Establishing a base on the Moon is one of the new goals of human lunar exploration in recent years.Sintered lunar regolith is one of the most potential building materials for lunar bases.The physical,mechanical and th...Establishing a base on the Moon is one of the new goals of human lunar exploration in recent years.Sintered lunar regolith is one of the most potential building materials for lunar bases.The physical,mechanical and thermal properties of sintered lunar regolith are vital performance indices for the structural design of a lunar base and analysis of many critical mechanical and thermal issues.In this study,the HUST-1 lunar regolith simulant(HLRS)was sintered at 1030,1040,1050,1060,1070,and 1080℃.The effect of sintering temperature on the compressive strength was investigated,and the exact value of the optimum vacuum sintering temperature was determined between 1040 and 1060℃.Then,the microstructure and material composition of vacuum sintered HLRS at different temperatures were characterized.It was found that the sintering temperature has no significant effect on the mineral composition in the temperature range of 1030-1080℃.Besides,the heat capacity,thermal conductivity,and coefficient of thermal expansion(CTE)of vacuum sintered HLRS at different temperatures were investigated.Specific heat capacity of sintered samples increases with the increase of test temperature within the temperature range from-75 to 145℃.Besides,the thermal conductivity of the sintered sample is proportional to density.Finally,the two temperatures of 1040 and 1050℃were selected for a more detailed study of mechanical properties.The results showed that compressive strength of sintered sample is much higher than tensile strength.This study reveals the effects of sintering temperature on the physical,mechanical and thermal properties of vacuum sintered HLRS,and these material parameters will provide support for the construction of future lunar bases.展开更多
Ag-In intermetallic alloys were produced by using vacuum arc furnace. Differential Scanning Calorimetry(DSC) and Energy Dispersive X-Ray Spectrometry(EDX) were used to determine the thermal properties and chemical com...Ag-In intermetallic alloys were produced by using vacuum arc furnace. Differential Scanning Calorimetry(DSC) and Energy Dispersive X-Ray Spectrometry(EDX) were used to determine the thermal properties and chemical composition of the phases respectively. Microhardness values of Ag-In intermetallics were calculated with Vickers hardness measurement method. According to the experimental results, Ag-34 wt%In intermetallic system generated the best results of energy saving and storage compared to other intermetallic systems. Also from the microhardness results, it was observed that intermetallic alloys were harder than pure silver and Ag-26 wt%In system had the highest microhardness value with 143.45 kg/mm^(2).展开更多
The laser powder bed fusion(LPBF) process can integrally form geometrically complex and high-performance metallic parts that have attracted much interest,especially in the molds industry.The appearance of the LPBF mak...The laser powder bed fusion(LPBF) process can integrally form geometrically complex and high-performance metallic parts that have attracted much interest,especially in the molds industry.The appearance of the LPBF makes it possible to design and produce complex conformal cooling channel systems in molds.Thus,LPBF-processed tool steels have attracted more and more attention.The complex thermal history in the LPBF process makes the microstructural characteristics and properties different from those of conventional manufactured tool steels.This paper provides an overview of LPBF-processed tool steels by describing the physical phenomena,the microstructural characteristics,and the mechanical/thermal properties,including tensile properties,wear resistance,and thermal properties.The microstructural characteristics are presented through a multiscale perspective,ranging from densification,meso-structure,microstructure,substructure in grains,to nanoprecipitates.Finally,a summary of tool steels and their challenges and outlooks are introduced.展开更多
The matrix thermal properties have an important impact on laser-induced plasma,as the thermal effect dominates the interaction between ns-pulsed laser and matter,especially in metals.We used a series of pure metals an...The matrix thermal properties have an important impact on laser-induced plasma,as the thermal effect dominates the interaction between ns-pulsed laser and matter,especially in metals.We used a series of pure metals and aluminum alloys to measure plasma temperature and electron density through laser-induced breakdown spectroscopy,in order to investigate the effect of matrix thermal properties on laser-induced plasma.In pure metals,a significant negative linear correlation was observed between the matrix thermal storage coefficient and plasma temperature,while a weak correlation was observed with electron density.The results indicate that metals with low thermal conductivity or specific heat capacity require less laser energy for thermal diffusion or melting and evaporation,resulting in higher ablation rates and higher plasma temperatures.However,considering ionization energy,thermal effects may be a secondary factor affecting electron density.The experiment of aluminum alloy further confirms the influence of thermal conductivity on plasma temperature and its mechanism explanation.展开更多
In order to explore the thermal conductivity of polypropylene(PP)/hexagonal boron nitride(BN) composites,PP composites filled with different proportions of BN were prepared through extrution compounding,injection moul...In order to explore the thermal conductivity of polypropylene(PP)/hexagonal boron nitride(BN) composites,PP composites filled with different proportions of BN were prepared through extrution compounding,injection moulding and compression moulding.The composites were filled with BN particles of 5 and 20 μm respectively,and their mass fractions in composites were considered.Percentage of BN was varied from 0 to 25wt% in steps of 5wt%.The effects of BN filler on mechanical properties of the composites were evaluated.The thermal behaviors were studied using DSC and TGA,and the thermal conductivity was also investigated by Laser Flash Device and the Model of 3D Heat Conduction respectively.The experimental results show that impact strength of PP/BN can be enhanced with the addition of BN,but that composites exhibit lower breaking elongation & tensile strength when compared to unfilled ones.It is found that mass fraction of BN influenced the final thermal stability and degree of crystallization of PP matrix,the degree of crystallization of PP with 15wt% of 20 μm BN can be improved by 25% than neat PP.Meanwhile,crystallization temperatures of PP composites are elevated by about 10 ℃.The thermal conductivity results demonstrate that the maximum value of the thermal conductivity is achieved from PP/BN with 20wt% of 20 μm BN,higher than that of pure PP by 95.65%,close to the simulation one.展开更多
