(TG... This research focused on the dynamic mechanical and thermal properties of woven mat jute/kenaf/jute(J/K/J)and kenaf/jute/kenaf(K/J/K)hybrid composites.Dynamic mechanical analysis(DMA)and Thermo-gravimetric Analysis(TGA)were used to study the effect of layering sequence on the thermal properties of kenaf/jute hybrid composites.The DMA results;it was found that the differences in the stacking sequence between the kenaf/jute composites do not affect their storage modulus,loss modulus and damping factor.From the TGA and DMA results,it has been shown that stacking sequence has given positive effect to the kenaf/jute hybrid composite compared to pure epoxy composite.This is because kenaf and jute fibre has increased the Tg values of the composites,thus affect the thermal degradation.Results showed that the storage modulus for kenaf/jute hybrid composites increased compared with pure epoxy composites with increasing temperature and the values of remained almost the same at glass transition temperature(Tg),the hybrid composite perhaps due to the improved fibre/matrix interface bonding.The preliminary analysis could provide a new direction for the creation of a novel hybrid composite which offers unique properties which cannot be accomplished in a single material system. 展开更多
关键词 Hybrid composites dynamic mechanical thermal analysis(DMTA) thermo-gravimetric analysis
下载PDF
Kinetics of the Thermal Decomposition of Wangjiatan Siderite 被引量:4
19
作者 冯志力 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2011年第3期523-526,共4页
The thermal decomposition processes of Wangjiatan siderite samples were studied in nitrogen by thermogravimetric(TG)analysis.The mechanism of thermal decomposition of the siderite obeyed an F n kinetic law and the n... The thermal decomposition processes of Wangjiatan siderite samples were studied in nitrogen by thermogravimetric(TG)analysis.The mechanism of thermal decomposition of the siderite obeyed an F n kinetic law and the n-order was between 1.16 and 1.29.The results from non-isothermal experiments show that the size of particles has an obvious effect on the logarithm of pre-exponential factor in kinetics parameter of the thermal decomposition of Wangjiatan siderite.A linear relationship is shown between the size of particles and the logarithm of pre-exponential factor.An F 1 kinetic model containing size factor describes the thermal decomposition of Wangjiatan siderite well. 展开更多
关键词 thermal decomposition mechanism kinetics siderite
下载PDF
Curing Kinetics, Mechanical Properties and Thermal Stability of Epoxy/Graphene Nanoplatelets(GNPs) Powder Coatings 被引量:4
20
作者 智茂永 黄婉霞 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2016年第5期1155-1161,共7页
Epoxy/graphene nanoplatelets(GNPs) powder coatings were fabricated using ultrasonic predispersion of GNPs and melt-blend extrusion method. The isothermal curing kinetics of epoxy/GNPs powder coating were monitored b... Epoxy/graphene nanoplatelets(GNPs) powder coatings were fabricated using ultrasonic predispersion of GNPs and melt-blend extrusion method. The isothermal curing kinetics of epoxy/GNPs powder coating were monitored by means of real-time Fourier transform infrared spectroscopy(FT-IR) with a heating cell. The mechanical properties of the epoxy/GNPs cured coatings had been investigated, by evaluating their fracture surfaces with field-emission scanning electron microscopy(FE-SEM) after three-point-bending tests. The thermal stability of the epoxy/GNPs cured coatings was studied by thermo-gravimetric analysis(TGA). The isothermal curing kinetics result showed that the GNPs would not affect the autocatalytic reaction mechanism, but the loading of GNPs below 1.0 wt % additive played a prompting role in the curing of the epoxy/GNPs powder coatings. The fracture strain, fracture toughness and impact resistance of the epoxy/GNPs cured coatings increased dramatically at low levels of GNPs loading(1 wt %), indicating that the GNPs could improve the toughness of the epoxy/GNPs powder coatings. Furthermore, from FE-SEM studies of the fracture surfaces, the possible toughening mechanisms of the epoxy/GNPs cured coatings were proposed. TGA result showed that the incorporation of GNPs improved the thermal stability of the cured coatings. Hence, the GNPs modified epoxy can be an efficient approach to toughen epoxy powder coating along with improving their thermal stability. 展开更多
关键词 epoxy powder coating graphene nanoplatelets(GNPs) toughening mechanism thermal stability
下载PDF
上一页 1 2 10 下一页 到第
使用帮助 返回顶部