Hydrogen can be obtained by anaerobic fermentation of sewage sludge. Therefore, in this paper the effects of thermally pretreated temperatures on hydrogen production from sewage sludge were investigated under differen...Hydrogen can be obtained by anaerobic fermentation of sewage sludge. Therefore, in this paper the effects of thermally pretreated temperatures on hydrogen production from sewage sludge were investigated under different pre-treatment conditions. In the thermal pretreatment, some microbial matters of sludge were converted into soluble matters from insoluble ones. As a result, the suspended solid(SS) and volatile suspended solid(VSS) of sludge decreased and the concentration of soluble COD(SCOD) increased, including soluble carbohydrates and proteins. The experimental results showed that all of those pretreated sludge could produce hydrogen by anaerobic fermentation and the hydrogen yields under the temperatures of 121℃ and 50℃ were 12.23 ml/g VS(most) and 1.17 ml/g VS (least), respectively. It illuminated that the hydrogen yield of sludge was affected by the thermally pretreated temperatures. Additionally, the endurance of high hydrogen yield depended on the translation of microbial matters and inhibition of methanogens in the sludge. The temperatures of 100℃ and 121℃ (treated time, 30 min) could kill or inhibit completely the methanogens while the others could not. To produce hydrogen and save energy, 100℃ was chosen as the optimal temperature for thermal pretrcatment. The composition changes in liquid phase in the fermentation process were also discussed. The SCOD of sludge increased, which was affected by the pretreatment temperature. The production of volatile fatty acids in the anaerobic fermentation increased with the pretreatment temperature.展开更多
Heavy oil represents a vital petroleum resource worldwide.As one of the major producers,China is facing great challenges in effective and economic production of heavy oil due to reservoir complexity.Plenty of efforts ...Heavy oil represents a vital petroleum resource worldwide.As one of the major producers,China is facing great challenges in effective and economic production of heavy oil due to reservoir complexity.Plenty of efforts have been made to promote innovative advances in thermal recovery modes,methods,and processes for heavy oil in the country.The thermal recovery mode has been shifted from simple steam injection to a more comprehensive“thermal+"strategy,such as a novel N2-steam hybrid process and CO_(2)-enhanced thermal recovery techniques.These advanced techniques break through the challenges of heavy oil extraction from less accessible reservoirs with thinner oil layers and greater burial depths.Regarding thermal recovery methods,China has developed the steam-assisted gravity drainage method integrating flooding and drainage(also referred to as the hybrid flooding-drainage SAGD technology)for highly heterogeneous ultra-heavy oil reservoirs and the fire flooding method for nearly depleted heavy oil reservoirs,substantially improving oil recovery.Furthermore,a range of processes have been developed for heavy oil production,including the open hole completion process using sand control screens for horizontal wells,the process of integrated injection-recovery with horizontal pump for horizontal wells,the steam dryness maintenance,measurement,and control process,efficient and environment-friendly circulating fluidized bed(CFB)boilers with high steam dryness,the recycling process of produced water,and the thermal recovery process for offshore heavy oil.Based on the advances in methodology,technology,and philosophy,a series of supporting technologies for heavy oil production have been developed,leading to the breakthrough of existing technical limit of heavy oil recovery and the expansion into new exploitation targets.For the future heavy oil production in China,it is necessary to embrace a green,low-carbon,and energy-efficient development strategy,and to expand heavy oil extraction in reservoirs with larger burial depth,more viscous oil,thinner oil layers,and lower permeability.Moreover,it is highly recommended to collaboratively maximize oil recovery and oil-to-steam ratio through technological innovations,and boost intelligentization of heavy oil production.展开更多
Decreasing petroleum reserves and growing alternative fuels requirements have promoted the study of biodiesel production. In this work, two thermally coupled reactive distillation designs for biodiesel production were...Decreasing petroleum reserves and growing alternative fuels requirements have promoted the study of biodiesel production. In this work, two thermally coupled reactive distillation designs for biodiesel production were investigated, and the sensitivity analysis was conducted to obtain the appropriate design values. The thermodynamic analysis and economics evaluation were performed to estimate the superiority of the thermally coupled designs over the base case. The proposed biodiesel production processes were simulated using the simulator Aspen Plus, and calculation results show that the exergy loss and economic cost in the two thermally coupled designs can be greatly reduced. It is found that the thermally coupled side-stripper reactive distillation design provides more economic benefits than the side-rectifier one. The dynamic performance of the thermally coupled side-stripper design was investigated and the results showed that the proposed control structure could effectively handle large feed disturbances.展开更多
An innovative in-flight glass melting technology with induced thermal plasmas was developed for the purpose of energy conservation and environmental protection. Two-dimensional modeling was used to simulate the thermo...An innovative in-flight glass melting technology with induced thermal plasmas was developed for the purpose of energy conservation and environmental protection. Two-dimensional modeling was used to simulate the thermofluid fields in the plasma torch. The in-flight melting behavior of glass raw material was investigated by various analysis methods. Results showed that the plasma temperature was up to 10000 K with a maximum velocity over 30 m/s, which made it possible to melt the granulated glass raw material within milliseconds. The carbonates in the raw material decomposed completely and the compounds in the raw material attainted 100% vitrification during the in-flight time from the nozzle exit to substrate. The particle melting process is similar to the unreacted-core shrinking model.展开更多
Thermal manikin plays important roles in simulating thethermal state of human bodies to facilitate the evaluationof thermal comfort properties of various clothing assem-blies.Based on the heat balance principle and an...Thermal manikin plays important roles in simulating thethermal state of human bodies to facilitate the evaluationof thermal comfort properties of various clothing assem-blies.Based on the heat balance principle and analysis ofrelated factors,the heat production rate of manikin isrecommended as an efficient evaluation index.Whereas,its inside heat production which occurs as a result of theexistence of temperature difference between its insidepart and outside surface,should not be ignored.Through a series of theoretical analysis and calculations,a compensative equation is deduced in this paper.展开更多
A new integrated oil production enhancement technology based on water-flooding energy recovery is proposed.After providing an extensive review of the existing scientific and technical literature on this subject,the pr...A new integrated oil production enhancement technology based on water-flooding energy recovery is proposed.After providing an extensive review of the existing scientific and technical literature on this subject,the proposed integrated technology is described together with the related process flow diagram,the criteria used to select a tar-get facility for its implementation and the outcomes of the laboratory studies conducted to analyze emulsion formation and separation kinetics.Moreover,the outcomes of numerical simulations performed using Ansys CFX software are also presented.According to these results,using the proposed approach the incremental oil production may reach 1.2 t/day(with a 13%increase)and more,even at low flow rates(less than 10 t/day),thereby providing evidence for the benefits associated with this integrated technology.展开更多