The development of bio-sourced materials is essential to ensuring sustainable construction;it is considered a locomotive of the green economy.Furthermore,it is an abundant material in our country,to which very little ...The development of bio-sourced materials is essential to ensuring sustainable construction;it is considered a locomotive of the green economy.Furthermore,it is an abundant material in our country,to which very little attention is being given.This work aims to valorize the waste of the trunks of banana trees to be used in construction.Firstly,the physicochemical properties of the fiber,such as the percentage of crystallization and its morphology,have been determined by X-ray diffraction tests and scanning electron microscopy to confirm the potential and the impact of the mode of drying on the quality of the banana fibers,with the purpose to promote the use of this material in construction.Secondly,the results obtained with the gypsum matrix allowed us to note a preponderant improvement in the composite’s thermal properties thanks to the variation of the banana fiber additive.Thirdly,the impact of the nature of the banana fiber distribution(either fiber mixed in matrix or fiber series model)on the flexural and compressive strengths of the composites was studied.The results obtained indicate that the insulation gain reaches up to 40%.It depends on the volume fraction and type of distribution of the banana fibers.However,the thermal inertia of the composites developed,represented by thermal diffusivity and thermal effusivity,was studied.Results indicate a gain of 40%and 25%,respectively,in terms of thermal diffusivity and thermal effusivity of the developed composites compared to plaster alone.Concerning the mechanical properties,the flexural strength depends on the percentage of the volume fraction of banana fibers used,and it can reach 20%more than the flexural strength of plaster;nevertheless,there is a significant loss in terms of the compressive strength of the studied composites.The results obtained are confirmed by the microstructure of the fiber banana.In fact,the morphology of the banana fibers was improved by the drying process.It reduces the amorphous area and improves the cellulosic crystalline surfaces,which assures good adhesion between the fiber and the matrix plaster.Finally,the dimensionless coefficient analysis was done to judge the optimal proportion of the banana fiber additive and to recommend its use even on false ceilings or walls.展开更多
Deep oil and gas reservoirs are under high-temperature conditions,but traditional coring methods do not consider temperature-preserved measures and ignore the influence of temperature on rock porosity and permeability...Deep oil and gas reservoirs are under high-temperature conditions,but traditional coring methods do not consider temperature-preserved measures and ignore the influence of temperature on rock porosity and permeability,resulting in distorted resource assessments.The development of in situ temperaturepreserved coring(ITP-Coring)technology for deep reservoir rock is urgent,and thermal insulation materials are key.Therefore,hollow glass microsphere/epoxy resin thermal insulation materials(HGM/EP materials)were proposed as thermal insulation materials.The materials properties under coupled hightemperature and high-pressure(HTHP)conditions were tested.The results indicated that high pressures led to HGM destruction and that the materials water absorption significantly increased;additionally,increasing temperature accelerated the process.High temperatures directly caused the thermal conductivity of the materials to increase;additionally,the thermal conduction and convection of water caused by high pressures led to an exponential increase in the thermal conductivity.High temperatures weakened the matrix,and high pressures destroyed the HGM,which resulted in a decrease in the tensile mechanical properties of the materials.The materials entered the high elastic state at 150℃,and the mechanical properties were weakened more obviously,while the pressure led to a significant effect when the water absorption was above 10%.Meanwhile,the tensile strength/strain were 13.62 MPa/1.3%and 6.09 MPa/0.86%at 100℃ and 100 MPa,respectively,which meet the application requirements of the self-designed coring device.Finally,K46-f40 and K46-f50 HGM/EP materials were proven to be suitable for ITP-Coring under coupled conditions below 100℃ and 100 MPa.To further improve the materials properties,the interface layer and EP matrix should be optimized.The results can provide references for the optimization and engineering application of materials and thus technical support for deep oil and gas resource development.展开更多
Pearl millet(Pennisetum glaucum)is one of the major millets with high nutritional properties.This crop exhibits exceptional resilience to drought and high temperatures.However,the processing of pearl millet poses a si...Pearl millet(Pennisetum glaucum)is one of the major millets with high nutritional properties.This crop exhibits exceptional resilience to drought and high temperatures.However,the processing of pearl millet poses a significant challenge due to its high lipid content,enzyme activity,and presence of antinutrients.Consequently,it becomes imperative to enhance the quality and prolong the shelf life of pearl millet flour by employing suitable technologies.Hydrothermal treatment in the food industry has long been seen as promising due to its potential to reduce microbial load,inactivate enzymes,and improve nutrient retention.This study aims to investigate the effects of hydrothermal treatment on the quality characteristics of pearl millet.The independent variables of the study were soaking temperature(35,45,55℃),soaking time(2,3,4 h),and steaming time(5,10,15 min).Treatment conditions had a statistically significant effect on nutrient retention.Major antinutrients like tannins and phytates were reduced by 0.99% to 5.94% and 0.36% to 6.00%,respectively,after the treatment.Lipase activity decreased significantly up to 10% with the treatment conditions.The findings of this study could potentially encourage the use of pearl millet flour in the production of various food items and promote the application of hydrothermal treatment in the field of food processing.展开更多
Multi-material laser-based powder bed fusion (PBF-LB) allows manufacturing of parts with 3-dimensional gradient and additional functionality in a single step. This research focuses on the combination of thermally-cond...Multi-material laser-based powder bed fusion (PBF-LB) allows manufacturing of parts with 3-dimensional gradient and additional functionality in a single step. This research focuses on the combination of thermally-conductive CuCr1Zr with hard M300 tool steel.Two interface configurations of M300 on CuCr1Zr and CuCr1Zr on M300 were investigated. Ultra-fine grains form at the interface due to the low mutual solubility of Cu and steel. The material mixing zone size is dependent on the configurations and tunable in the range of0.1–0.3 mm by introducing a separate set of parameters for the interface layers. Microcracks and pores mainly occur in the transition zone.Regardless of these defects, the thermal diffusivity of bimetallic parts with 50vol% of CuCr1Zr significantly increases by 70%–150%compared to pure M300. The thermal diffusivity of CuCr1Zr and the hardness of M300 steel can be enhanced simultaneously by applying the aging heat treatment.展开更多
Hexagonal boron nitride(h-BN)ceramics have become exceptional materials for heat-resistant components in hypersonic vehicles,owing to their superior thermal stability and excellent dielectric properties.However,their ...Hexagonal boron nitride(h-BN)ceramics have become exceptional materials for heat-resistant components in hypersonic vehicles,owing to their superior thermal stability and excellent dielectric properties.However,their densification during sintering still poses challenges for researchers,and their mechanical properties are rather unsatisfactory.In this study,SrAl_(2)Si_(2)O_(8)(SAS),with low melting point and high strength,was introduced into the h-BN ceramics to facilitate the sintering and reinforce the strength and toughness.Then,BN-SAS ceramic composites were fabricated via hot press sintering using h-BN,SrCO_(3),Al_(2)O_(3),and SiO_(2) as raw materials,and effects of sintering pressure on their microstructure,mechanical property,and thermal property were investigated.The thermal shock resistance of BN-SAS ceramic composites was evaluated.Results show that phases of as-preparedBN-SAS ceramic composites are h-BN and h-SrAl_(2)Si_(2)O_(8).With the increase of sintering pressure,the composites’densities increase,and the mechanical properties shew a rising trend followed by a slight decline.At a sintering pressure of 20 MPa,their bending strength and fracture toughness are(138±4)MPa and(1.84±0.05)MPa·m^(1/2),respectively.Composites sintered at 10 MPa exhibit a low coefficient of thermal expansion,with an average of 2.96×10^(-6) K^(-1) in the temperature range from 200 to 1200℃.The BN-SAS ceramic composites prepared at 20 MPa display higher thermal conductivity from 12.42 to 28.42 W·m^(-1)·K^(-1) within the temperature range from room temperature to 1000℃.Notably,BN-SAS composites exhibit remarkable thermal shock resistance,with residual bending strength peaking and subsequently declining sharply under a thermal shock temperature difference ranging from 600 to 1400℃.The maximum residual bending strength is recorded at a temperature difference of 800℃,with a residual strength retention rate of 101%.As the thermal shock temperature difference increase,the degree of oxidation on the ceramic surface and cracks due to thermal stress are also increased gradually.展开更多
