Kiln phosphoric acid(KPA)technology could produce P2O5 with high purity and has been applied in thermal phosphoric acid industry;however the formation of fouling in the high-temperature rotary kiln restricts the stabl...Kiln phosphoric acid(KPA)technology could produce P2O5 with high purity and has been applied in thermal phosphoric acid industry;however the formation of fouling in the high-temperature rotary kiln restricts the stable and long-term operation.In this paper,the reaction of phosphate ores with gaseous P2O5 was investigated in a high-temperature reactor,and the Ca O-SiO2-P2O5 ternary phase diagram was analyzed to understand the fouling formation mechanism.The results showed that the low-melting-point products,such as Ca(PO3)2and Ca2P2O7,are responsible for the fouling in the KPA process.In addition,a small amount of impurities,e.g.,aluminum and iron,could facilitate the generation of the low-melting-point products and cause serious fouling.Based on the high-temperature SiO2-P2O5 and CaO-SiO2-P2O5 phase diagram analysis,the control of Si/Ca molar ratio(e.g.,Si/Ca=2.0)was found to avoid fouling formation in the kiln.These results could provide the operation parameters of reaction temperature and feeds composition to suppress the fouling in the kiln reactor for the phosphoric acid production in industry.展开更多
A phosphorus-nitrogen containing flame retardant additive of poly(phosphoric acid piperazine), defined as PPAP, was synthesized by the salt-forming reaction between anhydrous piperazine and phosphoric acid, and the ...A phosphorus-nitrogen containing flame retardant additive of poly(phosphoric acid piperazine), defined as PPAP, was synthesized by the salt-forming reaction between anhydrous piperazine and phosphoric acid, and the dehydration polymerization under heating in nitrogen atmosphere. Its chemical structure was well characterized by Fourier transform infrared(FTIR) spectroscopy, ^(13)C and ^(31)P solid-state nuclear magnetic resonance measurements. The synthesized PPAP and curing agent m-phenylenediamine were blended into epoxy resin(EP) to prepare flame retardant EP thermosets. The effects of PPAP on the fire retardancy and thermal degradation behavior of cured EP/PPAP composites were investigated by limiting oxygen index(LOI), vertical burning(UL-94), thermogravimetric analysis/infrared spectrometry(TG-IR) and cone calorimeter tests. The morphologies and chemical compositions of char residues for cured epoxy resin were investigated by scanning electron microscopy(SEM) and X-ray photoelectron spectroscopy(XPS), respectively. The results demonstrated that the flame retardant EP thermosets successfully passed UL-94 V-0 flammability rating and the LOI value was as high as 30.8% when incorporating 5 wt% PPAP into the EP thermosets. The TGA results indicated that the synthesized PPAP flame retardant additive possessed high thermal stability and excellent charring capability. Meanwhile, the incorporation of PPAP stimulated the epoxy resin matrix to decompose and charring ahead of time due to its catalytic decomposition effect, which led to a higher char yield at high temperature. The morphological structures and the analysis results of XPS for char residues of EP thermosets revealed that the introduction of PPAP benefited the formation of a sufficient, more compact and homogeneous char layer containing phosphorus-nitrogen flame retardant elements on the material surface during combustion. The formed char layer with high quality effectively prevented the heat transmission and diffusion, limited the production of combustible gases, and inhibited the emission of smoke, leading to the reduction of heat and smoke release.展开更多
基金support from the National Key R&D Program of China(2018YFC1900201)the Provincial Key R&D Program of Shanxi(201603D31212003)。
文摘Kiln phosphoric acid(KPA)technology could produce P2O5 with high purity and has been applied in thermal phosphoric acid industry;however the formation of fouling in the high-temperature rotary kiln restricts the stable and long-term operation.In this paper,the reaction of phosphate ores with gaseous P2O5 was investigated in a high-temperature reactor,and the Ca O-SiO2-P2O5 ternary phase diagram was analyzed to understand the fouling formation mechanism.The results showed that the low-melting-point products,such as Ca(PO3)2and Ca2P2O7,are responsible for the fouling in the KPA process.In addition,a small amount of impurities,e.g.,aluminum and iron,could facilitate the generation of the low-melting-point products and cause serious fouling.Based on the high-temperature SiO2-P2O5 and CaO-SiO2-P2O5 phase diagram analysis,the control of Si/Ca molar ratio(e.g.,Si/Ca=2.0)was found to avoid fouling formation in the kiln.These results could provide the operation parameters of reaction temperature and feeds composition to suppress the fouling in the kiln reactor for the phosphoric acid production in industry.
基金financially supported by the Fundamental Research Funds for the Central Universities (No.2572014EB06-02)National Natural Science Foundation of China (No.51673035)Heilongjiang Major Research Projects (No.GA15A101)
文摘A phosphorus-nitrogen containing flame retardant additive of poly(phosphoric acid piperazine), defined as PPAP, was synthesized by the salt-forming reaction between anhydrous piperazine and phosphoric acid, and the dehydration polymerization under heating in nitrogen atmosphere. Its chemical structure was well characterized by Fourier transform infrared(FTIR) spectroscopy, ^(13)C and ^(31)P solid-state nuclear magnetic resonance measurements. The synthesized PPAP and curing agent m-phenylenediamine were blended into epoxy resin(EP) to prepare flame retardant EP thermosets. The effects of PPAP on the fire retardancy and thermal degradation behavior of cured EP/PPAP composites were investigated by limiting oxygen index(LOI), vertical burning(UL-94), thermogravimetric analysis/infrared spectrometry(TG-IR) and cone calorimeter tests. The morphologies and chemical compositions of char residues for cured epoxy resin were investigated by scanning electron microscopy(SEM) and X-ray photoelectron spectroscopy(XPS), respectively. The results demonstrated that the flame retardant EP thermosets successfully passed UL-94 V-0 flammability rating and the LOI value was as high as 30.8% when incorporating 5 wt% PPAP into the EP thermosets. The TGA results indicated that the synthesized PPAP flame retardant additive possessed high thermal stability and excellent charring capability. Meanwhile, the incorporation of PPAP stimulated the epoxy resin matrix to decompose and charring ahead of time due to its catalytic decomposition effect, which led to a higher char yield at high temperature. The morphological structures and the analysis results of XPS for char residues of EP thermosets revealed that the introduction of PPAP benefited the formation of a sufficient, more compact and homogeneous char layer containing phosphorus-nitrogen flame retardant elements on the material surface during combustion. The formed char layer with high quality effectively prevented the heat transmission and diffusion, limited the production of combustible gases, and inhibited the emission of smoke, leading to the reduction of heat and smoke release.