Based on the analysis of the production composition of reservoirs developed by the second&tertiary recovery combination(STRC),the relationship between the overall output of the STRC project and the production leve...Based on the analysis of the production composition of reservoirs developed by the second&tertiary recovery combination(STRC),the relationship between the overall output of the STRC project and the production level during the blank water flooding stage is proposed.According to the basic principle of reservoir engineering that the“recovery factor is equal to sweeping coefficient multiplied by oil displacement efficiency”,the formula for calculating the ultimate oil recovery factor of chemical combination flooding reservoir was established.By dividing the reservoir into a series of grids according to differen-tial calculus thinking,the relationship between the ultimate recovery factor of a certain number of grids and the recovery de-gree of the reservoir was established,and then the variation law of oil production rate of the STRC reservoir was obtained.The concept of“oil rate enlargement factor of chemical combination flooding”was defined,and a production calculation method of reservoir developed by STRC was put forward based on practical oilfield development experience.The study shows that the oil production enhancing effect of STRC increases evenly with the in crease of the ratio of STRC displacement efficiency to water displacement efficiency,and increases rapidly with the increase of the ratio of recovery degree at flooding mode conversion to the water displacement efficiency.STRC is more effective in increasing oil production of reservoir with high recovery degree.Through practical tests of the alkali free binary flooding(polymer/surfactant)projects,the relative error of the oil production calculation method of STRC reservoir is about±10%,which meets the requirements of reservoir engineering.展开更多
The waste referred to includes solid waste and sludge. Solid waste is mainly from urban garbage and industrial waste. Sludge is from water treatment factories, paper mills, chemical factories, pharmaceutical factories...The waste referred to includes solid waste and sludge. Solid waste is mainly from urban garbage and industrial waste. Sludge is from water treatment factories, paper mills, chemical factories, pharmaceutical factories, rivers and lakes. The waste and sludge are very harmful to water organisms, human health and drinking water, and directly affect the environment. Sludge and waste also occupy large areas of land. There are several methods to treat waste and sludge, such as burial, chemical treatment and incineration. Incineration is more effective than the展开更多
In this study, we provided more theoretical method for estimation of dissolution amount and applied this method to enhanced coalbed methane recovery (ECBMR) simulator. Dissolution amount was measured by method of di...In this study, we provided more theoretical method for estimation of dissolution amount and applied this method to enhanced coalbed methane recovery (ECBMR) simulator. Dissolution amount was measured by method of differential heat of adsorption. Akabira coal, a Japanese bituminous coal, was used for the experiment. The results showed that CO2 was stored in coal by both adsorption and dissolution. Using this result the methane production was calculated by ECBMR-simulator, enhanced coalbed methane recovery simulator, the University of Tokyo (ECOMERS-UT). Total stored CO2 was separated into adsorption component and dissolution component. Only the former component contributes to the competitive adsorption. Coalbed methane (CBM) production simulation considering the dissolution showed later and smaller peak production and prolonged methane production before the breakthrough than the conventional competitive adsorption.展开更多
To evaluate scientifically the change of photosynthetic and thermal potential productivity caused by climate variation,based on comparison with mean of previous 30 years(1971-2000),the change of total solar radiation,...To evaluate scientifically the change of photosynthetic and thermal potential productivity caused by climate variation,based on comparison with mean of previous 30 years(1971-2000),the change of total solar radiation,sunshine hours,photosynthetic active radiation,photosynthetic and thermal potential productivity since 2001 were analyzed through data of radiation,sunshine and temperature in Shandong Province from 1971 to 2007,and the change trend was also tested by Mann-Kendall non-parametric statistical met...展开更多
Natural gas hydrates have been hailed as a new and promising unconventional alternative energy,especially as fossil fuels approach depletion,energy consumption soars,and fossil fuel prices rise,owing to their extensiv...Natural gas hydrates have been hailed as a new and promising unconventional alternative energy,especially as fossil fuels approach depletion,energy consumption soars,and fossil fuel prices rise,owing to their extensive distribution,abundance,and high fuel efficiency.Gas hydrate reservoirs are similar to a storage cupboard in the global carbon cycle,containing most of the world's methane and accounting for a third of Earth's mobile organic carbon.We investigated gas hydrate stability zone burial depths from the viewpoint of conditions associated with stable existence of gas hydrates,such as temperature,pressure,and heat flow,based on related data collected by the global drilling programs.Hydrate-related areas are estimated using various biological,geochemical and geophysical tools.Based on a series of previous investigations,we cover the history and status of gas hydrate exploration in the USA,Japan,South Korea,India,Germany,the polar areas,and China.Then,we review the current techniques for hydrate exploration in a global scale.Additionally,we briefly review existing techniques for recovering methane from gas hydrates,including thermal stimulation,depressurization,chemical injection,and CH4-CO2 exchange,as well as corresponding global field trials in Russia,Japan,United States,Canada and China.In particular,unlike diagenetic gas hydrates in coarse sandy sediments in Japan and gravel sediments in the United States and Canada,most gas hydrates in the northem South China Sea are non-diagenetic and exist in fine-grained sediments with a vein-like morphology.Therefore,especially in terms of the offshore production test in gas hydrate reservoirs in the Shenhu area in the north slope of the South China Sea,Chinese scientists have proposed two unprecedented techniques that have been verified during the field trials:solid fluidization and formation fluid extraction.Herein,we introduce the two production techniques,as well as the so-called"fbur-in-one"environmental monitoring system employed during the Shenhu production test.Methane is not currently commercially produced from gas hydrates anywhere in the world;therefore,the objective of field trials is to prove whether existing techniques could be applied as feasible and economic production methods for gas hydrates in deep-water sediments and permafrost zones.Before achieving commercial methane recovery from gas hydrates,it should be necessary to measure the geologic properties of gas hydrate reservoirs to optimize and improve existing production techniques.Herein,we propose horizontal wells,multilateral wells,and cluster wells improved by the vertical and in dividual wells applied during existing field trials.It is noteworthy that relatively pure gas hydrates occur in seafloor mounds,within near-surface sediments,and in gas migration conduits.Their extensive distribution,high saturation,and easy access mean that these types of gas hydrate may attract considerable attention from academia and industry in the future.Herein,we also review the occurrence and development of concentrated shallow hydrate accumulations and briefly introduce exploration and production techniques.In the closing section,we discuss future research needs,key issues,and major challenges related to gas hydrate exploration and production.We believe this review article provides insight on past,present,and future gas hydrate exploration and production to provide guidelines and stimulate new work into the field of gas hydrates.展开更多
