To meet the demand for high-performance LiCoO_(2) batteries,it is necessary to overcome challenges such as interface degradation and rapid capacity degradation caused by changes in bulk structure,especially under deep...To meet the demand for high-performance LiCoO_(2) batteries,it is necessary to overcome challenges such as interface degradation and rapid capacity degradation caused by changes in bulk structure,especially under deep delithiation and high temperature conditions.The ion conductive coating layer of Li_(3)PO_(4) has been directly modified on the surface of LiCoO_(2) particles using magnetron sputtering method,significantly improving the lithium storage performance of LiCoO_(2)@Li_(3)PO_(4) composites.Compared to pure LiCoO_(2),the modified LiCoO_(2) sample exhibits obviously better cycle life and high-temperature performance.Especially,under the conditions of 2 and 1 C,the LiCoO_(2)@Li_(3)PO_(4) electrode delivers excellent cycling performance at high voltage of 4.5 V,with capacity retention rates of 89.7%and 75.7%at room temperature and high temperature of 45℃,being far greater than those of 12.3%and 29.1%for bare LiCoO_(2) electrodes.It is discovered that the Li_(3)PO_(4) coating layer not only effectively enhances interface compatibility and suppresses the irreversible phase transition of LiCoO_(2),but also further improves the Li^(+)transport kinetics and significantly reduces battery polarization,ultimately enabling the modified LiCoO_(2) electrode to exhibit excellent lithium storage performance and thermal safety characteristics under high voltage conditions.Thus,such effective modified strategy can undoubtedly provide an important academic inspiration for LiCoO_(2) implication.展开更多
Understanding the thermal safety evolution of lithium-ion batteries during high-temperature usage conditions bears significant implications for enhancing the safety management of aging batteries.This work investigates...Understanding the thermal safety evolution of lithium-ion batteries during high-temperature usage conditions bears significant implications for enhancing the safety management of aging batteries.This work investigates the thermal safety evolution mechanism of lithium-ion batteries during high-temperature aging.Similarities arise in the thermal safety evolution and degradation mechanisms for lithium-ion batteries undergoing cyclic aging and calendar aging.Employing multi-angle characterization analysis,the intricate mechanism governing the thermal safety evolution of lithium-ion batteries during high-temperature aging is clarified.Specifically,lithium plating serves as the pivotal factor contributing to the reduction in the self-heating initial temperature.Additionally,the crystal structure of the cathode induced by the dissolution of transition metals and the reductive gas generated during aging attacking the crystal structure of the cathode lead to a decrease in thermal runaway triggering temperature.Furthermore,the loss of active materials and active lithium during aging contributes to a decline in both the maximum temperature and the maximum temperature rise rate,ultimately indicating a decrease in the thermal hazards of aging batteries.展开更多
Thermal safety of modular charge which is fed into and retained in the chamber after gun fires consecutively is first investigated with cook-off method,A two-dimensional cook-off model of modular charge in gun chamber...Thermal safety of modular charge which is fed into and retained in the chamber after gun fires consecutively is first investigated with cook-off method,A two-dimensional cook-off model of modular charge in gun chamber is established and the cook-off process of modular charge in gun chamber is numerically simulated.Then the effects of module number and firing condition on charge thermal safety are evaluated by researching the cook-off response characteristics of modules.The results show that under conditions of different module numbers the cook-off responses all occur on the module closest to the boundary of missile,and the single-base propellants located at the inner surface of cartridge ignite first.When the number of loaded module changes from 1 to 6,the cook-off response temperatures vary little,only in a small range of 478.1 K-482.4 K.The cook-off response times decrease logarithmically in the range of 211.25-166.7 s with the increasing length of residual air gap in gun chamber.The simulation results are well matched with the experimental data.Furthermore,different firing conditions have greatinfluence on the cook-off response time,minor influence on the initial response position and little in-fluence on the response temperature.Under the three conditions of consecutive 32 launches with 5 rounds/min,43 launches with 1 round/min,and 41 launches with different firing frequencies,the cook off response temperatures are 479.2 K,481.1 K and 479.9 K respectively and the response times are 709.25,211.2 s and 214.4 s respectively.The response position is near the middle area of the inner cartridge surface in the former condition and near the right area in the latter two conditions.展开更多