We employed a melt ultrasonic treatment near the liquidus to prepare a high-thermal-conductivity Al-4Si-2Ni-0.8Fe-0.4Mg alloy.The influences of various ultrasonic powers on its microstructure,mechanical properties,and...We employed a melt ultrasonic treatment near the liquidus to prepare a high-thermal-conductivity Al-4Si-2Ni-0.8Fe-0.4Mg alloy.The influences of various ultrasonic powers on its microstructure,mechanical properties,and thermal conductivity were investigated.It is shown that near-liquidus ultrasonication significantly refines the alloy grains and eutectic structure,synergistically improving the alloy’s mechanical properties and thermal conductivity.Specifically,the grain size decreased by 84.5%from 941.4 to 186.2μm.Increasing the ultrasonic power improved the thermal conductivity of the alloy slightly and significantly enhanced its mechanical properties.At an ultrasonic power of 2100 W,the tensile strength,yield strength,elongation rate,and thermal conductivity were 216 MPa,142 MPa,6.3%,and 169 W/(m·k),respectively.展开更多
The increase in payload capacity of trucks has heightened the demand for cost-effective yet high performance brake discs.In this work,the thermal fatigue and wear of compacted graphite iron brake discs were investigat...The increase in payload capacity of trucks has heightened the demand for cost-effective yet high performance brake discs.In this work,the thermal fatigue and wear of compacted graphite iron brake discs were investigated,aiming to provide an experimental foundation for achieving a balance between their thermal and mechanical properties.Compacted graphite iron brake discs with different tensile strengths,macrohardnesses,specific heat capacities and thermal diffusion coefficients were produced by changing the proportion and strength of ferrite.The peak temperature,pressure load and friction coefficient of compacted graphite iron brake discs were analyzed through inertia friction tests.The morphology of thermal cracks and 3D profiles of the worn surfaces were also discussed.It is found that the thermal fatigue of compacted graphite iron discs is determined by their thermal properties.A compacted graphite iron with the highest specific heat capacity and thermal diffusion coefficient exhibits optimal thermal fatigue resistance.Oxidization of the matrix at low temperatures significantly weakens the function of alloy strengthening in hindering the propagation of thermal cracks.Despite the reduced hardness,increasing the ferrite proportion can mitigate wear loss resulting from low disc temperatures and the absence of abrasive wear.展开更多
Cellulose-based film has gained popularity as an alternative to synthetic polymers due to its outstanding properties.Among all types of cellulose materials available,cellulose nanofiber(CNF)has great potential to be u...Cellulose-based film has gained popularity as an alternative to synthetic polymers due to its outstanding properties.Among all types of cellulose materials available,cellulose nanofiber(CNF)has great potential to be utilized in a diverse range of applications,including as a film material.In this study,CNF biocomposite film was prepared by using polyvinyl alcohol(PVA)as a matrix and Uncaria gambir extract as a filler.This study aims to investigate the effect of Uncaria gambir extract on the optical properties and thermal stability of the produced film.The formation of the CNF biocomposite films was confirmed using Fourier Transform Infrared Spectroscopy,their transmittance characteristics were measured using UV-Vis spectroscopy and a transmittance meter,while their reflectance was determined using a reflectance meter.The results revealed that the addition of Uncaria gambir extract to the CNF biocomposite film improved its UV-shielding properties,as indicated by the lower percentage of transmittance in the visible region,10%–70%.In addition,its reflectance increased to 10.6%compared to the CNF film without the addition of Uncaria gambir extract.Furthermore,the thermal stability of the CNF biocomposite film with the addition of Uncaria gambir extract improved to around 400℃–500℃.In conclusion,the results showed that CNF biocomposite film prepared by adding Uncaria gambir extract can be a promising candidate for optical and thermal management materials.展开更多
Micrometer-sized diamonds were incorporated into silicon nitride(Si_(3)N_(4))matrix to manufacture high-performance Si_(3)N_(4)-based composites using spark plasma sintering at 1500℃under 50 MPa.The effects of the di...Micrometer-sized diamonds were incorporated into silicon nitride(Si_(3)N_(4))matrix to manufacture high-performance Si_(3)N_(4)-based composites using spark plasma sintering at 1500℃under 50 MPa.The effects of the diamond content on the phase composition,microstructure,mechanical properties and thermal conductivity of the composites were investigated.The results showed that the addition of diamond could effectively improve the hardness of the material.The thermal conductivity of Si_(3)N_(4)increased to 52.97 W/m·k at the maximum with the addition of 15 wt%diamond,which was 27.5%higher than that of the monolithic Si_(3)N_(4).At this point,the fracture toughness was 7.54 MPa·m^(1/2).Due to the addition of diamond,the composite material generated a new substance,MgSiN2,which effectively combined Si_(3)N_(4)with diamond.MgSiN2 might improve the hardness and thermal conductivity of the materials.展开更多
We employ advanced first principles methodology,merging self-consistent phonon theory and the Boltzmann transport equation,to comprehensively explore the thermal transport and thermoelectric properties of KCdAs.Notabl...We employ advanced first principles methodology,merging self-consistent phonon theory and the Boltzmann transport equation,to comprehensively explore the thermal transport and thermoelectric properties of KCdAs.Notably,the study accounts for the impact of quartic anharmonicity on phonon group velocities in the pursuit of lattice thermal conductivity and investigates 3ph and 4ph scattering processes on phonon lifetimes.Through various methodologies,including examining atomic vibrational modes and analyzing 3ph and 4ph scattering processes,the article unveils microphysical mechanisms contributing to the lowκL within KCdAs.Key features include significant anisotropy in Cd atoms,pronounced anharmonicity in K atoms,and relative vibrations in non-equivalent As atomic layers.Cd atoms,situated between As layers,exhibit rattling modes and strong lattice anharmonicity,contributing to the observed lowκL.Remarkably flat bands near the valence band maximum translate into high PF,aligning with ultralowκL for exceptional thermoelectric performance.Under optimal temperature and carrier concentration doping,outstanding ZT values are achieved:4.25(a(b)-axis,p-type,3×10^(19)cm^(−3),500 K),0.90(c-axis,p-type,5×10^(20)cm^(−3),700 K),1.61(a(b)-axis,n-type,2×10^(18)cm^(−3),700 K),and 3.06(c-axis,n-type,9×10^(17)cm^(−3),700 K).展开更多
