期刊文献+
共找到7,763篇文章
< 1 2 250 >
每页显示 20 50 100
Thermal Stresses and Cracks During the Growth of Large-sized Sapphire with SAPMAC Method 被引量:2
1
作者 许承海 孟松鹤 +2 位作者 张明福 左洪波 汪桂根 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2007年第5期475-480,共6页
The finite-element method has been used to study the thermal stress distribution in large-sized sapphire crystals grown with the sapphire growth technique with micro-pulling and shoulder-expanding at cooled center (S... The finite-element method has been used to study the thermal stress distribution in large-sized sapphire crystals grown with the sapphire growth technique with micro-pulling and shoulder-expanding at cooled center (SAPMAC) method. A critical defect model has been established to explain the growth and propagation of cracks during the sapphire growing process. It is demonstrated that the stress field depends on the growth rate, the ambient temperature and the crystallizing direction. High stresses always exist near the growth interfaces, at the shoulder-expanding locations, the tailing locations and the sites where the diameters undergo sharp changes. The maximum stresses always occur at the interface of seeds and crystals. Cracks often form in the critical defect region and spread in the m-planes and a-planes under applied tensile stresses during crystal growth. The experimental results have verified that with the improved system of crystal growth and well-controlled techniques, the large-sized sapphire crystals of high quality can be grown due to absence of cracks. 展开更多
关键词 thermal stress CRACK SAPPHIRE SAPMAC method
下载PDF
Non-isothermal thermal decomposition kinetics of high iron gibbsite ore based on Popescu method 被引量:2
2
作者 柳政根 王峥 +2 位作者 唐珏 王宏涛 龙红明 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第7期2415-2421,共7页
The thermal decomposition kinetics of high iron gibbsite ore was investigated under non-isothermal conditions.Popescu method was applied to analyzing the thermal decomposition mechanism.The results show that the most ... The thermal decomposition kinetics of high iron gibbsite ore was investigated under non-isothermal conditions.Popescu method was applied to analyzing the thermal decomposition mechanism.The results show that the most probable thermal decomposition mechanism is the three-dimensional diffusion model of Jander equation,and the mechanism code is D3.The activation energy and pre-exponential factor for thermal decomposition of high iron gibbsite ore calculated by the Popescu method are 75.36 kJ/mol and 1.51×10-5 s-(-1),respectively.The correctness of the obtained mechanism function is validated by the activation energy acquired by the iso-conversional method.Popescu method is a rational and reliable method for the analysis of the thermal decomposition mechanism of high iron gibbsite ore. 展开更多
关键词 high iron gibbsite ore thermal decomposition kinetics activation energy pre-exponential factor Popescu method
下载PDF
Investigation on the test method of rupture forces of thermal bonding seams in nonwovens shopping bags
3
作者 王来力 吴雄英 丁雪梅 《产业用纺织品》 北大核心 2009年第11期41-44,共4页
超声波热黏合的非织造布接缝不同于普通机织物和针织物等的车缝接缝。运用正交试验设计方法,对纺粘法PP非织造布购物袋热黏合接缝断裂强力测试中的试样宽度、拉伸速率和隔距三个因素进行优化。试验结果表明,试样宽度对纺粘法PP非织造... 超声波热黏合的非织造布接缝不同于普通机织物和针织物等的车缝接缝。运用正交试验设计方法,对纺粘法PP非织造布购物袋热黏合接缝断裂强力测试中的试样宽度、拉伸速率和隔距三个因素进行优化。试验结果表明,试样宽度对纺粘法PP非织造布热黏合接缝断裂强力的测试结果影响最大,并且接缝的断裂强力随着试样宽度的增加而增加。选用试样宽度为200mm、拉伸速率为50mm/min、隔距为100mm的组合所得出的测试结果能比较真实地反映实际的接缝断裂强力。 展开更多
关键词 非织造布 热黏合接缝 测试方法 正交试验
下载PDF
Differential transformation method for studying flow and heat transfer due to stretching sheet embedded in porous medium with variable thickness, variable thermal conductivity,and thermal radiation 被引量:5
4
作者 M.M.KHADER A.M.MEGAHED 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2014年第11期1387-1400,共14页
This article presents a numerical solution for the flow of a Newtonian fluid over an impermeable stretching sheet embedded in a porous medium with the power law surface velocity and variable thickness in the presence ... This article presents a numerical solution for the flow of a Newtonian fluid over an impermeable stretching sheet embedded in a porous medium with the power law surface velocity and variable thickness in the presence of thermal radiation. The flow is caused by non-linear stretching of a sheet. Thermal conductivity of the fluid is assumed to vary linearly with temperature. The governing partial differential equations (PDEs) are transformed into a system of coupled non-linear ordinary differential equations (ODEs) with appropriate boundary conditions for various physical parameters. The remaining system of ODEs is solved numerically using a differential transformation method (DTM). The effects of the porous parameter, the wall thickness parameter, the radiation parameter, the thermal conductivity parameter, and the Prandtl number on the flow and temperature profiles are presented. Moreover, the local skin-friction and the Nusselt numbers are presented. Comparison of the obtained numerical results is made with previously published results in some special cases, with good agreement. The results obtained in this paper confirm the idea that DTM is a powerful mathematical tool and can be applied to a large class of linear and non-linear problems in different fields of science and engineering. 展开更多