The thermal behavior, nonisothermal decomposition reaction kinetics and specific heat capacity of nitrate glycerol ether cellulose(NGEC) were determined by thermogravimetric analysis(TGA), differential scanning ca...The thermal behavior, nonisothermal decomposition reaction kinetics and specific heat capacity of nitrate glycerol ether cellulose(NGEC) were determined by thermogravimetric analysis(TGA), differential scanning calori- metry(DSC) and microcalorimetry. The apparent activity energy(Ea), reaction mechanism function, quadratic equa- tion of specific heat capacity(Cp) with temperature were obtained. The kinetic parameters of the decomposition reac- tion are Ea=170.2 kJ/mol and lg(A/s^-l)=16.3. The kinetic equation isf(α)=(4/3)(1-α)[-ln(1-α)]^1/4. The specific heat capacity equation is Cp=1.285-6.276×10^-3T+1.581×10^-5T^2(283 K〈T〈353 K). With these parameters, the thermal safety properties of NGEC were studied, such as the self-accelerating decomposition temperature(TSADT), critical temperature of thermal explosion(Tb) and adiabatic time-to-explosion(tTlad). The results of the thermal safety evalua- tion of NGEC are: TSADV=459.6 K, Tb=492.8 K, tTlad=0.8 S.展开更多
Fireworks products are energy-containing materials and are hazardous during production,storage,transportation,and use.By analyzing the range of civil aviation ground ambient temperature and civil aviation cabin ambien...Fireworks products are energy-containing materials and are hazardous during production,storage,transportation,and use.By analyzing the range of civil aviation ground ambient temperature and civil aviation cabin ambient temperature in storage and ground operation as well as establishing a spontaneous combustion mathematical model for cylindrical fireworks products based on the spontaneous combustion theory,we identified the critical temperature for spontaneous combustion of a single spray and analyzed the thermal safety of fireworks products under the civil aviation ambient temperature by example to provide theoretical support for the feasibility study of transporting fireworks products by civil aviation.展开更多
A new high-energy organic magnesium salt [Mg(H2O)6](BTATz)·2H2O[BTATz=3,6-bis(1H-1,2,3,4-tetrazol-5-yl-amino)-1,2,4,5-tetrazine] was synthesized and characterized by elemental analysis and Fourier transform...A new high-energy organic magnesium salt [Mg(H2O)6](BTATz)·2H2O[BTATz=3,6-bis(1H-1,2,3,4-tetrazol-5-yl-amino)-1,2,4,5-tetrazine] was synthesized and characterized by elemental analysis and Fourier transform infrared(FTIR) spectrometry.Its crystal structure was determined by X-ray single crystal diffraction.The crystal belongs to monoclinic system with space group C2/c and a=2.1329(7) nm,b=0.52275(16) nm,c=1.5909(5) nm,β=100.471(6)°,V=1.7443(9) nm3,Z=4,μ=0.361 mm-1,F(000)=900 and Dc=1.644 g/cm3.Meanwhile,the thermal behavior of [Mg(H2O)6](BTATz)·2H2O was studied under the non-isothermal conditions by differential scanning calorimetry(DSC) and thermalgravity-differential thermalgravity(TG-DTG) methods.The enthalpy,apparent activation energy and per-exponential factor of the main exothermic decomposition reaction are 898.88 J/g,139.2 kJ/mol and 1010.48 S-1,respectively.The values of the self-accelerating decomposition temperature(TsADT),the thermal ignition temperature(TTIT) and the critical temperature of thermal explosion(Tb) for [Mg(H2O)6](BTATz).2H2O are 515.13,532.08 and 565.99 K,respectively.展开更多
