In a recent paper (2012 Chin. Phys. B 21 084205), the authors studied the problem of distillability sudden death. We find that their equation of motion is incorrect and consequently the rest of the paper is wrong. E...In a recent paper (2012 Chin. Phys. B 21 084205), the authors studied the problem of distillability sudden death. We find that their equation of motion is incorrect and consequently the rest of the paper is wrong. Even apart from starting with a wrong equation of motion, their description of the phenomenon of distillability sudden death is totally misleading and needs to be rectified. To this aim, we show that certain initially prepared free-entangled states become bound-entangled in a finite time under thermal reservoirs. Moreover, in contrast with zero-temperature reservoirs, simple local unitary transformations cannot completely avoid distillability sudden death.展开更多
Taking the Gaoshangpu-Liuzan geothermal field in the Nanpu sag of the Bohai Bay Basin as the research object, this paper discusses the geological conditions and potential of the geothermal resources of the Guantao For...Taking the Gaoshangpu-Liuzan geothermal field in the Nanpu sag of the Bohai Bay Basin as the research object, this paper discusses the geological conditions and potential of the geothermal resources of the Guantao Formation in the study area, and introduces the development practice of geothermal energy heating in Caofeidian. The average buried depth of the Guantao Formation is 1500–2500 m, the lithology is dominated by sandy conglomerate, and the average thickness of thermal reservoir is 120–300 m. The average porosity of thermal reservoir is 28%–35%, the permeability is(600–2000)×10^(-3) μm^(2), and the temperature of thermal reservoir is 70–110 ℃. The formation has total geothermal resources of 13.79×10^(18) J, equivalent to 4.70×10^(8) t of standard coal. Based on a large amount of seismic and drilling data from oil and gas exploration, this study carried out high quality target area selection, simulation of sandstone thermal reservoir, and production and injection in the same layer. The geothermal heating project with distributed production and injection well pattern covering an area of 230×10^(4) m^(2) was completed in the new district of Caofeidian in 2018. The project has been running steadily for two heating seasons, with an average annual saving of 6.06×10^(4) t of standard coal and a reduction of 15.87×10^(4) t of carbon dioxide, achieving good economic and social benefits. This project has proved that the Neogene sandstone geothermal reservoir in eastern China can achieve sustainable large-scale development by using the technology of "balanced production and injection in the same layer". It provides effective reference for the exploration and development of geothermal resource in oil and gas-bearing basins in eastern China.展开更多
In this paper, we investigate the entanglement of two qubits coupled collectively to a common thermal environment and find that the the collective decay can lead to a revival of the entanglement that has already been ...In this paper, we investigate the entanglement of two qubits coupled collectively to a common thermal environment and find that the the collective decay can lead to a revival of the entanglement that has already been destroyed. We also show that the ability of the system to revival entanglement relies on the mean photon number of the thermal environment and the degree of entanglement of the initial state.展开更多
Hydroelectric facilities impact water temperature; low velocities in a reservoir increase residence time and enhance heat exchange in surface layers. In this study, an unsteady three-dimensional model was developed to...Hydroelectric facilities impact water temperature; low velocities in a reservoir increase residence time and enhance heat exchange in surface layers. In this study, an unsteady three-dimensional model was developed to predict the temperatm'e dynamics in the McNary Dam forebay. The model is based on the open-source code OpenFOAM. RANS equations with the Boussinesq approximation were used to solve the flow field. A: realizable k-ε model that accounts for the production of wind turbulence was developed. Solar radiation and convective heat transfer at the free surface were included. The result of the model was compared with the field data collected on August 18, 2004. Changes in diurnal stratification were adequately predicted by the model. Observed vertical and lateral temperature distributions were accurately captured. Results indicate that the model can be used as a numerical tool to assess structural and operational alternatives to reduce the forebay temperature.展开更多
In the paper, taking the atomic EPR entanglement of quantum teleportation of atomic state in thermal environment damping-density operator approach, and the average fidelities are channel state |φ = (1/√2)(|00)...In the paper, taking the atomic EPR entanglement of quantum teleportation of atomic state in thermal environment damping-density operator approach, and the average fidelities are channel state |φ = (1/√2)(|00) + |11〉) is more robust than |φ| they are subject to the dissipative environments. states as quantum channel, we investigate the fidelity and vacuum reservoir by means of quantum theory of calculated, the results show that the atomic quantum = (1/√2)(|01〉 + |10〉) in teleportation process when they are subject to the dissipative environments.展开更多