A type of calcium coke was developed for use in the oxy-thermal process of calcium carbide production.The calcium coke was prepared by the co-pyrolysis of coking coal and calcium carbide slag, which is a solid waste g...A type of calcium coke was developed for use in the oxy-thermal process of calcium carbide production.The calcium coke was prepared by the co-pyrolysis of coking coal and calcium carbide slag, which is a solid waste generated from the chlor-alkali industry.The characteristics of the calcium cokes under different conditions were analyzed experimentally and theoretically.The results show that the thermal strength of calcium coke increased with the increase in the coking coal proportion, and the waterproof property of calcium coke also increased with increased carbonation time.The calcium coke can increase the contact area of calcium and carbon in the calcium carbide production process.Furthermore, the pore structure of the calcium coke can enhance the diffusion of gas inside the furnace, thus improving the efficiency of the oxy-thermal technology.展开更多
This study investigated the important factors that affect the operating parameters of thermally regenerative ammoniabased batteries(TRABs),including the metal electrode type,membrane type,electrode surface area,electr...This study investigated the important factors that affect the operating parameters of thermally regenerative ammoniabased batteries(TRABs),including the metal electrode type,membrane type,electrode surface area,electrode distance,electrolyte concentration,and ammonia concentration.The experimental results showed that the maximum power density of TRABs with a Cu electrode was 40.0 W·m^(2),which was considerably higher than that with Ni(0.34 W·m^(2))and Co(0.14 W·m^(2))electrodes.TRABs with an anion exchange membrane had a 28.6%higher maximum power density than those with a cation exchange membrane.An increased electrode surface resulted in an increased maximum power but a decreased maximum power density.Within a certain range,TRAB performance was enhanced with decreased electrode distance and increased electrolyte concentration.An increased ammonia concentration resulted in enhanced ammonia transfer and improved the TRAB performance.展开更多
Timely and proper backfilling of open-pits in strip coal-mines has been an effective measurement for the recovery of the hydrothermal regimes and ecological environment in permafrost regions. In this study, numerical ...Timely and proper backfilling of open-pits in strip coal-mines has been an effective measurement for the recovery of the hydrothermal regimes and ecological environment in permafrost regions. In this study, numerical simulations and statistical regressions were applied for analyzing the recovery processes of the backfill and its major influencing factors for the thermal equilibrium in recently backfilled open pits at the Gulian strip coalmine in Mo'he, Northeast China. Results show that the thermal recovery time of backfilled areas is positively correlated to the backfill depth(BD) of the soils, the backfilled soil temperature(BST), and the mean annual ground surface temperature(MAGST); meanwhile, climate warming can impact on thermal regimes of the backfill area. The impact of climate warming on ground temperature of the backfill will show up significantly in about 50 years afterbackfilling(BD at 10.0 and 20.0 m, BST at 20.0°C) under the climate warming scenario(CWS) of 0.025°C·year ^(-1). Grey-relation analyses show that the sensitivity of the backfill recovery time declines in the order of the BD, BST and MAGST. On the basis of the abovementioned studies, the layer-by-layer backfilling in cold seasons is advised for more effective and more rapid recovery of thermal regimes of the backfilled open-pits in cold regions.展开更多
The montmorillonite was studied by differen t methods, such as chemical analysis, DAT, TG, X RD, IR, AFM and MAS NMR. The experimental results show that the hydroxyl in octa hedra sheets begins dehydrating when the t...The montmorillonite was studied by differen t methods, such as chemical analysis, DAT, TG, X RD, IR, AFM and MAS NMR. The experimental results show that the hydroxyl in octa hedra sheets begins dehydrating when the thermal treatment temperature reaches 659℃, but th e layer structure remains the same,and the corresponding Al(Ⅵ) is turned into Al(Ⅳ) in octahedra sheets. When the temperature reaches 900℃, the layer struct ure of montmorillontite is destroyed, and the new mineral phase μ-cordierite i s found. When the temperature reaches 1200℃, the μ-cordierite phase loses its stability, and decomposes into cristobalite phase and mullite phase.Meanwhile, the recrystallization phenomenon in thermal treatment products is obvious. There is a small quantity of Al Ⅵ signal in MAS NMR spectrum, corresponding to Al of mullite. When the temperature reaches 1350℃, the cristobalite and mullite phases reduce slightly, and more Fe-cordierite phase appears, corresponding to Fe-cordierite spectrum in XRD and MAS NMR.展开更多
This paper presents the development and application of a production data analysis software that can analyze and forecast the production performance and reservoir properties of shale gas wells.The theories used in the ...This paper presents the development and application of a production data analysis software that can analyze and forecast the production performance and reservoir properties of shale gas wells.The theories used in the study were based on the analytical and empirical approaches.Its reliability has been confirmed through comparisons with a commercial software.Using transient data relating to multi-stage hydraulic fractured horizontal wells,it was confirmed that the accuracy of the modified hyperbolic method showed an error of approximately 4%compared to the actual estimated ultimate recovery(EUR).On the basis of the developed model,reliable productivity forecasts have been obtained by analyzing field production data relating to wells in Canada.The EUR was computed as 9.6 Bcf using the modified hyperbolic method.Employing the Pow Law Exponential method,the EUR would be 9.4 Bcf.The models developed in this study will allow in the future integration of new analytical and empirical theories in a relatively readily than commercial models.展开更多
Electrocatalytic water splitting for hydrogen production is hampered by the sluggish oxygen evolution reaction(OER)and large power consumption and replacing the OER with thermodynamically favourable reactions can impr...Electrocatalytic water splitting for hydrogen production is hampered by the sluggish oxygen evolution reaction(OER)and large power consumption and replacing the OER with thermodynamically favourable reactions can improve the energy conversion efficiency.Since iron corrodes easily and even self-corrodes to form magnetic iron oxide species and generate corrosion currents,a novel strategy to integrate the hydrogen evolution reaction(HER)with waste Fe upgrading reaction(FUR)is proposed and demonstrated for energy-efficient hydrogen production in neutral media.The heterostructured MoSe_(2)/MoO_(2) grown on carbon cloth(MSM/CC)shows superior HER performance to that of commercial Pt/C at high current densities.By replacing conventional OER with FUR,the potential required to afford the anodic current density of 10 m A cm^(-2)decreases by 95%.The HER/FUR overall reaction shows an ultralow voltage of 0.68 V for 10 m A cm^(-2)with a power equivalent of 2.69 k Wh per m^(3)H_(2).Additionally,the Fe species formed at the anode extract the Rhodamine B(Rh B)pollutant by flocculation and also produce nanosized magnetic powder and beneficiated Rh B for value-adding applications.This work demonstrates both energy-saving hydrogen production and pollutant recycling without carbon emission by a single system and reveals a new direction to integrate hydrogen production with environmental recovery to achieve carbon neutrality.展开更多