关键词 Newtonian fluid stretching sheet differential transformation method(DTM) thermal radiation variable thermal conductivity variable thickness
下载PDF
Thermal conductivity measurements on xonotlite-type calcium silicate by the transient hot-strip method 被引量:3
5
作者 Gaosheng Wei Xinxin Zhang Fan Yu 《Journal of University of Science and Technology Beijing》 CSCD 2008年第6期791-795,共5页
The experimental results of the thermal conductivities of xonotlite-type calcium silicate insulation materials were presented at different temperatures and pressures. Two appropriative surroundings, i.e. an elevated t... The experimental results of the thermal conductivities of xonotlite-type calcium silicate insulation materials were presented at different temperatures and pressures. Two appropriative surroundings, i.e. an elevated temperature surrounding from ambient temperature to 1450 K and a vacuum surrounding from atmosphere pressure to 10-3 Pa, were designed for the transient hot-strip (THS) method. The thermal conductivities of xonotlite-type calcium silicate with four densities from ambient temperature to 1000 K and 0.045 Pa to atmospheric pressure were measured. The results show that the thermal conductivity of xonotlite-type calcium silicate decreases apparently with the fall of density, and decreases apparently with the drop of pressure, and reaches the least value at about 100 Pa. The thermal conductivity of xonotlite-type calcium silicate increases almost linearly with T0, and increases more abundantly with low density than with high density. The thermal conductivity measurement uncertainty is estimated to be approximately 3% at ambient temperature, and 6% at 800 K. 展开更多
关键词 thermal conductivity hot-strip method xonotlite-type calcium silicate INSULATION
下载PDF
Analysis of the Temperature Characteristics of High-speed Train Bearings Based on a Dynamics Model and Thermal Network Method 被引量:5
6
作者 Baosen Wang Yongqiang Liu +1 位作者 Bin Zhang Wenqing Huai 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2022年第5期351-363,共13页
High-speed trains often use temperature sensors to monitor the motion state of bearings.However,the temperature of bearings can be affected by factors such as weather and faults.Therefore,it is necessary to analyze in... High-speed trains often use temperature sensors to monitor the motion state of bearings.However,the temperature of bearings can be affected by factors such as weather and faults.Therefore,it is necessary to analyze in detail the relationship between the bearing temperature and influencing factors.In this study,a dynamics model of the axle box bearing of high-speed trains is established.The model can obtain the contact force between the rollers and raceway and its change law when the bearing contains outer-ring,inner-ring,and rolling-element faults.Based on the model,a thermal network method is introduced to study the temperature field distribution of the axle box bearings of high-speed trains.In this model,the heat generation,conduction,and dispersion of the isothermal nodes can be solved.The results show that the temperature of the contact point between the outer-ring raceway and rolling-elements is the highest.The relationships between the node temperature and the speed,fault type,and fault size are analyzed,finding that the higher the speed,the higher the node temperature.Under different fault types,the node temperature first increases and then decreases as the fault size increases.The effectiveness of the model is demonstrated using the actual temperature data of a high-speed train.This study proposes a thermal network model that can predict the temperature of each component of the bearings on a high-speed train under various speed and fault conditions. 展开更多
关键词 High-speed train Axle box bearing Temperature characteristics thermal network method
下载PDF
Using finite difference method to simulate casting thermal stress 被引量:6
7
作者 Liao Dunming Zhang Bin +2 位作者 Zhou Jianxin Liu Ruixiang Chen Liliang 《China Foundry》 SCIE CAS 2011年第2期177-181,共5页