The Yangbajain Geothermal Field in Tibet is located in the fault subsidence basin of the central Yadong-Gulu Rift Valley.The spatial distribution of the field is controlled by mountain-front fault zones on the northwe...The Yangbajain Geothermal Field in Tibet is located in the fault subsidence basin of the central Yadong-Gulu Rift Valley.The spatial distribution of the field is controlled by mountain-front fault zones on the northwestern and southeastern sides of the basin.Geothermal power has been generated in Yangbajain for more than 40 years.However,owing to the lack of threedimensional(3D) geophysical exploration data,key geological issues related to the partial melt body of the Yangbajain Geothermal Field,such as its location,burial depth,and geometric form,as well as the ascending channel of the geothermal fluid,have for a long time been controversial.In this study,3D inversion was performed using measured geo-electromagnetic total impedance tensor data from 47 survey points.The extracted horizontal sections at different depths and profiles,and at different lines,reflect the 3D electrical structure model of the geothermal field in the study area.Subsequently,three findings were obtained.First,the partial melt body,located below the China-Nepal Highway extending along the northeast direction,is the heat source of the Yangbajain Geothermal Field.The burial depth range of the molten body was determined to range between approximately 6.2 and 14 km.Moreover,the geothermal fluid ascended a horn-shaped circulation channel with an up-facing opening,located in the northern section of the sulfur ditch area.The study results revealed that deep rock fissures(>2 km) were not well developed and had poor permeability.In addition,no layered heat reservoirs with high water richness were observed in the northern part of the study area.However,the application of enhanced geothermal system(EGS) technology in the northern region would be essential to improving the power generation capacity of the Yangbajain Geothermal Field.In addition,the study found no deep high-temperature heat storage areas in the southern region of the study area.展开更多
A large number of mines are closed or abandoned every year in China.Geothermal utilization is one of the important ways to efficiently reuse underground resources in abandoned mines.How to calculate the volume and dis...A large number of mines are closed or abandoned every year in China.Geothermal utilization is one of the important ways to efficiently reuse underground resources in abandoned mines.How to calculate the volume and distribution of underground water storage space is the key to accurately evaluate the sustainable geothermal production in abandoned mines.In this paper,according to the multi-scale characteristics of the underground space in abandoned mine,the flow and heat transfer equations in the multi-scale space are sorted out systematically,and the calculation methods of different secondary space volumes are derived in detail.Taking Jiahe abandoned mine as the background,the volume and distribution of underground secondary space are calculated,and three heat storage evaluation models considering different water storage spaces are established by using COMSOL.The simulation results show that there are great differences among different models,and the results of the equivalent porous media model considering the multi-scale space are most consistent with the reality.Sensitivity analyses of key parameters model results indicated that the heat production is closely related to not only the recharge flow rate but also the recharge temperature and operating time.Furthermore,the energy saving and emission reduction benefits of geothermal utilization in abandoned mines are calculated,the results show that geothermal utilization of abandoned mines can effectively reduce energy consumption and CO_(2)emissions,and it has great economic benefits.展开更多
The industry-standard constrained pressure residual(CPR)algorithm is often able to effectively improve the robustness behavior and the convergence speed of linear iterations for isothermal reservoir simulation.In this...The industry-standard constrained pressure residual(CPR)algorithm is often able to effectively improve the robustness behavior and the convergence speed of linear iterations for isothermal reservoir simulation.In this paper,we present and study an improved extension of CPR to the constrained pressure-temperature residual(CPTR)version for non-isothermal reservoir problems in heterogeneous porous media.In the proposed preconditioner,the corresponding approximations for the inverse of matrices are computed under a domain decomposition framework by using the restricted additive Schwarz(RAS)algorithm,to equally deal with the coupled thermalpressure-saturation reservoir system and highly exploit the parallelism of supercomputer platforms.Moreover,we introduce and develop a family of multilevel CPTR preconditioners with suitable coarse grid corrections,to further improve the applicability of this two-stage preconditioner for large-scale computation.Numerical results for strong heterogeneous flow problems show that the new approach can dramatically improve the convergence of linear iterations,and demonstrate the superiority of CPTR over the commonly used RAS preconditioners.The parallel scalability of the non-isothermal reservoir simulator is also studied versus a supercomputer with tens of thousands of processors.展开更多
文摘In a recent paper (2012 Chin. Phys. B 21 084205), the authors studied the problem of distillability sudden death. We find that their equation of motion is incorrect and consequently the rest of the paper is wrong. Even apart from starting with a wrong equation of motion, their description of the phenomenon of distillability sudden death is totally misleading and needs to be rectified. To this aim, we show that certain initially prepared free-entangled states become bound-entangled in a finite time under thermal reservoirs. Moreover, in contrast with zero-temperature reservoirs, simple local unitary transformations cannot completely avoid distillability sudden death.