This article outlines the development of separated zone oil production in foreign countries,and details its development in China.According to the development process,production needs,technical characteristics and adap...This article outlines the development of separated zone oil production in foreign countries,and details its development in China.According to the development process,production needs,technical characteristics and adaptability of oilfields in China,the development of separate zone oil production technology is divided into four stages:flowing well zonal oil production,mechanical recovery and water blocking,hydraulically adjustable zonal oil production,and intelligent zonal production.The principles,construction processes,adaptability,advantages and disadvantages of the technology are introduced in detail.Based on the actual production situation of the oilfields in China at present,three development directions of the technology are proposed.First,the real-time monitoring and adjustment level of separated zone oil production needs to be improved by developing downhole sensor technology and two-way communication technology between ground and downhole and enhancing full life cycle service capability and adaptability to horizontal wells.Second,an integrated platform of zonal oil production and management should be built using a digital artificial lifting system.Third,integration of injection and production should be implemented through large-scale application of zonal oil production and zonal water injection to improve matching and adjustment level between the injection and production parameters,thus making the development adjustment from"lag control"to"real-time optimization"and improving the development effect.展开更多
The growing demand of organizations for alternative technologies to reduce environmental damage and meet new legislative issues brought greater focus to the activities of product recovery. One way to recover and reval...The growing demand of organizations for alternative technologies to reduce environmental damage and meet new legislative issues brought greater focus to the activities of product recovery. One way to recover and revalue a product is by remanufacturing, which is defined as the process of recovering a product to its original specifications, promoting the reuse of materials and improving its quality and functionality. However, the context of the remanufacturing industry faces difficulties and is considered unstable and inefficient if compared to manufacturing. In this sense, this paper aims to propose a cell layout based on lean concepts and adapted to the context of remanufacturing, aiming to minimize waste, reduce variability and thereby increase efficiency. The cell layout proposal was based on a literature review and researchers' practical experience in the area. This layout can provide the flexibility to handle the variations inherent in the context of remanufacturing, boosting product recovery and related environmental issues.展开更多
The vast area and marked variation of China make it difficult to predict the impact of climate changes on rice productivity in different regions.Therefore,analyzing the spatial and temporal characteristics of rice pot...The vast area and marked variation of China make it difficult to predict the impact of climate changes on rice productivity in different regions.Therefore,analyzing the spatial and temporal characteristics of rice potential productivity and predicting the possible yield increment in main rice production regions of China is important for guiding rice production and ensuring food security.Using meteorological data of main rice production regions from 1961 to 1970(the 1960s) and from 1996 to 2005(the 2000s) provided by 333 stations,the potential photosynthetic,photo-thermal and climatic productivities in rice crop of the 1960s and 2000s in main rice production regions of China were predicted,and differences in the spatial and temporal distribution characteristics between two decades were analyzed.Additionally,the potential yield increment based on the high yield target and actual yield of rice in the 2000s were predicted.Compared with the 1960s,the potential photosynthetic productivity of the 2000s was seen to have decreased by 5.40%,with rates in northeastern and southwestern China found to be lower than those in central and southern China.The potential photo-thermal productivity was generally seen to decrease(2.56%) throughout main rice production regions,decreasing most in central and southern China.However,an increase was seen in northeastern and southwestern China.The potential climatic productivity was observed to be lower(7.44%) in the 2000s compared to the 1960s,but increased in parts of central and southern China.The potential yield increment from the actual yield to high yield target in the 2000s were no more than 6×103 kg ha-1 and ranged from 6×103 to 12×103 kg ha-1 in most of the single-and double-cropping rice growing regions,respectively.The yield increasing potential from the high yield target to the potential photo-thermal productivity in 2000s were less than 10×103 kg ha-1 and ranged from 10×103 to 30×103 kg ha-1 in most of the single-and double-cropping rice growing regions,respectively.The potential yield increment contributed by irrigation was between 5×103 and 20×103 kg ha-1,and between 20×103 and 40×103 kg ha-1 in most of the single-and double-cropping rice growing regions,respectively.These findings suggested that the high yield could be optimized by making full use of climatic resources and through a reasonable management plan in rice crop.展开更多
文摘Hydrogen can be obtained by anaerobic fermentation of sewage sludge. Therefore, in this paper the effects of thermally pretreated temperatures on hydrogen production from sewage sludge were investigated under different pre-treatment conditions. In the thermal pretreatment, some microbial matters of sludge were converted into soluble matters from insoluble ones. As a result, the suspended solid(SS) and volatile suspended solid(VSS) of sludge decreased and the concentration of soluble COD(SCOD) increased, including soluble carbohydrates and proteins. The experimental results showed that all of those pretreated sludge could produce hydrogen by anaerobic fermentation and the hydrogen yields under the temperatures of 121℃ and 50℃ were 12.23 ml/g VS(most) and 1.17 ml/g VS (least), respectively. It illuminated that the hydrogen yield of sludge was affected by the thermally pretreated temperatures. Additionally, the endurance of high hydrogen yield depended on the translation of microbial matters and inhibition of methanogens in the sludge. The temperatures of 100℃ and 121℃ (treated time, 30 min) could kill or inhibit completely the methanogens while the others could not. To produce hydrogen and save energy, 100℃ was chosen as the optimal temperature for thermal pretrcatment. The composition changes in liquid phase in the fermentation process were also discussed. The SCOD of sludge increased, which was affected by the pretreatment temperature. The production of volatile fatty acids in the anaerobic fermentation increased with the pretreatment temperature.
