在低气压环境下对两节点模型进行了修正,同时通过实测皮肤温度验证了其准确性。在此基础上对热环境评价指标——标准有效温度(SET*)进行了计算,分析了低气压下SET*的变化规律,并在不同低气压环境下对ASHRAE Standard 55中的舒适区进行...在低气压环境下对两节点模型进行了修正,同时通过实测皮肤温度验证了其准确性。在此基础上对热环境评价指标——标准有效温度(SET*)进行了计算,分析了低气压下SET*的变化规律,并在不同低气压环境下对ASHRAE Standard 55中的舒适区进行了修正。计算结果表明,在相同环境参数条件下,随着大气压力的降低,对应的标准有效温度降低。相应地,随大气压力的下降,人体舒适区范围向干球温度较高的方向移动。低气压环境下舒适区对应的干球温度上下限值均比常压下高,且温差范围增大。展开更多
Unmanned Aerial Vehicle(UAV) is developing towards the direction of High Altitude Long Endurance(HALE). This will have an important influence on the stability of its airborne electronic equipment using passive the...Unmanned Aerial Vehicle(UAV) is developing towards the direction of High Altitude Long Endurance(HALE). This will have an important influence on the stability of its airborne electronic equipment using passive thermal management. In this paper, a multi-node transient thermal model for airborne electronic equipment is set up based on the thermal network method to predict their dynamic temperature responses under high altitude and long flight time conditions. Some relevant factors are considered into this temperature prediction model including flight environment,radiation, convection, heat conduction, etc. An experimental chamber simulating a high altitude flight environment was set up to survey the dynamic thermal responses of airborne electronic equipment in a UAV. According to the experimental measurement results, the multi-node transient thermal model is verified without consideration of the effects of flight speed. Then, a modified way about outside flight speed is added into the model to improve the temperature prediction performance. Finally, the corresponding simulation code is developed based on the proposed model. It can realize the dynamic temperature prediction of airborne electronic equipment under HALE conditions.展开更多
文摘在低气压环境下对两节点模型进行了修正,同时通过实测皮肤温度验证了其准确性。在此基础上对热环境评价指标——标准有效温度(SET*)进行了计算,分析了低气压下SET*的变化规律,并在不同低气压环境下对ASHRAE Standard 55中的舒适区进行了修正。计算结果表明,在相同环境参数条件下,随着大气压力的降低,对应的标准有效温度降低。相应地,随大气压力的下降,人体舒适区范围向干球温度较高的方向移动。低气压环境下舒适区对应的干球温度上下限值均比常压下高,且温差范围增大。
基金the financial support of National Key R&D Program of China (No.2017YFB1201100)
文摘Unmanned Aerial Vehicle(UAV) is developing towards the direction of High Altitude Long Endurance(HALE). This will have an important influence on the stability of its airborne electronic equipment using passive thermal management. In this paper, a multi-node transient thermal model for airborne electronic equipment is set up based on the thermal network method to predict their dynamic temperature responses under high altitude and long flight time conditions. Some relevant factors are considered into this temperature prediction model including flight environment,radiation, convection, heat conduction, etc. An experimental chamber simulating a high altitude flight environment was set up to survey the dynamic thermal responses of airborne electronic equipment in a UAV. According to the experimental measurement results, the multi-node transient thermal model is verified without consideration of the effects of flight speed. Then, a modified way about outside flight speed is added into the model to improve the temperature prediction performance. Finally, the corresponding simulation code is developed based on the proposed model. It can realize the dynamic temperature prediction of airborne electronic equipment under HALE conditions.