基金This study was supported and helped by Professor Yan Jiahong with China Petroleum Exploration and Development Research Institute,Yao Yanhua,Chief Geologist of the Hydrology Institute of PetroChina Liaohe Oilfield Company,and Dr.Kong Yanlong with the Institute of Geology and Geophysics,Chinese Academy of Sciences.
文摘Taking the Gaoshangpu-Liuzan geothermal field in the Nanpu sag of the Bohai Bay Basin as the research object, this paper discusses the geological conditions and potential of the geothermal resources of the Guantao Formation in the study area, and introduces the development practice of geothermal energy heating in Caofeidian. The average buried depth of the Guantao Formation is 1500–2500 m, the lithology is dominated by sandy conglomerate, and the average thickness of thermal reservoir is 120–300 m. The average porosity of thermal reservoir is 28%–35%, the permeability is(600–2000)×10^(-3) μm^(2), and the temperature of thermal reservoir is 70–110 ℃. The formation has total geothermal resources of 13.79×10^(18) J, equivalent to 4.70×10^(8) t of standard coal. Based on a large amount of seismic and drilling data from oil and gas exploration, this study carried out high quality target area selection, simulation of sandstone thermal reservoir, and production and injection in the same layer. The geothermal heating project with distributed production and injection well pattern covering an area of 230×10^(4) m^(2) was completed in the new district of Caofeidian in 2018. The project has been running steadily for two heating seasons, with an average annual saving of 6.06×10^(4) t of standard coal and a reduction of 15.87×10^(4) t of carbon dioxide, achieving good economic and social benefits. This project has proved that the Neogene sandstone geothermal reservoir in eastern China can achieve sustainable large-scale development by using the technology of "balanced production and injection in the same layer". It provides effective reference for the exploration and development of geothermal resource in oil and gas-bearing basins in eastern China.
基金supported by the National Natural Science Foundation of China (Grant No.10374025)Hunan Provincial Natural Science Foundation of China (Grant No.06JJ4003)the Major Program for the Research Foundation of Education Bureau of Hunan Province,China (Grant No.08A015)
文摘In this paper, we investigate the entanglement of two qubits coupled collectively to a common thermal environment and find that the the collective decay can lead to a revival of the entanglement that has already been destroyed. We also show that the ability of the system to revival entanglement relies on the mean photon number of the thermal environment and the degree of entanglement of the initial state.
基金supported by Hydro Research Foundation (Grant No. DE-EE0002668)
文摘Hydroelectric facilities impact water temperature; low velocities in a reservoir increase residence time and enhance heat exchange in surface layers. In this study, an unsteady three-dimensional model was developed to predict the temperatm'e dynamics in the McNary Dam forebay. The model is based on the open-source code OpenFOAM. RANS equations with the Boussinesq approximation were used to solve the flow field. A: realizable k-ε model that accounts for the production of wind turbulence was developed. Solar radiation and convective heat transfer at the free surface were included. The result of the model was compared with the field data collected on August 18, 2004. Changes in diurnal stratification were adequately predicted by the model. Observed vertical and lateral temperature distributions were accurately captured. Results indicate that the model can be used as a numerical tool to assess structural and operational alternatives to reduce the forebay temperature.
基金Supported by the Natural Science Foundation of Hunan Province of China under Grant No.10JJ3088Funds of Hunan Education Bureau under Grant No.10C0616the Key Research Foundation of the Education Bureau of Hunan Province under Grant Nos.10A026 and 08A015
文摘In the paper, taking the atomic EPR entanglement of quantum teleportation of atomic state in thermal environment damping-density operator approach, and the average fidelities are channel state |φ = (1/√2)(|00) + |11〉) is more robust than |φ| they are subject to the dissipative environments. states as quantum channel, we investigate the fidelity and vacuum reservoir by means of quantum theory of calculated, the results show that the atomic quantum = (1/√2)(|01〉 + |10〉) in teleportation process when they are subject to the dissipative environments.