基金funded by a project of the National Natural Science Foundation of China entitled Basic study on mechanisms and key technologies of high efficiency hybrid multi-element thermal recovery in marginal heavy oil reservoirs(No.U20B6003).
文摘Heavy oil represents a vital petroleum resource worldwide.As one of the major producers,China is facing great challenges in effective and economic production of heavy oil due to reservoir complexity.Plenty of efforts have been made to promote innovative advances in thermal recovery modes,methods,and processes for heavy oil in the country.The thermal recovery mode has been shifted from simple steam injection to a more comprehensive“thermal+"strategy,such as a novel N2-steam hybrid process and CO_(2)-enhanced thermal recovery techniques.These advanced techniques break through the challenges of heavy oil extraction from less accessible reservoirs with thinner oil layers and greater burial depths.Regarding thermal recovery methods,China has developed the steam-assisted gravity drainage method integrating flooding and drainage(also referred to as the hybrid flooding-drainage SAGD technology)for highly heterogeneous ultra-heavy oil reservoirs and the fire flooding method for nearly depleted heavy oil reservoirs,substantially improving oil recovery.Furthermore,a range of processes have been developed for heavy oil production,including the open hole completion process using sand control screens for horizontal wells,the process of integrated injection-recovery with horizontal pump for horizontal wells,the steam dryness maintenance,measurement,and control process,efficient and environment-friendly circulating fluidized bed(CFB)boilers with high steam dryness,the recycling process of produced water,and the thermal recovery process for offshore heavy oil.Based on the advances in methodology,technology,and philosophy,a series of supporting technologies for heavy oil production have been developed,leading to the breakthrough of existing technical limit of heavy oil recovery and the expansion into new exploitation targets.For the future heavy oil production in China,it is necessary to embrace a green,low-carbon,and energy-efficient development strategy,and to expand heavy oil extraction in reservoirs with larger burial depth,more viscous oil,thinner oil layers,and lower permeability.Moreover,it is highly recommended to collaboratively maximize oil recovery and oil-to-steam ratio through technological innovations,and boost intelligentization of heavy oil production.
基金Financial supports of the National Natural Science Foundation of China(Grant:21276279 and Grant:21476261)the Fundamental Research Funds for the Central Universities(No.14CX05030ANo.15CX06042A)
文摘Decreasing petroleum reserves and growing alternative fuels requirements have promoted the study of biodiesel production. In this work, two thermally coupled reactive distillation designs for biodiesel production were investigated, and the sensitivity analysis was conducted to obtain the appropriate design values. The thermodynamic analysis and economics evaluation were performed to estimate the superiority of the thermally coupled designs over the base case. The proposed biodiesel production processes were simulated using the simulator Aspen Plus, and calculation results show that the exergy loss and economic cost in the two thermally coupled designs can be greatly reduced. It is found that the thermally coupled side-stripper reactive distillation design provides more economic benefits than the side-rectifier one. The dynamic performance of the thermally coupled side-stripper design was investigated and the results showed that the proposed control structure could effectively handle large feed disturbances.
基金the New Energy and Industrial Technology Development Organization of Japan(No.A0006)
文摘An innovative in-flight glass melting technology with induced thermal plasmas was developed for the purpose of energy conservation and environmental protection. Two-dimensional modeling was used to simulate the thermofluid fields in the plasma torch. The in-flight melting behavior of glass raw material was investigated by various analysis methods. Results showed that the plasma temperature was up to 10000 K with a maximum velocity over 30 m/s, which made it possible to melt the granulated glass raw material within milliseconds. The carbonates in the raw material decomposed completely and the compounds in the raw material attainted 100% vitrification during the in-flight time from the nozzle exit to substrate. The particle melting process is similar to the unreacted-core shrinking model.
文摘Thermal manikin plays important roles in simulating thethermal state of human bodies to facilitate the evaluationof thermal comfort properties of various clothing assem-blies.Based on the heat balance principle and analysis ofrelated factors,the heat production rate of manikin isrecommended as an efficient evaluation index.Whereas,its inside heat production which occurs as a result of theexistence of temperature difference between its insidepart and outside surface,should not be ignored.Through a series of theoretical analysis and calculations,a compensative equation is deduced in this paper.
基金supported by the Government of Perm Krai,Research Project No.С-26/510。
文摘A new integrated oil production enhancement technology based on water-flooding energy recovery is proposed.After providing an extensive review of the existing scientific and technical literature on this subject,the proposed integrated technology is described together with the related process flow diagram,the criteria used to select a tar-get facility for its implementation and the outcomes of the laboratory studies conducted to analyze emulsion formation and separation kinetics.Moreover,the outcomes of numerical simulations performed using Ansys CFX software are also presented.According to these results,using the proposed approach the incremental oil production may reach 1.2 t/day(with a 13%increase)and more,even at low flow rates(less than 10 t/day),thereby providing evidence for the benefits associated with this integrated technology.
基金Supported by the National Science and Technology Major Project of China (2016ZX05010).