The objective of this work is to develop new biosourced insulating composites from rice husks and wood chips that can be used in the building sector. It appears from the properties of the precursors that rice chips an...The objective of this work is to develop new biosourced insulating composites from rice husks and wood chips that can be used in the building sector. It appears from the properties of the precursors that rice chips and husks are materials which can have good thermal conductivity and therefore the combination of these precursors could make it possible to obtain panels with good insulating properties. With regard to environmental and climatic constraints, the composite panels formulated at various rates were tested and the physico-mechanical and thermal properties showed that it was essential to add a crosslinker in order to increase certain solicitation. an incorporation rate of 12% to 30% made it possible to obtain panels with low thermal conductivity, a low surface water absorption capacity and which gives the composite good thermal insulation and will find many applications in the construction and real estate sector. Finally, new solutions to improve the fire reaction of the insulation panels are tested which allows to identify suitable solutions for the developed composites. In view of the flame tests, the panels obtained are good and can effectively combat fire safety in public buildings.展开更多
The A_(2)B_(2)O_(7)-type rare earth zirconate compounds have been considered as promising candidates for thermal barrier coating(TBC) materials because of their low sintering rate,improved phase stability,and reduced ...The A_(2)B_(2)O_(7)-type rare earth zirconate compounds have been considered as promising candidates for thermal barrier coating(TBC) materials because of their low sintering rate,improved phase stability,and reduced thermal conductivity in contrast with the currently used yttria-partially stabilized zirconia (YSZ) in high operating temperature environments.This review summarizes the recent progress on rare earth zirconates for TBCs that insulate high-temperature gas from hot-section components in gas turbines.Based on the first principles,molecular dynamics,and new data-driven calculation approaches,doping and high-entropy strategies have now been adopted in advanced TBC materials design.In this paper,the solid-state heat transfer mechanism of TBCs is explained from two aspects,including heat conduction over the full operating temperature range and thermal radiation at medium and high temperature.This paper also provides new insights into design considerations of adaptive TBC materials,and the challenges and potential breakthroughs are further highlighted for extreme environmental applications.Strategies for improving thermophysical performance are proposed in two approaches:defect engineering and material compositing.展开更多
Changing the N content in the Ti_(3)AlC_(2−y)N_(y) MAX phase solid solutions allows for the fine-tuning of their properties.However,systematic studies on the synthesis and properties of Ti_(3)AlC_(2−y)N_(y) solid solu...Changing the N content in the Ti_(3)AlC_(2−y)N_(y) MAX phase solid solutions allows for the fine-tuning of their properties.However,systematic studies on the synthesis and properties of Ti_(3)AlC_(2−y)N_(y) solid solution bulks have not been reported thus far.Here,previously reported Ti_(3)AlC_(2−y)N_(y) solid solution bulks(y=0.3,0.5,0.8,and 1.0)were synthesized via hot pressing of their powder counterparts under optimized conditions.The prepared Ti_(3)AlC_(2−y)N_(y) bulks are dense and have a fine microstructure with grain sizes of 6–8μm.The influence of the N content on the mechanical properties,electrical conductivities,and coefficients of thermal expansion(CTEs)of the prepared Ti_(3)AlC_(2−y)N_(y) bulk materials was clarified.The flexural strength and Vickers hardness values increased with increasing N content,suggesting that solid solution strengthening effectively improved the mechanical properties of Ti_(3)AlC_(2−y)N_(y).Ti_(3)AlCN(y=1)had the highest Vickers hardness and flexural strength among the studied samples,reaching 5.54 GPa and 550 MPa,respectively.However,the electrical conductivity and CTEs of the Ti_(3)AlC_(2−y)N_(y) solid solutions decreased with increasing N content,from 8.93×10^(−6) to 7.69×10^(−6) K^(−1) and from 1.33×10^(6) to 0.95×10^(6) S/m,respectively.This work demonstrated the tunable properties of Ti_(3)AlC_(2−y)N_(y) solid solutions with varying N contents and widened the MAX phase family for fundamental studies and applications.展开更多
To study the microscopic structure,thermal and mechanical properties of sandstones under the influence of temperature,coal measure sandstones from Southwest China are adopted as the research object to carry out high-t...To study the microscopic structure,thermal and mechanical properties of sandstones under the influence of temperature,coal measure sandstones from Southwest China are adopted as the research object to carry out high-temperature tests at 25℃-1000℃.The microscopic images of sandstone after thermal treatment are obtained by means of polarizing microscopy and scanning electron microscopy(SEM).Based on thermogravimetric(TG)analysis and differential scanning calorimetric(DSC)analysis,the model function of coal measure sandstone is explored through thermal analysis kinetics(TAK)theory,and the kinetic parameters of thermal decomposition and the thermal decomposition reaction rate of rock are studied.Through the uniaxial compression experiments,the stress‒strain curves and strength characteristics of sandstone under the influence of temperature are obtained.The results show that the temperature has a significant effect on the microstructure,mineral composition and mechanical properties of sandstone.In particular,when the temperature exceeds 400℃,the thermal fracture phenomenon of rock is obvious,the activity of activated molecules is significantly enhanced,and the kinetic phenomenon of the thermal decomposition reaction of rock appears rapidly.The mechanical properties of rock are weakened under the influence of rock thermal fracture and mineral thermal decomposition.These research results can provide a reference for the analysis of surrounding rock stability and the control of disasters caused by thermal damage in areas such as underground coal gasification(UCG)channels and rock masses subjected to mine fires.展开更多
Rock thermal physical properties play a crucial role in understanding deep thermal conditions,modeling the thermal structure of the lithosphere,and discovering the evolutionary history of sedimentary basins.Recent adv...Rock thermal physical properties play a crucial role in understanding deep thermal conditions,modeling the thermal structure of the lithosphere,and discovering the evolutionary history of sedimentary basins.Recent advancements in geothermal exploration,particularly the identification of high-temperature geothermal resources in Datong Basin,Shanxi,China,have opened new possibilities.This study aims to characterize the thermal properties of rocks and explore factors influencing thermal conductivity in basins hosting high-temperature geothermal resources.A total of 70 groups of rock samples were collected from outcrops in and around Datong Basin,Shanxi Province.Thermal property tests were carried out to analyze the rock properties,and the influencing factors of thermal conductivity were studied through experiments at different temperature and water-filled states.The results indicate that the thermal conductivity of rocks in Datong,Shanxi Province,typically ranges from 0.690 W/(m·K)to 6.460 W/(m·K),the thermal diffusion coefficient ranges from 0.441 mm^(2)/s to 2.023 mm^(2)/s,and the specific heat capacity of the rocks ranges from 0.569 KJ/(kg·℃)to 1.117 KJ/(kg·°C).Experimental results reveal the impact of temperature and water saturation on the thermal conductivity of the rock.The thermal conductivity decreases with increasing temperature and rises with high water saturation.A temperature correction formula for the thermal conductivity of different lithologies in the area is proposed through linear fitting.The findings from this study provide essential parameters for the assessment and prediction,development,and utilization of geothermal resources in the region and other basins with typical high-temperature geothermal resource.展开更多
基金supported by the National Key Research and Development Program of China(Nos.2021YFF0500300 and 2023YFB3711300)the Strategic Research and Consulting Project of the Chinese Academy of Engineering(Nos.2023-XZ-90 and 2023-JB-09-10).