Thermal stress simulation can provide a scientific reference to eliminate defects such as crack,residual stress centralization and deformation etc.,caused by thermal stress during casting solidification.To study the t... Thermal stress simulation can provide a scientific reference to eliminate defects such as crack,residual stress centralization and deformation etc.,caused by thermal stress during casting solidification.To study the thermal stress distribution during casting process,a unilateral thermal-stress coupling model was employed to simulate 3D casting stress using Finite Difference Method(FDM),namely all the traditional thermal-elastic-plastic equations are numerically and differentially discrete.A FDM/FDM numerical simulation system was developed to analyze temperature and stress fields during casting solidification process.Two practical verifications were carried out,and the results from simulation basically coincided with practical cases.The results indicated that the FDM/FDM stress simulation system can be used to simulate the formation of residual stress,and to predict the occurrence of hot tearing.Because heat transfer and stress analysis are all based on FDM,they can use the same FD model,which can avoid the matching process between different models,and hence reduce temperature-load transferring errors.This approach makes the simulation of fluid flow,heat transfer and stress analysis unify into one single model. 展开更多
关键词 thermal stress numerical simulation finite difference method (FDM) casting solidification process
下载PDF
Thermal field in water pipe cooling concrete hydrostructures simulated with singular boundary method 被引量:1
8
作者 Yong-xing Hong Wen Chen +2 位作者 Ji Lin Jian Gong Hong-da Cheng 《Water Science and Engineering》 EI CAS CSCD 2017年第2期107-114,共8页
The embedded water pipe system is often used as a standard cooling technique during the construction of large-scale mass concrete hydrostructures. The prediction of the temperature distribution considering the cooling... The embedded water pipe system is often used as a standard cooling technique during the construction of large-scale mass concrete hydrostructures. The prediction of the temperature distribution considering the cooling effects of embedded pipes plays an essential role in the design of the structure and its cooling system. In this study, the singular boundary method, a semi-analytical meshless technique, was employed to analyze the temperature distribution. A numerical algorithm solved the transient temperature field with consideration of the effects of cooling pipe specification, isolation of heat of hydration, and ambient temperature. Numerical results are verified through comparison with those of the finite element method, demonstrating that the proposed approach is accurate in the simulation of the thermal field in concrete structures with a water cooling pipe. 展开更多
关键词 thermal field SINGULAR boundary method SEMI-ANALYTICAL method Water COOLING pipe CONCRETE hydrostructure
下载PDF
Thermal Modal Analysis of Doubly Curved Shell Based on Rayleigh⁃Ritz Method 被引量:4
9
作者 ZHANG Yongfeng ZHU Ziyuan WANG Gang 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2022年第1期58-65,共8页
The doubly curved shell(DCS)is a common structure in the engineering field.In a thermal environment,the vibration characteristics of the DCS will be affected by the thermal effect.The research on the vibration charact... The doubly curved shell(DCS)is a common structure in the engineering field.In a thermal environment,the vibration characteristics of the DCS will be affected by the thermal effect.The research on the vibration characteristics of DCS in thermal environment is relatively limited.In this paper,the thermal strain and the change of Young’s modulus caused by the changing of temperature are studied,and the DCS energy equation is established systematically.The displacement tolerance function of the DCS is constructed by the spectral geometry method,and the natural frequencies and mode shapes of the DCS with different structural parameters,such as thicknesses,ratios of R_(a)/R_(b) and a/b,at different temperatures are solved by the Rayleigh-Ritz method.The results show that the natural frequency of the DCS decreases with the increasing temperature,R_(a)/R_(b) and a/b ratios,and increases with the increasing thickness. 展开更多
关键词 doubly curved shell thermal environment Rayleigh-Ritz method natural frequencies
下载PDF
High-temperature thermal stability of C/C−ZrC−SiC composites via region labeling method 被引量:2
10
作者 Zheng PENG Chun-mao MIAO +5 位作者 Wei SUN Yong-long XU Hai-kun CHEN Yu-feng LIU Hong-bo ZHANG Xiang XIONG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2022年第10期3349-3361,共13页
To investigate the thermal stability of ceramic-matrix composites,three kinds of C/C−ZrC−SiC composites with different Zr/Si molar ratios were synthesized by reactive melt infiltration.Employing region labeling method... To investigate the thermal stability of ceramic-matrix composites,three kinds of C/C−ZrC−SiC composites with different Zr/Si molar ratios were synthesized by reactive melt infiltration.Employing region labeling method,the high-temperature thermal stability of the composites was systematically studied by changing the temperature and holding time of thermal treatment.Results show that the mass loss rate of low Si composites has a growth trend with increasing temperature,and a crystal transformation from β-SiC toα-SiC occurs in the composites.In the calibrated area,SiC phase experiences Ostwald ripening and volume change with location migration,while ZrC phase experiences a re-sintering process with diffusion.Moreover,it is found that increasing temperature has a more obvious effect on the thermal stability than extending holding time,which is mainly attributed to the faster diffusion rate of atoms. 展开更多