Two energetic salts, DPHT.DNS-H20(1) and DHT.2DNS.2H20(2)[DPHT=3-(3,5-dimethyl-lH-pyrazol- 1-yl)-6-hydrazinyl-1,2,4,5-tetrazine; DHT=3,6-dihydrazinyl-l,2,4,5-tetrazine], were synthesized from S-tetrazine with 3,...Two energetic salts, DPHT.DNS-H20(1) and DHT.2DNS.2H20(2)[DPHT=3-(3,5-dimethyl-lH-pyrazol- 1-yl)-6-hydrazinyl-1,2,4,5-tetrazine; DHT=3,6-dihydrazinyl-l,2,4,5-tetrazine], were synthesized from S-tetrazine with 3,5-dinitrosalicylic acid(DNS). Compounds 1 and 2 were structurally characterized by elemental analysis, infrared spectroscopy, and single-crystal X-ray diffraction. The thermal behavior of the title compounds was studied by differential scanning calorimetry(DSC) and thermogravimetry(TG). The non-isothermal decomposition kinetics of compound 2 were investigated. The self-accelerating decomposition temperature, thermal ignition temperature, and critical temperatures of thermal explosion were obtained to evaluate the thermal safety of compound 2. The results show compounds 1 and 2 decompose at 150.8 and 179.2℃, respectively. The TSADT and Tb of compound 2 are higher than those of DHT, which indicates compound 2 is a potential candidate for energetic materials that have good thermal stability. Keywords Tetrazine compound; Dinitrosalicylic acid(DNS); Crystal structure; Thermal behavior; Thermal safety展开更多
Safe batteries are the basis for next-generation application scenarios such as portable energy storage devices and electric vehicles,which are crucial to achieving carbon neutralization.Electrolytes,separators,and ele...Safe batteries are the basis for next-generation application scenarios such as portable energy storage devices and electric vehicles,which are crucial to achieving carbon neutralization.Electrolytes,separators,and electrodes as main components of lithium batteries strongly affect the occurrence of safety accidents.Responsive materials,which can respond to external stimuli or environmental change,have triggered extensive attentions recently,holding great promise in facilitating safe and smart batteries.This review thoroughly discusses recent advances regarding the construction of high-safety lithium batteries based on internal thermal-responsive strategies,together with the corresponding changes in electrochemical performance under external stimulus.Furthermore,the existing challenges and outlook for the design of safe batteries are presented,creating valuable insights and proposing directions for the practical implementation of safe lithium batteries.展开更多
The integration of battery energy storage systems(BESS)throughout our energy chain poses concerns regarding safety,especially since batteries have high energy density and numerous BESS failure events have occurred.Wid...The integration of battery energy storage systems(BESS)throughout our energy chain poses concerns regarding safety,especially since batteries have high energy density and numerous BESS failure events have occurred.Wider spread adoption will only increase the prevalence of these failure events unless there is a step change in the management and design of BESS.To understand the causes of failure,the main challenges of BESS safety are summarised.BESS consequences and failure events are discussed,including specific focus on the chain of events causing thermal runaway,and a case study of a BESS explosion in Surprise Arizona is analysed.Based on the technology and past events,a paradigm shift is required to improve BESS safety.In this review,a holistic approach is proposed.This combines currently adopted approaches including battery cell testing,lumped cell mathematical modelling,and calorimetry,alongside additional measures taken to ensure BESS safety including the requirement for computational fluid dynamics and kinetic modelling,assessment of installation level testing of the full BESS system and not simply a single cell battery test,hazard and layers of protection analysis,gas chromatography,and composition testing.The holistic approach proposed in this study aims to address challenges of BESS safety and form the basis of a paradigm shift in the safety management and design of these systems.展开更多
NASICON-type Na_(3)V_(2)(PO_(4))_(3) is a promising electrode material for developing advanced sodium-ion batteries.Preparing Na_(3)V_(2)(PO_(4))_(3) with good performance by a cost-effective and large-scale method is...NASICON-type Na_(3)V_(2)(PO_(4))_(3) is a promising electrode material for developing advanced sodium-ion batteries.Preparing Na_(3)V_(2)(PO_(4))_(3) with good performance by a cost-effective and large-scale method is significant for industrial applications.In this work,a porous Na_(3)V_(2)(PO_(4))_(3)/C cathode material with excellent electrochemical performance is successfully prepared by an agar-gel combined with freeze-drying method.The Na_(3)V_(2)(PO_(4))_(3)/C cathode