文摘Establishing a base on the Moon is one of the new goals of human lunar exploration in recent years.Sintered lunar regolith is one of the most potential building materials for lunar bases.The physical,mechanical and thermal properties of sintered lunar regolith are vital performance indices for the structural design of a lunar base and analysis of many critical mechanical and thermal issues.In this study,the HUST-1 lunar regolith simulant(HLRS)was sintered at 1030,1040,1050,1060,1070,and 1080℃.The effect of sintering temperature on the compressive strength was investigated,and the exact value of the optimum vacuum sintering temperature was determined between 1040 and 1060℃.Then,the microstructure and material composition of vacuum sintered HLRS at different temperatures were characterized.It was found that the sintering temperature has no significant effect on the mineral composition in the temperature range of 1030-1080℃.Besides,the heat capacity,thermal conductivity,and coefficient of thermal expansion(CTE)of vacuum sintered HLRS at different temperatures were investigated.Specific heat capacity of sintered samples increases with the increase of test temperature within the temperature range from-75 to 145℃.Besides,the thermal conductivity of the sintered sample is proportional to density.Finally,the two temperatures of 1040 and 1050℃were selected for a more detailed study of mechanical properties.The results showed that compressive strength of sintered sample is much higher than tensile strength.This study reveals the effects of sintering temperature on the physical,mechanical and thermal properties of vacuum sintered HLRS,and these material parameters will provide support for the construction of future lunar bases.
基金Nev?ehir Hac?Bekta?Veli Runiversity Scientific Research Projects Coordination Unit (No. NEüLüP16/2F3)。
文摘Ag-In intermetallic alloys were produced by using vacuum arc furnace. Differential Scanning Calorimetry(DSC) and Energy Dispersive X-Ray Spectrometry(EDX) were used to determine the thermal properties and chemical composition of the phases respectively. Microhardness values of Ag-In intermetallics were calculated with Vickers hardness measurement method. According to the experimental results, Ag-34 wt%In intermetallic system generated the best results of energy saving and storage compared to other intermetallic systems. Also from the microhardness results, it was observed that intermetallic alloys were harder than pure silver and Ag-26 wt%In system had the highest microhardness value with 143.45 kg/mm^(2).
基金financial supports provided by the China Scholarship Council(Nos.202206 290061 and 202206290062)。
文摘The laser powder bed fusion(LPBF) process can integrally form geometrically complex and high-performance metallic parts that have attracted much interest,especially in the molds industry.The appearance of the LPBF makes it possible to design and produce complex conformal cooling channel systems in molds.Thus,LPBF-processed tool steels have attracted more and more attention.The complex thermal history in the LPBF process makes the microstructural characteristics and properties different from those of conventional manufactured tool steels.This paper provides an overview of LPBF-processed tool steels by describing the physical phenomena,the microstructural characteristics,and the mechanical/thermal properties,including tensile properties,wear resistance,and thermal properties.The microstructural characteristics are presented through a multiscale perspective,ranging from densification,meso-structure,microstructure,substructure in grains,to nanoprecipitates.Finally,a summary of tool steels and their challenges and outlooks are introduced.
基金supported by the National Key Research and Development Project(Grant No.2018YFC2001100).
文摘The matrix thermal properties have an important impact on laser-induced plasma,as the thermal effect dominates the interaction between ns-pulsed laser and matter,especially in metals.We used a series of pure metals and aluminum alloys to measure plasma temperature and electron density through laser-induced breakdown spectroscopy,in order to investigate the effect of matrix thermal properties on laser-induced plasma.In pure metals,a significant negative linear correlation was observed between the matrix thermal storage coefficient and plasma temperature,while a weak correlation was observed with electron density.The results indicate that metals with low thermal conductivity or specific heat capacity require less laser energy for thermal diffusion or melting and evaporation,resulting in higher ablation rates and higher plasma temperatures.However,considering ionization energy,thermal effects may be a secondary factor affecting electron density.The experiment of aluminum alloy further confirms the influence of thermal conductivity on plasma temperature and its mechanism explanation.
基金Funded by the State Grid Henan Electric Power Company Technology Project(No.521790200018)the 2021 Key Scientific Research Projects of Higher Education Institutions in Henan Province(No.21A430047)the Excellent Team Project of Scientific and Technological Innovation in Henan Province(HNST [2017] No.9)。
文摘In order to explore the thermal conductivity of polypropylene(PP)/hexagonal boron nitride(BN) composites,PP composites filled with different proportions of BN were prepared through extrution compounding,injection moulding and compression moulding.The composites were filled with BN particles of 5 and 20 μm respectively,and their mass fractions in composites were considered.Percentage of BN was varied from 0 to 25wt% in steps of 5wt%.The effects of BN filler on mechanical properties of the composites were evaluated.The thermal behaviors were studied using DSC and TGA,and the thermal conductivity was also investigated by Laser Flash Device and the Model of 3D Heat Conduction respectively.The experimental results show that impact strength of PP/BN can be enhanced with the addition of BN,but that composites exhibit lower breaking elongation & tensile strength when compared to unfilled ones.It is found that mass fraction of BN influenced the final thermal stability and degree of crystallization of PP matrix,the degree of crystallization of PP with 15wt% of 20 μm BN can be improved by 25% than neat PP.Meanwhile,crystallization temperatures of PP composites are elevated by about 10 ℃.The thermal conductivity results demonstrate that the maximum value of the thermal conductivity is achieved from PP/BN with 20wt% of 20 μm BN,higher than that of pure PP by 95.65%,close to the simulation one.