关键词 thermal stability ceramic-matrix composites reactive melt infiltration high-temperature thermal treatment region labeling method
下载PDF
Stochastic transient analysis of thermal stresses in solids by explicit time-domain method 被引量:1
11
作者 Houzuo Guo Cheng Su Jianhua Xian 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2019年第5期293-296,I0004,共5页
Stochastic heat conduction and thermal stress analysis of structures has received considerable attention in recent years.The propagation of uncertain thermal environments will lead to stochastic variations in temperat... Stochastic heat conduction and thermal stress analysis of structures has received considerable attention in recent years.The propagation of uncertain thermal environments will lead to stochastic variations in temperature fields and thermal stresses.Therefore,it is reasonable to consider the variability of thermal environments while conducting thermal analysis.However,for ambient thermal excitations,only stationary random processes have been investigated thus far.In this study,the highly efficient explicit time-domain method(ETDM)is proposed for the analysis of non-stationary stochastic transient heat conduction and thermal stress problems.The explicit time-domain expressions of thermal responses are first constructed for a thermoelastic body.Then the statistical moments of thermal displacements and stresses can be directly obtained based on the explicit expressions of thermal responses.A numerical example involving non-stationary stochastic internal heat generation rate is investigated.The accuracy and efficiency of the proposed method are validated by comparison with the Monte-Carlo simulation. 展开更多
关键词 STOCHASTIC NON-STATIONARY HEAT conduction thermal stress EXPLICIT TIME-DOMAIN method
下载PDF
Numerical and experimental evaluation on methods for parameter identification of thermal response tests 被引量:3
12
作者 王沣浩 冯琛琛 +1 位作者 颜亮 王新轲 《Journal of Central South University》 SCIE EI CAS 2012年第3期816-823,共8页
Several parameter identification methods of thermal response test were evaluated through numerical and experimental study.A three-dimensional finite-volume numerical model was established under the assumption that the... Several parameter identification methods of thermal response test were evaluated through numerical and experimental study.A three-dimensional finite-volume numerical model was established under the assumption that the soil thermal conductivity had been known in the simulation of thermal response test.The thermal response curve was firstly obtained through numerical calculation.Then,the accuracy of the numerical model was verified with measured data obtained through a thermal response test.Based on the numerical and experimental thermal response curves,the thermal conductivity of the soil was calculated by different parameter identification methods.The calculated results were compared with the assumed value and then the accuracy of these methods was evaluated.Furthermore,the effects of test time,variable data quality,borehole radius,initial ground temperature,and heat injection rate were analyzed.The results show that the method based on cylinder-source model has a low precision and the identified thermal conductivity decreases with an increase in borehole radius.For parameter estimation,the measuring accuracy of the initial temperature of the deep ground soil has greater effect on identified thermal conductivity. 展开更多
关键词 ground source heat pump thermal response parameter identification method numerical simulation
下载PDF
Thermal stress analysis method considering geometric effect of risers in sand mold casting process 被引量:1
13
作者 S.Y.Kwak H.Y.Hwang C.Cho 《China Foundry》 SCIE CAS 2014年第6期531-536,共6页
Solidif ication and f luid f low analysis using computer simulation is a current common practice. There is also a high demand for thermal stress analysis in the casting process because casting engineers want to contro... Solidif ication and f luid f low analysis using computer simulation is a current common practice. There is also a high demand for thermal stress analysis in the casting process because casting engineers want to control the defects related to thermal stresses, such as large deformation and crack generation during casting. The riser system is an essential part of preventing the shrinkage defects in the casting process, and it has a great inf luence on thermal phenomena. The analysis domain is dramatically expanded by attaching the riser system to a casting product due to its large volume, and it makes FEM mesh generation diff icult. However, it is diff icult to study and solve the above proposed problem caused by riser system using traditional analysis methods which use single numerical method such as FEM or FDM. In this paper, some research information is presented on the effects of the riser system on thermal stress analysis using a FDM/FEM hybrid method in the casting process simulation. The results show the optimal conditions for stress analysis of the riser model in order to save computation time and memory resources. 展开更多