displayed specific capacities of 113.4 mAh·g^(-1),107.0 mAh·g^(-1) and 87.1 mAh·g^(-1) at 0.1 C,1 C and 10 C,respectively.For the first time,the 500-mAh soft-packed symmetrical sodium-ion batteries based on Na_(3)V_(2)(PO_(4))_(3)/C electrodes are successfully fabricated.The 500-mAh symmetrical batteries exhibit outstanding low temperature performance with a capacity retention of 83%at 0℃ owing to the rapid sodium ion migration ability and structural stability of Na_(3)V_(2)(PO_(4))_(3)/C.Moreover,the thermal runaway features are revealed by accelerating rate calorimetry(ARC)test for the first time.Thermal stability and safety of the symmetrical batteries are demonstrated to be better than lithium-ion batteries and some reported sodium-ion batteries.Our work makes it clear that the soft-packed symmetrical sodium ion batteries based on Na_(3)V_(2)(PO_(4))_(3)/C have a prospect of practical application in high safety requirement fields.展开更多
In the present study, thermal hazards of TNT and DNAN used as the molten binder in TKX-50-based meltcast explosives were comparatively studied through accelerating rate calorimeter(ARC) and Cook-off experiments. Two k...In the present study, thermal hazards of TNT and DNAN used as the molten binder in TKX-50-based meltcast explosives were comparatively studied through accelerating rate calorimeter(ARC) and Cook-off experiments. Two kinds of ARC operation modes were performed to investigate the thermal safety performance under adiabatic conditions(HWS mode) and constant heating(CHR mode). The obtained results demonstrated that at both heating modes, DNAN/TKX-50 outperformed TNT/TKX-50 from the thermal safety point of view. However, the sensitivity to heat of the samples was reverse because of the different heating modes. In addition, the results of thermal hazard assessment obtained from the cookoff experiment complied with ARC analysis which indicated the molten binder TNT replaced by DNAN would reduce the hazard of the TKX-50 melt cast explosive. Furthermore, the results of cook-off experiments also showed that DNAN/TKX-50 outperformed TNT/TKX-50 from the aspect of thermal stability, which was consistent with the result of CHR mode because of the similar heating process.展开更多
Cycle stability and thermal safety are critical to the commercialization of nickel-rich layered materials,yet whether there is a potential correlation between these two factors is still controversial. Herein, the rela...Cycle stability and thermal safety are critical to the commercialization of nickel-rich layered materials,yet whether there is a potential correlation between these two factors is still controversial. Herein, the relationship between the cycle stability and thermal stability of nickel-rich cathode materials have been systematically studied through five different calcination temperatures of Li[NiCoMn]O(NCM83) cathode materials. The research results confirm that the cycle stability and thermal safety of nickel-rich cathode materials do not necessarily show a positive correlation. Actually, with the calcination temperature elevated, the thermal stability of the NCM83 is enhanced, while the cycle stability is degraded. This opposite correlation is not commonly reported in previous literatures. In this work, systematical characterizations demonstrate that under the experimental conditions, the capacity retention of NCM83 is mainly determined by the Li/Ni cation disorder and H2-H3 irreversible phase transition,which is optimal at lower calcination temperature. Meanwhile, the thermal stability is mainly impacted by thermal expansion characteristics and interfacial stability of cathode material, and it is dramatically improved by the mechanical strength of the secondary particles reinforced at high calcinated temperature. This study provides some new insights on understanding and designing of the high-energy cathode materials with long cycle-life and superior safety.展开更多