文摘The development of bio-sourced materials is essential to ensuring sustainable construction;it is considered a locomotive of the green economy.Furthermore,it is an abundant material in our country,to which very little attention is being given.This work aims to valorize the waste of the trunks of banana trees to be used in construction.Firstly,the physicochemical properties of the fiber,such as the percentage of crystallization and its morphology,have been determined by X-ray diffraction tests and scanning electron microscopy to confirm the potential and the impact of the mode of drying on the quality of the banana fibers,with the purpose to promote the use of this material in construction.Secondly,the results obtained with the gypsum matrix allowed us to note a preponderant improvement in the composite’s thermal properties thanks to the variation of the banana fiber additive.Thirdly,the impact of the nature of the banana fiber distribution(either fiber mixed in matrix or fiber series model)on the flexural and compressive strengths of the composites was studied.The results obtained indicate that the insulation gain reaches up to 40%.It depends on the volume fraction and type of distribution of the banana fibers.However,the thermal inertia of the composites developed,represented by thermal diffusivity and thermal effusivity,was studied.Results indicate a gain of 40%and 25%,respectively,in terms of thermal diffusivity and thermal effusivity of the developed composites compared to plaster alone.Concerning the mechanical properties,the flexural strength depends on the percentage of the volume fraction of banana fibers used,and it can reach 20%more than the flexural strength of plaster;nevertheless,there is a significant loss in terms of the compressive strength of the studied composites.The results obtained are confirmed by the microstructure of the fiber banana.In fact,the morphology of the banana fibers was improved by the drying process.It reduces the amorphous area and improves the cellulosic crystalline surfaces,which assures good adhesion between the fiber and the matrix plaster.Finally,the dimensionless coefficient analysis was done to judge the optimal proportion of the banana fiber additive and to recommend its use even on false ceilings or walls.
基金supported by the Sichuan Science and Technology Program (Grant Nos.2023NSFSC0004,2023NSFSC0790)the National Natural Science Foundation of China (Grant Nos.51827901,52304033)the Sichuan University Postdoctoral Fund (Grant No.2024SCU12093)。
文摘Deep oil and gas reservoirs are under high-temperature conditions,but traditional coring methods do not consider temperature-preserved measures and ignore the influence of temperature on rock porosity and permeability,resulting in distorted resource assessments.The development of in situ temperaturepreserved coring(ITP-Coring)technology for deep reservoir rock is urgent,and thermal insulation materials are key.Therefore,hollow glass microsphere/epoxy resin thermal insulation materials(HGM/EP materials)were proposed as thermal insulation materials.The materials properties under coupled hightemperature and high-pressure(HTHP)conditions were tested.The results indicated that high pressures led to HGM destruction and that the materials water absorption significantly increased;additionally,increasing temperature accelerated the process.High temperatures directly caused the thermal conductivity of the materials to increase;additionally,the thermal conduction and convection of water caused by high pressures led to an exponential increase in the thermal conductivity.High temperatures weakened the matrix,and high pressures destroyed the HGM,which resulted in a decrease in the tensile mechanical properties of the materials.The materials entered the high elastic state at 150℃,and the mechanical properties were weakened more obviously,while the pressure led to a significant effect when the water absorption was above 10%.Meanwhile,the tensile strength/strain were 13.62 MPa/1.3%and 6.09 MPa/0.86%at 100℃ and 100 MPa,respectively,which meet the application requirements of the self-designed coring device.Finally,K46-f40 and K46-f50 HGM/EP materials were proven to be suitable for ITP-Coring under coupled conditions below 100℃ and 100 MPa.To further improve the materials properties,the interface layer and EP matrix should be optimized.The results can provide references for the optimization and engineering application of materials and thus technical support for deep oil and gas resource development.
基金the Ministry of Human Resource Development,Govt.of India,for providing scholarship grants to the authors.
文摘Pearl millet(Pennisetum glaucum)is one of the major millets with high nutritional properties.This crop exhibits exceptional resilience to drought and high temperatures.However,the processing of pearl millet poses a significant challenge due to its high lipid content,enzyme activity,and presence of antinutrients.Consequently,it becomes imperative to enhance the quality and prolong the shelf life of pearl millet flour by employing suitable technologies.Hydrothermal treatment in the food industry has long been seen as promising due to its potential to reduce microbial load,inactivate enzymes,and improve nutrient retention.This study aims to investigate the effects of hydrothermal treatment on the quality characteristics of pearl millet.The independent variables of the study were soaking temperature(35,45,55℃),soaking time(2,3,4 h),and steaming time(5,10,15 min).Treatment conditions had a statistically significant effect on nutrient retention.Major antinutrients like tannins and phytates were reduced by 0.99% to 5.94% and 0.36% to 6.00%,respectively,after the treatment.Lipase activity decreased significantly up to 10% with the treatment conditions.The findings of this study could potentially encourage the use of pearl millet flour in the production of various food items and promote the application of hydrothermal treatment in the field of food processing.
基金supported by VTT Technical Research Centre of Finland,Aalto University,Aerosint SA,and partially from European Union Horizon 2020 (No.768775)。
文摘Multi-material laser-based powder bed fusion (PBF-LB) allows manufacturing of parts with 3-dimensional gradient and additional functionality in a single step. This research focuses on the combination of thermally-conductive CuCr1Zr with hard M300 tool steel.Two interface configurations of M300 on CuCr1Zr and CuCr1Zr on M300 were investigated. Ultra-fine grains form at the interface due to the low mutual solubility of Cu and steel. The material mixing zone size is dependent on the configurations and tunable in the range of0.1–0.3 mm by introducing a separate set of parameters for the interface layers. Microcracks and pores mainly occur in the transition zone.Regardless of these defects, the thermal diffusivity of bimetallic parts with 50vol% of CuCr1Zr significantly increases by 70%–150%compared to pure M300. The thermal diffusivity of CuCr1Zr and the hardness of M300 steel can be enhanced simultaneously by applying the aging heat treatment.
基金National Natural Science Foundation of China (52072088, 52072089)Natural Science Foundation of Heilongjiang Province (LH2023E061)+1 种基金Scientific and Technological Innovation Leading Talent of Harbin Manufacturing (2022CXRCCG001)Fundamental Research Funds for the Central Universities (3072023CFJ1003)。
文摘Hexagonal boron nitride(h-BN)ceramics have become exceptional materials for heat-resistant components in hypersonic vehicles,owing to their superior thermal stability and excellent dielectric properties.However,their densification during sintering still poses challenges for researchers,and their mechanical properties are rather unsatisfactory.In this study,SrAl_(2)Si_(2)O_(8)(SAS),with low melting point and high strength,was introduced into the h-BN ceramics to facilitate the sintering and reinforce the strength and toughness.Then,BN-SAS ceramic composites were fabricated via hot press sintering using h-BN,SrCO_(3),Al_(2)O_(3),and SiO_(2) as raw materials,and effects of sintering pressure on their microstructure,mechanical property,and thermal property were investigated.The thermal shock resistance of BN-SAS ceramic composites was evaluated.Results show that phases of as-preparedBN-SAS ceramic composites are h-BN and h-SrAl_(2)Si_(2)O_(8).With the increase of sintering pressure,the composites’densities increase,and the mechanical properties shew a rising trend followed by a slight decline.At a sintering pressure of 20 MPa,their bending strength and fracture toughness are(138±4)MPa and(1.84±0.05)MPa·m^(1/2),respectively.Composites sintered at 10 MPa exhibit a low coefficient of thermal expansion,with an average of 2.96×10^(-6) K^(-1) in the temperature range from 200 to 1200℃.The BN-SAS ceramic composites prepared at 20 MPa display higher thermal conductivity from 12.42 to 28.42 W·m^(-1)·K^(-1) within the temperature range from room temperature to 1000℃.Notably,BN-SAS composites exhibit remarkable thermal shock resistance,with residual bending strength peaking and subsequently declining sharply under a thermal shock temperature difference ranging from 600 to 1400℃.The maximum residual bending strength is recorded at a temperature difference of 800℃,with a residual strength retention rate of 101%.As the thermal shock temperature difference increase,the degree of oxidation on the ceramic surface and cracks due to thermal stress are also increased gradually.