文摘Based on the analysis of the production composition of reservoirs developed by the second&tertiary recovery combination(STRC),the relationship between the overall output of the STRC project and the production level during the blank water flooding stage is proposed.According to the basic principle of reservoir engineering that the“recovery factor is equal to sweeping coefficient multiplied by oil displacement efficiency”,the formula for calculating the ultimate oil recovery factor of chemical combination flooding reservoir was established.By dividing the reservoir into a series of grids according to differen-tial calculus thinking,the relationship between the ultimate recovery factor of a certain number of grids and the recovery de-gree of the reservoir was established,and then the variation law of oil production rate of the STRC reservoir was obtained.The concept of“oil rate enlargement factor of chemical combination flooding”was defined,and a production calculation method of reservoir developed by STRC was put forward based on practical oilfield development experience.The study shows that the oil production enhancing effect of STRC increases evenly with the in crease of the ratio of STRC displacement efficiency to water displacement efficiency,and increases rapidly with the increase of the ratio of recovery degree at flooding mode conversion to the water displacement efficiency.STRC is more effective in increasing oil production of reservoir with high recovery degree.Through practical tests of the alkali free binary flooding(polymer/surfactant)projects,the relative error of the oil production calculation method of STRC reservoir is about±10%,which meets the requirements of reservoir engineering.
文摘The waste referred to includes solid waste and sludge. Solid waste is mainly from urban garbage and industrial waste. Sludge is from water treatment factories, paper mills, chemical factories, pharmaceutical factories, rivers and lakes. The waste and sludge are very harmful to water organisms, human health and drinking water, and directly affect the environment. Sludge and waste also occupy large areas of land. There are several methods to treat waste and sludge, such as burial, chemical treatment and incineration. Incineration is more effective than the
文摘In this study, we provided more theoretical method for estimation of dissolution amount and applied this method to enhanced coalbed methane recovery (ECBMR) simulator. Dissolution amount was measured by method of differential heat of adsorption. Akabira coal, a Japanese bituminous coal, was used for the experiment. The results showed that CO2 was stored in coal by both adsorption and dissolution. Using this result the methane production was calculated by ECBMR-simulator, enhanced coalbed methane recovery simulator, the University of Tokyo (ECOMERS-UT). Total stored CO2 was separated into adsorption component and dissolution component. Only the former component contributes to the competitive adsorption. Coalbed methane (CBM) production simulation considering the dissolution showed later and smaller peak production and prolonged methane production before the breakthrough than the conventional competitive adsorption.
基金Supported by Special Project of China Meteorological Administrationon Effects of Climate Change on Solar Energy in East ChinaSpecial fund of Meteorological Science and Technology Services inShandong Province in 2006~~
文摘To evaluate scientifically the change of photosynthetic and thermal potential productivity caused by climate variation,based on comparison with mean of previous 30 years(1971-2000),the change of total solar radiation,sunshine hours,photosynthetic active radiation,photosynthetic and thermal potential productivity since 2001 were analyzed through data of radiation,sunshine and temperature in Shandong Province from 1971 to 2007,and the change trend was also tested by Mann-Kendall non-parametric statistical met...
基金supported by Natural Science Foundation of China (91858208)National Key Basic Research and Development Program of China 2018YFC0310003 and 2017YFC0307704)+2 种基金Taishan scholar Special Experts Project (ts201712079)the Foundation of Key Laboratory of Marine Geology and Environment, Institute of Oceanology, CAS (MGE2017KG05)the Marine Geological Survey Program of China Geological Survey (DD20190819)
文摘Natural gas hydrates have been hailed as a new and promising unconventional alternative energy,especially as fossil fuels approach depletion,energy consumption soars,and fossil fuel prices rise,owing to their extensive distribution,abundance,and high fuel efficiency.Gas hydrate reservoirs are similar to a storage cupboard in the global carbon cycle,containing most of the world's methane and accounting for a third of Earth's mobile organic carbon.We investigated gas hydrate stability zone burial depths from the viewpoint of conditions associated with stable existence of gas hydrates,such as temperature,pressure,and heat flow,based on related data collected by the global drilling programs.Hydrate-related areas are estimated using various biological,geochemical and geophysical tools.Based on a series of previous investigations,we cover the history and status of gas hydrate exploration in the USA,Japan,South Korea,India,Germany,the polar areas,and China.Then,we review the current techniques for hydrate exploration in a global scale.Additionally,we briefly review existing techniques for recovering methane from gas hydrates,including thermal stimulation,depressurization,chemical injection,and CH4-CO2 exchange,as well as corresponding global field trials in Russia,Japan,United States,Canada and China.In particular,unlike diagenetic gas hydrates in coarse sandy sediments in Japan and gravel sediments in the United States and Canada,most gas hydrates in the northem South China Sea are non-diagenetic and exist in fine-grained sediments with a vein-like morphology.Therefore,especially in terms of the offshore production test in gas hydrate reservoirs in the Shenhu area in the north slope of the South China Sea,Chinese scientists have proposed two unprecedented techniques that have been verified during the field trials:solid fluidization and formation fluid extraction.Herein,we introduce the two production techniques,as well as the so-called"fbur-in-one"environmental monitoring system employed during the Shenhu production test.Methane is not currently commercially produced from gas hydrates anywhere in the world;therefore,the objective of field trials is to prove whether existing techniques could be applied as feasible and economic production methods for gas hydrates in deep-water sediments and permafrost zones.Before achieving commercial methane recovery from gas hydrates,it should be necessary to measure the geologic properties of gas hydrate reservoirs to optimize and improve existing production techniques.Herein,we propose horizontal wells,multilateral wells,and cluster wells improved by the vertical and in dividual wells applied during existing field trials.It is noteworthy that relatively pure gas hydrates occur in seafloor mounds,within near-surface sediments,and in gas migration conduits.Their extensive distribution,high saturation,and easy access mean that these types of gas hydrate may attract considerable attention from academia and industry in the future.Herein,we also review the occurrence and development of concentrated shallow hydrate accumulations and briefly introduce exploration and production techniques.In the closing section,we discuss future research needs,key issues,and major challenges related to gas hydrate exploration and production.We believe this review article provides insight on past,present,and future gas hydrate exploration and production to provide guidelines and stimulate new work into the field of gas hydrates.