The risk and thermal safety characteristics of GX kerosene,HX kerosene and WX kerosene are studied.Firstly,the explosion lower limits of three kinds of kerosene steams are tested by using the self-made explosion limit...The risk and thermal safety characteristics of GX kerosene,HX kerosene and WX kerosene are studied.Firstly,the explosion lower limits of three kinds of kerosene steams are tested by using the self-made explosion limit measuring system.Then differential scanning calorimeter(DSC)is employed to perform linear heating experiment on kerosene to analyze its thermal decomposition characteristics.The pyrolysis kinetic parameters of three kinds of kerosene are calculated based on the thermal dynamic methods.The experimental results show that the flash point and lower explosion limit of GX kerosene are relatively low.The DSC test shows that the lowest initial decomposition temperature of HX kerosene is 116.5℃.According to pyrolysis kinetics calculation,the T_(D24) and apparent activation energy of HX kerosene are the minimum.ARC test shows that GX kerosene has the worst thermal stability under the adiabatic condition.The high temperature stabilities of the three kinds of kerosene all meet the requirements.On the whole,GX kerosene has the highest hazard,and HX kerosene has the lowest thermal safety.The accumulation of heat should be prevented during the storage and transportation of kerosene.This study provides the crucial safety characteristics data of coal-based aerospace kerosene-based,and provides technical support for engine reliability growth and performance improvement.展开更多
ADVN (2,2'-Azobis (2,4-dimethyl) valeronitrile), a free radical initiator, is widely applied for the polymerization reaction of polymers in the chemical industries. When ADVN releases free radical during the deco...ADVN (2,2'-Azobis (2,4-dimethyl) valeronitrile), a free radical initiator, is widely applied for the polymerization reaction of polymers in the chemical industries. When ADVN releases free radical during the decomposition process, it can accompany abundant heat and huge pressure to increase the possibility of thermal runaway and hazard, causing unacceptable thermal explosion or fire accidents. To develop an inherently safer process for ADVN, the thermal stability parameters of ADVN were obtained to investigate thermal decomposition characteristics using a DSC (differential scanning calorimetry) and TG (thermogravimetry). We used various kinetic models to completely depict the kinetic behavior and determine the thermal safety parameters for ADVN. The green thermal analysis approach could be used to substitute for complicated procedures and large-scale experiments of traditional thermal analysis methods, avoiding environmental pollution and energy depletion.展开更多
Phase change materials have attracted significant attention owing to their promising applications in many aspects.However,it is seriously restricted by some drawbacks such as obvious leakage,relatively low thermal con...Phase change materials have attracted significant attention owing to their promising applications in many aspects.However,it is seriously restricted by some drawbacks such as obvious leakage,relatively low thermal conductivity,and easily flame properties.Herein,a novel flame retardant form-stable composite phase change material(CPCM)with polyethylene glycol/epoxy resin/expanded graphite/magnesium hydroxide/zinc hydroxide(PEG/ER/EG/MH/ZH)has been successfully prepared and utilized in the battery module.The addition of MH and ZH(MH:ZH=1:2)as flame retardant additions can not only greatly improve the flame retardant effect but also maintain the physical and mechanical properties of the polymer.Further,the EG(5%)can provide the graphitization degree of residual char which is beneficial to building a more protective barrier.This designation of CPCM can exhibit leakage-proof,high thermal conductivity(increasing 400%-500%)and prominent flammable retardant performance.Especially at 3C discharge rate,the maximum temperature is controlled below 54.2℃and the temperature difference is maintained within 2.2℃in the battery module,which presents a superior thermal management effect.This work suggests an efficient and feasible approach toward exploiting a multifunctional phase change material for thermal management systems for electric vehicles and energy storage fields.展开更多