基金Funded by the Zhaoqing Xijiang Innovation and Entrepreneurship Team Project Funding of China(No.2017A0109004)。
文摘We employed a melt ultrasonic treatment near the liquidus to prepare a high-thermal-conductivity Al-4Si-2Ni-0.8Fe-0.4Mg alloy.The influences of various ultrasonic powers on its microstructure,mechanical properties,and thermal conductivity were investigated.It is shown that near-liquidus ultrasonication significantly refines the alloy grains and eutectic structure,synergistically improving the alloy’s mechanical properties and thermal conductivity.Specifically,the grain size decreased by 84.5%from 941.4 to 186.2μm.Increasing the ultrasonic power improved the thermal conductivity of the alloy slightly and significantly enhanced its mechanical properties.At an ultrasonic power of 2100 W,the tensile strength,yield strength,elongation rate,and thermal conductivity were 216 MPa,142 MPa,6.3%,and 169 W/(m·k),respectively.
基金supported by the Science and Technology Innovation Development Project of Yantai(No.2023ZDX016)。
文摘The increase in payload capacity of trucks has heightened the demand for cost-effective yet high performance brake discs.In this work,the thermal fatigue and wear of compacted graphite iron brake discs were investigated,aiming to provide an experimental foundation for achieving a balance between their thermal and mechanical properties.Compacted graphite iron brake discs with different tensile strengths,macrohardnesses,specific heat capacities and thermal diffusion coefficients were produced by changing the proportion and strength of ferrite.The peak temperature,pressure load and friction coefficient of compacted graphite iron brake discs were analyzed through inertia friction tests.The morphology of thermal cracks and 3D profiles of the worn surfaces were also discussed.It is found that the thermal fatigue of compacted graphite iron discs is determined by their thermal properties.A compacted graphite iron with the highest specific heat capacity and thermal diffusion coefficient exhibits optimal thermal fatigue resistance.Oxidization of the matrix at low temperatures significantly weakens the function of alloy strengthening in hindering the propagation of thermal cracks.Despite the reduced hardness,increasing the ferrite proportion can mitigate wear loss resulting from low disc temperatures and the absence of abrasive wear.
基金funded by the Institute for Research and Community Service(LPPM)Universitas Negeri Padang,Indonesia,with a Contract Number:1529/UN35.15/LT/2023.
文摘Cellulose-based film has gained popularity as an alternative to synthetic polymers due to its outstanding properties.Among all types of cellulose materials available,cellulose nanofiber(CNF)has great potential to be utilized in a diverse range of applications,including as a film material.In this study,CNF biocomposite film was prepared by using polyvinyl alcohol(PVA)as a matrix and Uncaria gambir extract as a filler.This study aims to investigate the effect of Uncaria gambir extract on the optical properties and thermal stability of the produced film.The formation of the CNF biocomposite films was confirmed using Fourier Transform Infrared Spectroscopy,their transmittance characteristics were measured using UV-Vis spectroscopy and a transmittance meter,while their reflectance was determined using a reflectance meter.The results revealed that the addition of Uncaria gambir extract to the CNF biocomposite film improved its UV-shielding properties,as indicated by the lower percentage of transmittance in the visible region,10%–70%.In addition,its reflectance increased to 10.6%compared to the CNF film without the addition of Uncaria gambir extract.Furthermore,the thermal stability of the CNF biocomposite film with the addition of Uncaria gambir extract improved to around 400℃–500℃.In conclusion,the results showed that CNF biocomposite film prepared by adding Uncaria gambir extract can be a promising candidate for optical and thermal management materials.
基金Funded by the Key Research and Development Plan of Jiangxi Province(No.2020ZDYFB0017)the National Key Research and Development Plan(No.2021YFB3701400)the National Natural Science Foundation of China((No.92163208)。
文摘Micrometer-sized diamonds were incorporated into silicon nitride(Si_(3)N_(4))matrix to manufacture high-performance Si_(3)N_(4)-based composites using spark plasma sintering at 1500℃under 50 MPa.The effects of the diamond content on the phase composition,microstructure,mechanical properties and thermal conductivity of the composites were investigated.The results showed that the addition of diamond could effectively improve the hardness of the material.The thermal conductivity of Si_(3)N_(4)increased to 52.97 W/m·k at the maximum with the addition of 15 wt%diamond,which was 27.5%higher than that of the monolithic Si_(3)N_(4).At this point,the fracture toughness was 7.54 MPa·m^(1/2).Due to the addition of diamond,the composite material generated a new substance,MgSiN2,which effectively combined Si_(3)N_(4)with diamond.MgSiN2 might improve the hardness and thermal conductivity of the materials.
基金supported by the Natural Science Foundation of Shandong Province for Major Basic Research under Grant No.ZR2023ZD09the National Natural Science Foundation of China under Grant Nos.12174327,11974302,and 92270104.
文摘We employ advanced first principles methodology,merging self-consistent phonon theory and the Boltzmann transport equation,to comprehensively explore the thermal transport and thermoelectric properties of KCdAs.Notably,the study accounts for the impact of quartic anharmonicity on phonon group velocities in the pursuit of lattice thermal conductivity and investigates 3ph and 4ph scattering processes on phonon lifetimes.Through various methodologies,including examining atomic vibrational modes and analyzing 3ph and 4ph scattering processes,the article unveils microphysical mechanisms contributing to the lowκL within KCdAs.Key features include significant anisotropy in Cd atoms,pronounced anharmonicity in K atoms,and relative vibrations in non-equivalent As atomic layers.Cd atoms,situated between As layers,exhibit rattling modes and strong lattice anharmonicity,contributing to the observed lowκL.Remarkably flat bands near the valence band maximum translate into high PF,aligning with ultralowκL for exceptional thermoelectric performance.Under optimal temperature and carrier concentration doping,outstanding ZT values are achieved:4.25(a(b)-axis,p-type,3×10^(19)cm^(−3),500 K),0.90(c-axis,p-type,5×10^(20)cm^(−3),700 K),1.61(a(b)-axis,n-type,2×10^(18)cm^(−3),700 K),and 3.06(c-axis,n-type,9×10^(17)cm^(−3),700 K).