基金financially supported by the Natural Science Foundation of China (Nos.U1610101 and 21776288)the Green Process Manufacturing Innovation Research Institute, Chinese Academy of Sciences (No.IAGM-2019-A09)the funding support from Vinnova (Dn: 2018-05293)。
文摘A type of calcium coke was developed for use in the oxy-thermal process of calcium carbide production.The calcium coke was prepared by the co-pyrolysis of coking coal and calcium carbide slag, which is a solid waste generated from the chlor-alkali industry.The characteristics of the calcium cokes under different conditions were analyzed experimentally and theoretically.The results show that the thermal strength of calcium coke increased with the increase in the coking coal proportion, and the waterproof property of calcium coke also increased with increased carbonation time.The calcium coke can increase the contact area of calcium and carbon in the calcium carbide production process.Furthermore, the pore structure of the calcium coke can enhance the diffusion of gas inside the furnace, thus improving the efficiency of the oxy-thermal technology.
基金the National Natural Science Foundation of China(No.51976018)the National Natural Science Foundation for Young Scientists of China(No.51606022)+3 种基金Natural Science Foundation of Chongqing,China(No.cstc2017jcyjAX0203)Scientific Research Foundation for Returned Overseas Chinese Scholars of Chongqing,China(No.cx2017020)the Fundamental Research Funds for the Central Universities(No.106112016CDJXY145504)Research Funds of Key Laboratory of Low-grade Energy Utilization Technologies and Systems(No.LLEUTS-2018005).
文摘This study investigated the important factors that affect the operating parameters of thermally regenerative ammoniabased batteries(TRABs),including the metal electrode type,membrane type,electrode surface area,electrode distance,electrolyte concentration,and ammonia concentration.The experimental results showed that the maximum power density of TRABs with a Cu electrode was 40.0 W·m^(2),which was considerably higher than that with Ni(0.34 W·m^(2))and Co(0.14 W·m^(2))electrodes.TRABs with an anion exchange membrane had a 28.6%higher maximum power density than those with a cation exchange membrane.An increased electrode surface resulted in an increased maximum power but a decreased maximum power density.Within a certain range,TRAB performance was enhanced with decreased electrode distance and increased electrolyte concentration.An increased ammonia concentration resulted in enhanced ammonia transfer and improved the TRAB performance.
基金supported by the research projects of the National Natural Science Foundation of China (Grant No. 41401081) "Thermal impacts of organic matter on properties of permafrost soils in the Da Xing'anling (Hinggan) Mountains"the State Key Laboratory of Frozen Soils Engineering, Ministry of Science and Technology, China "Impacts of human activities on the hydrothermal processes of permafrost in the Da Xing'anling (Hinggan) Mountains – a case study from the Gulian strip coal mine" (Grant No. SKLFSE-ZT-41)
文摘Timely and proper backfilling of open-pits in strip coal-mines has been an effective measurement for the recovery of the hydrothermal regimes and ecological environment in permafrost regions. In this study, numerical simulations and statistical regressions were applied for analyzing the recovery processes of the backfill and its major influencing factors for the thermal equilibrium in recently backfilled open pits at the Gulian strip coalmine in Mo'he, Northeast China. Results show that the thermal recovery time of backfilled areas is positively correlated to the backfill depth(BD) of the soils, the backfilled soil temperature(BST), and the mean annual ground surface temperature(MAGST); meanwhile, climate warming can impact on thermal regimes of the backfill area. The impact of climate warming on ground temperature of the backfill will show up significantly in about 50 years afterbackfilling(BD at 10.0 and 20.0 m, BST at 20.0°C) under the climate warming scenario(CWS) of 0.025°C·year ^(-1). Grey-relation analyses show that the sensitivity of the backfill recovery time declines in the order of the BD, BST and MAGST. On the basis of the abovementioned studies, the layer-by-layer backfilling in cold seasons is advised for more effective and more rapid recovery of thermal regimes of the backfilled open-pits in cold regions.
基金Funded by the National Natural Science Foundation of China (40202007 ) and the Natural Science Foundation of GuangdongProvince(000623,020938)
文摘The montmorillonite was studied by differen t methods, such as chemical analysis, DAT, TG, X RD, IR, AFM and MAS NMR. The experimental results show that the hydroxyl in octa hedra sheets begins dehydrating when the thermal treatment temperature reaches 659℃, but th e layer structure remains the same,and the corresponding Al(Ⅵ) is turned into Al(Ⅳ) in octahedra sheets. When the temperature reaches 900℃, the layer struct ure of montmorillontite is destroyed, and the new mineral phase μ-cordierite i s found. When the temperature reaches 1200℃, the μ-cordierite phase loses its stability, and decomposes into cristobalite phase and mullite phase.Meanwhile, the recrystallization phenomenon in thermal treatment products is obvious. There is a small quantity of Al Ⅵ signal in MAS NMR spectrum, corresponding to Al of mullite. When the temperature reaches 1350℃, the cristobalite and mullite phases reduce slightly, and more Fe-cordierite phase appears, corresponding to Fe-cordierite spectrum in XRD and MAS NMR.
基金supported by the Energy Efficiency&Resources Core Technology Program of the Korea Institute of Energy Technology Evaluation and Planning(KETEP)granted financial resource from the Ministry of Trade,Industry&Energy,Republic of Korea(No.20172510102090).
文摘This paper presents the development and application of a production data analysis software that can analyze and forecast the production performance and reservoir properties of shale gas wells.The theories used in the study were based on the analytical and empirical approaches.Its reliability has been confirmed through comparisons with a commercial software.Using transient data relating to multi-stage hydraulic fractured horizontal wells,it was confirmed that the accuracy of the modified hyperbolic method showed an error of approximately 4%compared to the actual estimated ultimate recovery(EUR).On the basis of the developed model,reliable productivity forecasts have been obtained by analyzing field production data relating to wells in Canada.The EUR was computed as 9.6 Bcf using the modified hyperbolic method.Employing the Pow Law Exponential method,the EUR would be 9.4 Bcf.The models developed in this study will allow in the future integration of new analytical and empirical theories in a relatively readily than commercial models.