The unparalleled energy density has granted lithium-sulfur batteries(LSBs)with attractive usages.Unfortunately,LSBs still face some unsurpassed challenges in industrialization,with polysulfides shuttling,dendrite grow...The unparalleled energy density has granted lithium-sulfur batteries(LSBs)with attractive usages.Unfortunately,LSBs still face some unsurpassed challenges in industrialization,with polysulfides shuttling,dendrite growth and thermal hazard as the major problems triggering the cycling instability and low safety.With the merit of convenience,the method of designing functional separator has been adapted.Concretely,the carbon aerogel confined with CoS_(2)(CoS_(2)-NCA)is constructed and coated on Celgard separator surface,acquiring CoS_(2)-NCA modified separator(CoS_(2)-NCA@C),which holds the promoted electrolyte affinity and flame retardance.As revealed,CoS_(2)-NCA@C cell gives a high discharge capacity 1536.9 mAh/g at 1st cycle,much higher than that of Celgard cell(987.1 mAh/g).Moreover,the thermal runaway triggering time is dramatically prolonged by 777.4 min,corroborating the promoted thermal safety of cell.Noticeably,the higher coulombic efficiency stability and lower overpotential jointly confirm the efficacy of CoS_(2)-NCA@C in suppressing the lithium dendrite growth.Overall,this work can provide useful inspirations for designing functional separator,coping with the vexing issues of LSBs.展开更多
With the increase of people’s demand,it is extremely desired for developing high-safety,widetemperature-range and high-energy-density lithium batteries,but huge challenges are remained due to shrinkage and combustion...With the increase of people’s demand,it is extremely desired for developing high-safety,widetemperature-range and high-energy-density lithium batteries,but huge challenges are remained due to shrinkage and combustion of commonly used polyolefin separators at high temperatures,as well as narrow usable temperature range and high flammability of conventionally commercialized liquid electrolytes.In this work,we report a multifunctional separator mainly consisting of Zn^(2+)-phytate coordination complex nanoparticles and bacterial cellulose nanofibers,named the BZP separator,which possesses high porosity,excellent thermotolerance,good flame retardancy,abilities of anion binding and Ni^(2+)capturing.Through cooperating with the fluoride-free wide-temperature-range electrolyte,Li//LiFePO_(4) cells not only deliver discharge capacities of 110.39 mA h g^(-1)and 113.25 mA h g^(-1)after 2200 cycles (2 C) and1600 cycles (5 C) at 25℃,with capacity retentions of 76.59%and 86.09%,respectively,but also exhibit excellent cycling performance at 80℃ and-40℃.Significantly,the Li//NCM811 cell with a loading of7.8 mg cm^(-2)delivers a discharge capacity of 146.64 mA h g^(-1)after 200 cycles at 0.5 C,with a capacity retention of 89.03%.In addition,pouch cells can work at 120℃ and have low flammability.展开更多
This paper performs an experimental evaluation of thermolysis-driven gases generated by the thermal decomposition of 1 M LiPF6+EC/DMC=1/1 v/v electrolytes at various decomposition temperatures,pyrolysis durations,and ...This paper performs an experimental evaluation of thermolysis-driven gases generated by the thermal decomposition of 1 M LiPF6+EC/DMC=1/1 v/v electrolytes at various decomposition temperatures,pyrolysis durations,and oxygen concentrations.Carried out in a home-built autoclave filled with pure helium,the experiment reveals that as the decomposition temperature increases,more types and larger quantities of gases will be released.Specifically,the experimental results demonstrate trends of logistic growth in the volume concentration of CO2,C2H6O,C2H4,CO,and C2H4O2 with the increase of decomposition temperature.With a prolonged pyrolysis duration,while volume concentrations of certain gases,such as CO2,C2H6O,C2H5F,and CO would increase,the concentration of C2H4O2 actually decreases.Moreover,concentrations of both C2H4 and C2H5F will first decrease and reach their minimum values at 1%v/v oxygen concentration,and then they would quickly climb back at higher oxygen concentrations,while the concentrations of C2H6 and C2H3F would decrease monotonically.It is envisioned that the detailed experimental results and findings on the gas generation pattern of 1 M LiPF6+EC/DMC=1/1 v/v electrolytes can facilitate the development of an early warning mechanism of thermal runaway based on gas sensing technology,which can be effectively applied to monitor the potential thermal failures of lithium-ion batteries with the same type of electrolyte and thus promote the thermal safety of battery packs in safety-critical applications.展开更多