关键词 thermal stress sand mold casting RISER numerical analysis hybrid method simulation
下载PDF
A FINITE VOLUME ELEMENT METHOD FOR THERMAL CONVECTION PROBLEMS 被引量:1
14
作者 芮洪兴 《Acta Mathematica Scientia》 SCIE CSCD 2004年第1期129-138,共10页
Consider the finite volume element method for the thermal convection problem with the infinite Prandtl number. The author uses a conforming piecewise linear function on a fine triangulation for velocity and temperatur... Consider the finite volume element method for the thermal convection problem with the infinite Prandtl number. The author uses a conforming piecewise linear function on a fine triangulation for velocity and temperature, and a piecewise constant function on a coarse triangulation for pressure. For general triangulation the optimal order H1 norm error estimates are given. 展开更多
关键词 Finite volume element method thermal convection problem error estimate
下载PDF
SILICON NITRIDE POWDER SYNTHESIZED BY THERMAL PLASMA METHOD 被引量:1
15
作者 Liang Shuquan Huang Baiyun Zheng Ziqiao(Central South University of Technology, Changsha 410083)Szepvolgyi J (Research Laboratory for inorganic Chemistry of Hungarian Academy of Sciences,H-1502, Budapest, Hungary) 《中国有色金属学会会刊:英文版》 CSCD 1996年第3期103-107,共5页
SILICONNITRIDEPOWDERSYNTHESIZEDBYTHERMALPLASMAMETHOD¥LiangShuquan;HuangBaiyun;ZhengZiqiao(CentralSouthUniver... SILICONNITRIDEPOWDERSYNTHESIZEDBYTHERMALPLASMAMETHOD¥LiangShuquan;HuangBaiyun;ZhengZiqiao(CentralSouthUniversityofTechnology,... 展开更多
关键词 Si3N4 NANOSIZED POWDER thermal PLASMA method
下载PDF
Influence of heat loss through probe electrical leads on thermal conductivity measurement with TPS method 被引量:3
16
作者 WANG Yu-wei LI Yan-ning 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2018年第1期9-15,共7页
The transient plane source(TPS)method is developed recently to measure the thermal conductivity of materials.In the measurement,the heating power is influenced by the heat which is transferred via the probe electrical... The transient plane source(TPS)method is developed recently to measure the thermal conductivity of materials.In the measurement,the heating power is influenced by the heat which is transferred via the probe electrical leads.This fact further influences the measurement accuracy of thermal conductivity.To solve this problem,the influence of heat loss through the electrical leads on the heating power is studied theoretically.The mathematical formula of heat loss is deduced,and the corresponding correction model is presented.A series of measurement experiments on different materials have been conducted by using the hot disk thermal constant analyzer.The results show that the influence of the heat loss on the measurement is sensitive to different test materials and probes with different sizes.When the thermal conductivity of the material is greater than 0.2 W/(m·K),the influence of the heat loss is less than 0.16%,which can be ignored.As to the lower thermal conductivity materials,it is necessary to compensate the heat loss through the electrical leads,and the accuracy of thermal conductivity measurement can be effectively improved. 展开更多
关键词 transient plane source(TPS)method thermal conductivity heat loss through electrical leads heating power
下载PDF
A Methodology to Reduce Thermal Gradients Due to the Exothermic Reactions in Resin Transfer Molding Applications 被引量:1
17
作者 Aouatif Saad Mohammed EL Ganaoui 《Fluid Dynamics & Materials Processing》 EI 2023年第1期95-103,共9页
Resin transfer molding(RTM)is among the most used manufacturing processes for composite parts.Initially,the resin cure is initiated by heat supply to the mold.The supplementary heat generated during the reaction can c... Resin transfer molding(RTM)is among the most used manufacturing processes for composite parts.Initially,the resin cure is initiated by heat supply to the mold.The supplementary heat generated during the reaction can cause thermal gradients in the composite,potentially leading to undesired residual stresses which can cause shrinkage and warpage.In the present numerical study of these processes,a one-dimensional finite difference method is used to predict the temperature evolution and the degree of cure in the course of the resin polymerization;the effect of some parameters on the thermal gradient is then analyzed,namely:the fiber nature,the use of multiple layers of reinforcement with different thermal properties and also the temperature cycle variation.The validity of this numerical model is tested by comparison with experimental and numerical results in the existing literature. 展开更多
关键词 CURE RTM finite difference method thermal gradients residual stresses
下载PDF
Quantitative analysis on influencing factors for interface propagation-based thermal conductivity measurement method during solid-liquid transition 被引量:1