基金supported by the Second Tibetan Plateau Scientific Expedition and Research Program (Grant No. 2019QZKK0804)the National Natural Science Foundation of China (Grant No. U21A2015)。
文摘The Yangbajain Geothermal Field in Tibet is located in the fault subsidence basin of the central Yadong-Gulu Rift Valley.The spatial distribution of the field is controlled by mountain-front fault zones on the northwestern and southeastern sides of the basin.Geothermal power has been generated in Yangbajain for more than 40 years.However,owing to the lack of threedimensional(3D) geophysical exploration data,key geological issues related to the partial melt body of the Yangbajain Geothermal Field,such as its location,burial depth,and geometric form,as well as the ascending channel of the geothermal fluid,have for a long time been controversial.In this study,3D inversion was performed using measured geo-electromagnetic total impedance tensor data from 47 survey points.The extracted horizontal sections at different depths and profiles,and at different lines,reflect the 3D electrical structure model of the geothermal field in the study area.Subsequently,three findings were obtained.First,the partial melt body,located below the China-Nepal Highway extending along the northeast direction,is the heat source of the Yangbajain Geothermal Field.The burial depth range of the molten body was determined to range between approximately 6.2 and 14 km.Moreover,the geothermal fluid ascended a horn-shaped circulation channel with an up-facing opening,located in the northern section of the sulfur ditch area.The study results revealed that deep rock fissures(>2 km) were not well developed and had poor permeability.In addition,no layered heat reservoirs with high water richness were observed in the northern part of the study area.However,the application of enhanced geothermal system(EGS) technology in the northern region would be essential to improving the power generation capacity of the Yangbajain Geothermal Field.In addition,the study found no deep high-temperature heat storage areas in the southern region of the study area.
基金supported by the Beijing Natural Science Foundation(8212033)the Fundamental Research Funds for the Central Universities(2021JCCXLJ05)innovation fund research project(SKLGDUEK202221).
文摘A large number of mines are closed or abandoned every year in China.Geothermal utilization is one of the important ways to efficiently reuse underground resources in abandoned mines.How to calculate the volume and distribution of underground water storage space is the key to accurately evaluate the sustainable geothermal production in abandoned mines.In this paper,according to the multi-scale characteristics of the underground space in abandoned mine,the flow and heat transfer equations in the multi-scale space are sorted out systematically,and the calculation methods of different secondary space volumes are derived in detail.Taking Jiahe abandoned mine as the background,the volume and distribution of underground secondary space are calculated,and three heat storage evaluation models considering different water storage spaces are established by using COMSOL.The simulation results show that there are great differences among different models,and the results of the equivalent porous media model considering the multi-scale space are most consistent with the reality.Sensitivity analyses of key parameters model results indicated that the heat production is closely related to not only the recharge flow rate but also the recharge temperature and operating time.Furthermore,the energy saving and emission reduction benefits of geothermal utilization in abandoned mines are calculated,the results show that geothermal utilization of abandoned mines can effectively reduce energy consumption and CO_(2)emissions,and it has great economic benefits.
基金supported by the National Natural Science Foundation of China(No.12131002 and No.11971006)Shenzhen Science and Technology Program(No.JCYJ20210324130801003)+2 种基金Guangdong Basic and Applied Basic Research Foundation(No.2022A1515010147)Changsha science and technology bureau(No.kh2301001)The fourth author also greatly thanks for the support from King Abdullah University of Science and Technology(KAUST)through the grants BAS/1/1351-01 and URF/1/4074-01.
文摘The industry-standard constrained pressure residual(CPR)algorithm is often able to effectively improve the robustness behavior and the convergence speed of linear iterations for isothermal reservoir simulation.In this paper,we present and study an improved extension of CPR to the constrained pressure-temperature residual(CPTR)version for non-isothermal reservoir problems in heterogeneous porous media.In the proposed preconditioner,the corresponding approximations for the inverse of matrices are computed under a domain decomposition framework by using the restricted additive Schwarz(RAS)algorithm,to equally deal with the coupled thermalpressure-saturation reservoir system and highly exploit the parallelism of supercomputer platforms.Moreover,we introduce and develop a family of multilevel CPTR preconditioners with suitable coarse grid corrections,to further improve the applicability of this two-stage preconditioner for large-scale computation.Numerical results for strong heterogeneous flow problems show that the new approach can dramatically improve the convergence of linear iterations,and demonstrate the superiority of CPTR over the commonly used RAS preconditioners.The parallel scalability of the non-isothermal reservoir simulator is also studied versus a supercomputer with tens of thousands of processors.