Developing an effective method to synthesize high-performance high-voltage LiCoO_(2) is essential for its industrialization in lithium batteries(LIBs).This work proposes a simple mass-produced strategy for the first t...Developing an effective method to synthesize high-performance high-voltage LiCoO_(2) is essential for its industrialization in lithium batteries(LIBs).This work proposes a simple mass-produced strategy for the first time,that is,negative temperature coefficient thermosensitive Pr_(6)O_(11) nanoparticles are uniformly modified on LiCoO_(2) to prepare LiCoO_(2)@Pr_(6)O_(11)(LCO@PrO)via a liquid-phase mixing combined with annealing method.Tested at 274 mA g−1,the modified LCO@PrO electrodes deliver excellent 4.5 V high-voltage cycling performance with capacity retention ratios of 90.8%and 80.5%at 25 and 60℃,being much larger than those of 22.8%and 63.2%for bare LCO electrodes.Several effective strategies were used to clearly unveil the performance enhancement mechanism induced by Pr_(6)O_(11) modification.It is discovered that Pr_(6)O_(11) can improve interface compatibility,exhibit improved conductivity at elevated temperature,thus enhance the Li^(+)diffusion kinetics,and suppress the phase transformation of LCO and its resulting mechanical stresses.The 450 mAh LCO@PrO‖graphite pouch cells show excellent LIB performance and improved thermal safety characteristics.Importantly,the energy density of such pouch cell was increased even by~42%at 5 C.This extremely convenient technology is feasible for producing high-energy density LIBs with negligible cost increase,undoubtedly providing important academic inspiration for industrialization.展开更多
The properties of dissolution in different solvents,the specific heat capacity and thermal decomposition process under the non-isothermal conditions for energetic triazole ionic salts 1,2,4-triazolium nitrate(1a),1,2,...The properties of dissolution in different solvents,the specific heat capacity and thermal decomposition process under the non-isothermal conditions for energetic triazole ionic salts 1,2,4-triazolium nitrate(1a),1,2,3-triazolium nitrate(1b),3,4,5triamino-1,2,4-triazolium nitrate(2a),3,4,5-triamino-1,2,4-triazolium dinitramide(2b)were precisely measured using a Calvet Microcalorimeter.The thermochemical equation,differential enthalpies of dissolution(△difH m ),standard molar enthalpies of dissolution(△difH m ),apparent activation energy(E),pre-exponential constant(A),kinetic equation,linear relationship of specific heat capacity with temperature over the temperature range from 283 to 353 K,standard molar heat capacity(C p,m)and enthalpy,entropy and Gibbs free energy at 283–353 K,taking 298.15 K as the benchmark for 1a,1b,2a and 2b were obtained with treating experimental data and theoretical calculation method.The kinetic and thermodynamic parameters of thermal decomposition reaction,critical temperature of thermal explosion(Tb),self-accelerating decomposition temperature(TSADT)and adiabatic time-to-explosion(t)of 1a,1b,2a and 2b were calculated.Their heat-resistance abilities were evaluated.Information was obtained on the relation between molecular structures and properties of 1a,1b,2a and 2b.展开更多
基金jointly supported by the Natural Science Foundations of China(No.22179020,12174057)Fujian Province’s“Young Eagle Program”Youth Top Talents Program。
文摘To meet the demand for high-performance LiCoO_(2) batteries,it is necessary to overcome challenges such as interface degradation and rapid capacity degradation caused by changes in bulk structure,especially under deep delithiation and high temperature conditions.The ion conductive coating layer of Li_(3)PO_(4) has been directly modified on the surface of LiCoO_(2) particles using magnetron sputtering method,significantly improving the lithium storage performance of LiCoO_(2)@Li_(3)PO_(4) composites.Compared to pure LiCoO_(2),the modified LiCoO_(2) sample exhibits obviously better cycle life and high-temperature performance.Especially,under the conditions of 2 and 1 C,the LiCoO_(2)@Li_(3)PO_(4) electrode delivers excellent cycling performance at high voltage of 4.5 V,with capacity retention rates of 89.7%and 75.7%at room temperature and high temperature of 45℃,being far greater than those of 12.3%and 29.1%for bare LiCoO_(2) electrodes.It is discovered that the Li_(3)PO_(4) coating layer not only effectively enhances interface compatibility and suppresses the irreversible phase transition of LiCoO_(2),but also further improves the Li^(+)transport kinetics and significantly reduces battery polarization,ultimately enabling the modified LiCoO_(2) electrode to exhibit excellent lithium storage performance and thermal safety characteristics under high voltage conditions.Thus,such effective modified strategy can undoubtedly provide an important academic inspiration for LiCoO_(2) implication.