18
作者 ZHOU Tian MA Xiao-yi +1 位作者 LIU Xu LI Yuan 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第8期2041-2055,共15页
The recently proposed interface propagation-based method has shown its advantages in obtaining the thermal conductivity of phase change materials during solid-liquid transition over conventional techniques. However, i... The recently proposed interface propagation-based method has shown its advantages in obtaining the thermal conductivity of phase change materials during solid-liquid transition over conventional techniques. However, in previous investigation, the analysis on the measurement error was qualitative and only focused on the total effects on the measurement without decoupling the influencing factors. This paper discusses the effects of influencing factors on the measurement results for the interface propagation-based method. Numerical simulations were performed to explore the influencing factors, namely model simplification, subcooling and natural convection, along with their impact on the measurement process and corresponding measurement results. The numerical solutions were provided in terms of moving curves of the solid-liquid interface and the predicted values of thermal conductivity. Results indicated that the impact of simplified model was strongly dependent on Stefan number of the melting process. The degree of subcooling would lead to underestimated values for thermal conductivity prediction. The natural convection would intensify the heat transfer rate in the liquid region, thereby overestimating the obtained results of thermal conductivity. Correlations and experimental guidelines are provided. The relative errors are limited in ±1.5%,±3%and ±2% corresponding to the impact of simplified model, subcooling and natural convection, respectively. 展开更多
关键词 phase change material thermal conductivity measurement influencing factor interface propagation-based method numerical simulation
下载PDF
CORRECTION METHODS FOR THERMAL OFFSET ERRORS IN TBQ-2-B PYRANOMETERS 被引量:1
19
作者 程兴宏 丁蕾 +5 位作者 杨云 白素莲 周怀刚 彭继达 权继梅 宋建洋 《Journal of Tropical Meteorology》 SCIE 2014年第4期376-385,共10页
Due to the existence of thermal offsets,global solar irradiances measured by pyranometers are smaller than actual values,and errors are larger in the daytime.Until now,there is no universally-recognized correction met... Due to the existence of thermal offsets,global solar irradiances measured by pyranometers are smaller than actual values,and errors are larger in the daytime.Until now,there is no universally-recognized correction method for thermal offset errors.Therefore,it is imperative to identify a convenient and effective correction method.Five correction methods were evaluated based on the data measured from a field experiment from 23 January to 15 November,2011.Results have shown:1) Temporal variation characteristics of thermal offsets in the four tested pyranometers are consistent.2) Among the five methods,non-dimensional quantity method is suggested for use to correct thermal offsets,because it is convenient and no modification of instruments is required.If collocated net longwave radiation and wind speed data are available and their uncertainties are small,the historical solar radiation datasets can also be corrected.And correction effects by the method are better. 展开更多
关键词 pyranometer TBQ-2-B thermal offsets solar radiation non-dimensional quantity method
下载PDF
Synthesis and growth mechanism of SiC/SiO2 nanochains by catalyst-free thermal evaporation method in Ar/CO atmosphere 被引量:1
20
作者 Xiang-min XIE Zhe-an SU +4 位作者 Dong HUANG Cheng YANG Ya-feng WANG Ding-yu JIANG Qi-zhong HUANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2020年第11期3058-3066,共9页
SiC/SiO2 nanochains were synthesized on a carbon fiber substrate by a catalyst-free thermal evaporation method in the Ar/CO atmosphere.X-ray diffraction(XRD),Fourier-transform infrared spectroscopy(FT-IR),scanning ele... SiC/SiO2 nanochains were synthesized on a carbon fiber substrate by a catalyst-free thermal evaporation method in the Ar/CO atmosphere.X-ray diffraction(XRD),Fourier-transform infrared spectroscopy(FT-IR),scanning electron microscopy(SEM)and transmission electron microscopy(TEM)revealed that the as-synthesized SiC/SiO2 nanochains are composed of single-crystalline SiC nanowires and amorphous SiO2 beads.The introduction of CO can promote the formation of SiO2,so that the SiC/SiO2 nanochains are subsequently formed during cooling.In addition,the photoluminescence spectrum of SiC/SiO2 nanochains showed a broad emission peak at around 350 nm,which is ascribed to the oxygen discrepancy in the SiO2 beads as well as the SiC/SiO2 interfacial effect.These findings can provide guidance for further study of the vapor growth of 1D SiC-based materials. 展开更多
关键词 SYNTHESIS growth mechanism SiC/SiO2 nanochains thermal evaporation method carbon monoxide photoluminescence properties
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部