基金financially supported by the Key Research and Development Program of Hubei Province (2021BAA208)the National Natural Science Foundation of China (52002294,51974208 and U2003130)+3 种基金the Young Top-notch Talent Cultivation Program of Hubei ProvinceKnowledge Innovation Program of Wuhan-Shuguang Project (2022010801020364)the City University of Hong Kong Strategic Research Grant (SRG) (7005505)the City University of Hong Kong Donation Research Grant (DONRMG 9229021)。
文摘Electrocatalytic water splitting for hydrogen production is hampered by the sluggish oxygen evolution reaction(OER)and large power consumption and replacing the OER with thermodynamically favourable reactions can improve the energy conversion efficiency.Since iron corrodes easily and even self-corrodes to form magnetic iron oxide species and generate corrosion currents,a novel strategy to integrate the hydrogen evolution reaction(HER)with waste Fe upgrading reaction(FUR)is proposed and demonstrated for energy-efficient hydrogen production in neutral media.The heterostructured MoSe_(2)/MoO_(2) grown on carbon cloth(MSM/CC)shows superior HER performance to that of commercial Pt/C at high current densities.By replacing conventional OER with FUR,the potential required to afford the anodic current density of 10 m A cm^(-2)decreases by 95%.The HER/FUR overall reaction shows an ultralow voltage of 0.68 V for 10 m A cm^(-2)with a power equivalent of 2.69 k Wh per m^(3)H_(2).Additionally,the Fe species formed at the anode extract the Rhodamine B(Rh B)pollutant by flocculation and also produce nanosized magnetic powder and beneficiated Rh B for value-adding applications.This work demonstrates both energy-saving hydrogen production and pollutant recycling without carbon emission by a single system and reveals a new direction to integrate hydrogen production with environmental recovery to achieve carbon neutrality.
基金Supported by the National Key Research and Development Program of China(2018YFE0196000)National Science and Technology Major Project of China(2016ZX05010-006)CNPC Scientific Research and Technical Development Project(2019B-4113)
文摘This article outlines the development of separated zone oil production in foreign countries,and details its development in China.According to the development process,production needs,technical characteristics and adaptability of oilfields in China,the development of separate zone oil production technology is divided into four stages:flowing well zonal oil production,mechanical recovery and water blocking,hydraulically adjustable zonal oil production,and intelligent zonal production.The principles,construction processes,adaptability,advantages and disadvantages of the technology are introduced in detail.Based on the actual production situation of the oilfields in China at present,three development directions of the technology are proposed.First,the real-time monitoring and adjustment level of separated zone oil production needs to be improved by developing downhole sensor technology and two-way communication technology between ground and downhole and enhancing full life cycle service capability and adaptability to horizontal wells.Second,an integrated platform of zonal oil production and management should be built using a digital artificial lifting system.Third,integration of injection and production should be implemented through large-scale application of zonal oil production and zonal water injection to improve matching and adjustment level between the injection and production parameters,thus making the development adjustment from"lag control"to"real-time optimization"and improving the development effect.
文摘The growing demand of organizations for alternative technologies to reduce environmental damage and meet new legislative issues brought greater focus to the activities of product recovery. One way to recover and revalue a product is by remanufacturing, which is defined as the process of recovering a product to its original specifications, promoting the reuse of materials and improving its quality and functionality. However, the context of the remanufacturing industry faces difficulties and is considered unstable and inefficient if compared to manufacturing. In this sense, this paper aims to propose a cell layout based on lean concepts and adapted to the context of remanufacturing, aiming to minimize waste, reduce variability and thereby increase efficiency. The cell layout proposal was based on a literature review and researchers' practical experience in the area. This layout can provide the flexibility to handle the variations inherent in the context of remanufacturing, boosting product recovery and related environmental issues.
基金supported by the Key Technologies R&D Program of China during the 12th Five-Year Plan period (2011BAD21B03)the National Basic Research Program of China (2009CB118608)the Priority Academic Program Development of Jiangsu Higher Education Institutions, China (PAPD)
文摘The vast area and marked variation of China make it difficult to predict the impact of climate changes on rice productivity in different regions.Therefore,analyzing the spatial and temporal characteristics of rice potential productivity and predicting the possible yield increment in main rice production regions of China is important for guiding rice production and ensuring food security.Using meteorological data of main rice production regions from 1961 to 1970(the 1960s) and from 1996 to 2005(the 2000s) provided by 333 stations,the potential photosynthetic,photo-thermal and climatic productivities in rice crop of the 1960s and 2000s in main rice production regions of China were predicted,and differences in the spatial and temporal distribution characteristics between two decades were analyzed.Additionally,the potential yield increment based on the high yield target and actual yield of rice in the 2000s were predicted.Compared with the 1960s,the potential photosynthetic productivity of the 2000s was seen to have decreased by 5.40%,with rates in northeastern and southwestern China found to be lower than those in central and southern China.The potential photo-thermal productivity was generally seen to decrease(2.56%) throughout main rice production regions,decreasing most in central and southern China.However,an increase was seen in northeastern and southwestern China.The potential climatic productivity was observed to be lower(7.44%) in the 2000s compared to the 1960s,but increased in parts of central and southern China.The potential yield increment from the actual yield to high yield target in the 2000s were no more than 6×103 kg ha-1 and ranged from 6×103 to 12×103 kg ha-1 in most of the single-and double-cropping rice growing regions,respectively.The yield increasing potential from the high yield target to the potential photo-thermal productivity in 2000s were less than 10×103 kg ha-1 and ranged from 10×103 to 30×103 kg ha-1 in most of the single-and double-cropping rice growing regions,respectively.The potential yield increment contributed by irrigation was between 5×103 and 20×103 kg ha-1,and between 20×103 and 40×103 kg ha-1 in most of the single-and double-cropping rice growing regions,respectively.These findings suggested that the high yield could be optimized by making full use of climatic resources and through a reasonable management plan in rice crop.