文摘The objective of this work is to develop new biosourced insulating composites from rice husks and wood chips that can be used in the building sector. It appears from the properties of the precursors that rice chips and husks are materials which can have good thermal conductivity and therefore the combination of these precursors could make it possible to obtain panels with good insulating properties. With regard to environmental and climatic constraints, the composite panels formulated at various rates were tested and the physico-mechanical and thermal properties showed that it was essential to add a crosslinker in order to increase certain solicitation. an incorporation rate of 12% to 30% made it possible to obtain panels with low thermal conductivity, a low surface water absorption capacity and which gives the composite good thermal insulation and will find many applications in the construction and real estate sector. Finally, new solutions to improve the fire reaction of the insulation panels are tested which allows to identify suitable solutions for the developed composites. In view of the flame tests, the panels obtained are good and can effectively combat fire safety in public buildings.
基金the financial support from the National Natural Science Foundation of China(Nos.51572061,51621091,and 51321061)the Heilongjiang Touyan Team Program。
文摘The A_(2)B_(2)O_(7)-type rare earth zirconate compounds have been considered as promising candidates for thermal barrier coating(TBC) materials because of their low sintering rate,improved phase stability,and reduced thermal conductivity in contrast with the currently used yttria-partially stabilized zirconia (YSZ) in high operating temperature environments.This review summarizes the recent progress on rare earth zirconates for TBCs that insulate high-temperature gas from hot-section components in gas turbines.Based on the first principles,molecular dynamics,and new data-driven calculation approaches,doping and high-entropy strategies have now been adopted in advanced TBC materials design.In this paper,the solid-state heat transfer mechanism of TBCs is explained from two aspects,including heat conduction over the full operating temperature range and thermal radiation at medium and high temperature.This paper also provides new insights into design considerations of adaptive TBC materials,and the challenges and potential breakthroughs are further highlighted for extreme environmental applications.Strategies for improving thermophysical performance are proposed in two approaches:defect engineering and material compositing.
基金supported by the Fundamental Research Funds for the Central Universities(Nos.2023YJS061 and 2023JBZY019).
文摘Changing the N content in the Ti_(3)AlC_(2−y)N_(y) MAX phase solid solutions allows for the fine-tuning of their properties.However,systematic studies on the synthesis and properties of Ti_(3)AlC_(2−y)N_(y) solid solution bulks have not been reported thus far.Here,previously reported Ti_(3)AlC_(2−y)N_(y) solid solution bulks(y=0.3,0.5,0.8,and 1.0)were synthesized via hot pressing of their powder counterparts under optimized conditions.The prepared Ti_(3)AlC_(2−y)N_(y) bulks are dense and have a fine microstructure with grain sizes of 6–8μm.The influence of the N content on the mechanical properties,electrical conductivities,and coefficients of thermal expansion(CTEs)of the prepared Ti_(3)AlC_(2−y)N_(y) bulk materials was clarified.The flexural strength and Vickers hardness values increased with increasing N content,suggesting that solid solution strengthening effectively improved the mechanical properties of Ti_(3)AlC_(2−y)N_(y).Ti_(3)AlCN(y=1)had the highest Vickers hardness and flexural strength among the studied samples,reaching 5.54 GPa and 550 MPa,respectively.However,the electrical conductivity and CTEs of the Ti_(3)AlC_(2−y)N_(y) solid solutions decreased with increasing N content,from 8.93×10^(−6) to 7.69×10^(−6) K^(−1) and from 1.33×10^(6) to 0.95×10^(6) S/m,respectively.This work demonstrated the tunable properties of Ti_(3)AlC_(2−y)N_(y) solid solutions with varying N contents and widened the MAX phase family for fundamental studies and applications.
基金supported by the Scientific Research Foundation of State Key Laboratory of Coal Mine Disaster Dynamics and Control(Grant No.2011DA105287-zd201804)Jiangxi Provincial Natural Science Foundation of China(Grant No.20232BAB214036).
文摘To study the microscopic structure,thermal and mechanical properties of sandstones under the influence of temperature,coal measure sandstones from Southwest China are adopted as the research object to carry out high-temperature tests at 25℃-1000℃.The microscopic images of sandstone after thermal treatment are obtained by means of polarizing microscopy and scanning electron microscopy(SEM).Based on thermogravimetric(TG)analysis and differential scanning calorimetric(DSC)analysis,the model function of coal measure sandstone is explored through thermal analysis kinetics(TAK)theory,and the kinetic parameters of thermal decomposition and the thermal decomposition reaction rate of rock are studied.Through the uniaxial compression experiments,the stress‒strain curves and strength characteristics of sandstone under the influence of temperature are obtained.The results show that the temperature has a significant effect on the microstructure,mineral composition and mechanical properties of sandstone.In particular,when the temperature exceeds 400℃,the thermal fracture phenomenon of rock is obvious,the activity of activated molecules is significantly enhanced,and the kinetic phenomenon of the thermal decomposition reaction of rock appears rapidly.The mechanical properties of rock are weakened under the influence of rock thermal fracture and mineral thermal decomposition.These research results can provide a reference for the analysis of surrounding rock stability and the control of disasters caused by thermal damage in areas such as underground coal gasification(UCG)channels and rock masses subjected to mine fires.
基金supported by the Geothermal Survey Project of the China Geological Survey(Grant No.DD20221676)the Shanxi Geoscience Think Tank Development Fund 2023–001 and Basic Research Operations Project of the Institute of Hydrogeology and Environmental Geology,Chinese Academy of Geological Sciences(SK202212).
文摘Rock thermal physical properties play a crucial role in understanding deep thermal conditions,modeling the thermal structure of the lithosphere,and discovering the evolutionary history of sedimentary basins.Recent advancements in geothermal exploration,particularly the identification of high-temperature geothermal resources in Datong Basin,Shanxi,China,have opened new possibilities.This study aims to characterize the thermal properties of rocks and explore factors influencing thermal conductivity in basins hosting high-temperature geothermal resources.A total of 70 groups of rock samples were collected from outcrops in and around Datong Basin,Shanxi Province.Thermal property tests were carried out to analyze the rock properties,and the influencing factors of thermal conductivity were studied through experiments at different temperature and water-filled states.The results indicate that the thermal conductivity of rocks in Datong,Shanxi Province,typically ranges from 0.690 W/(m·K)to 6.460 W/(m·K),the thermal diffusion coefficient ranges from 0.441 mm^(2)/s to 2.023 mm^(2)/s,and the specific heat capacity of the rocks ranges from 0.569 KJ/(kg·℃)to 1.117 KJ/(kg·°C).Experimental results reveal the impact of temperature and water saturation on the thermal conductivity of the rock.The thermal conductivity decreases with increasing temperature and rises with high water saturation.A temperature correction formula for the thermal conductivity of different lithologies in the area is proposed through linear fitting.The findings from this study provide essential parameters for the assessment and prediction,development,and utilization of geothermal resources in the region and other basins with typical high-temperature geothermal resource.