基金supported by the National Natural Science Foundation of China(NSFC,Nos.52176199,and U20A20310)supported by the Program of Shanghai Academic/Technology Research Leader(22XD1423800)。
文摘Understanding the thermal safety evolution of lithium-ion batteries during high-temperature usage conditions bears significant implications for enhancing the safety management of aging batteries.This work investigates the thermal safety evolution mechanism of lithium-ion batteries during high-temperature aging.Similarities arise in the thermal safety evolution and degradation mechanisms for lithium-ion batteries undergoing cyclic aging and calendar aging.Employing multi-angle characterization analysis,the intricate mechanism governing the thermal safety evolution of lithium-ion batteries during high-temperature aging is clarified.Specifically,lithium plating serves as the pivotal factor contributing to the reduction in the self-heating initial temperature.Additionally,the crystal structure of the cathode induced by the dissolution of transition metals and the reductive gas generated during aging attacking the crystal structure of the cathode lead to a decrease in thermal runaway triggering temperature.Furthermore,the loss of active materials and active lithium during aging contributes to a decline in both the maximum temperature and the maximum temperature rise rate,ultimately indicating a decrease in the thermal hazards of aging batteries.
文摘Thermal safety of modular charge which is fed into and retained in the chamber after gun fires consecutively is first investigated with cook-off method,A two-dimensional cook-off model of modular charge in gun chamber is established and the cook-off process of modular charge in gun chamber is numerically simulated.Then the effects of module number and firing condition on charge thermal safety are evaluated by researching the cook-off response characteristics of modules.The results show that under conditions of different module numbers the cook-off responses all occur on the module closest to the boundary of missile,and the single-base propellants located at the inner surface of cartridge ignite first.When the number of loaded module changes from 1 to 6,the cook-off response temperatures vary little,only in a small range of 478.1 K-482.4 K.The cook-off response times decrease logarithmically in the range of 211.25-166.7 s with the increasing length of residual air gap in gun chamber.The simulation results are well matched with the experimental data.Furthermore,different firing conditions have greatinfluence on the cook-off response time,minor influence on the initial response position and little in-fluence on the response temperature.Under the three conditions of consecutive 32 launches with 5 rounds/min,43 launches with 1 round/min,and 41 launches with different firing frequencies,the cook off response temperatures are 479.2 K,481.1 K and 479.9 K respectively and the response times are 709.25,211.2 s and 214.4 s respectively.The response position is near the middle area of the inner cartridge surface in the former condition and near the right area in the latter two conditions.
基金Supported by the Foundation of National Key Laboratory of Science and Technology on Combustion and Explosion of China(No.9140C3503011004)
文摘The thermal behavior, nonisothermal decomposition reaction kinetics and specific heat capacity of nitrate glycerol ether cellulose(NGEC) were determined by thermogravimetric analysis(TGA), differential scanning calori- metry(DSC) and microcalorimetry. The apparent activity energy(Ea), reaction mechanism function, quadratic equa- tion of specific heat capacity(Cp) with temperature were obtained. The kinetic parameters of the decomposition reac- tion are Ea=170.2 kJ/mol and lg(A/s^-l)=16.3. The kinetic equation isf(α)=(4/3)(1-α)[-ln(1-α)]^1/4. The specific heat capacity equation is Cp=1.285-6.276×10^-3T+1.581×10^-5T^2(283 K〈T〈353 K). With these parameters, the thermal safety properties of NGEC were studied, such as the self-accelerating decomposition temperature(TSADT), critical temperature of thermal explosion(Tb) and adiabatic time-to-explosion(tTlad). The results of the thermal safety evalua- tion of NGEC are: TSADV=459.6 K, Tb=492.8 K, tTlad=0.8 S.
基金“Chenguang Program”supported by Shanghai Education Development Foundation and Shanghai Municipal Education Commission(16CGB28).
文摘Fireworks products are energy-containing materials and are hazardous during production,storage,transportation,and use.By analyzing the range of civil aviation ground ambient temperature and civil aviation cabin ambient temperature in storage and ground operation as well as establishing a spontaneous combustion mathematical model for cylindrical fireworks products based on the spontaneous combustion theory,we identified the critical temperature for spontaneous combustion of a single spray and analyzed the thermal safety of fireworks products under the civil aviation ambient temperature by example to provide theoretical support for the feasibility study of transporting fireworks products by civil aviation.
基金Supported by the National Natural Science Foundation of China(No.21101127), the Natural Science Basic Research Plan in Shaanxi Province of China(No.2011JQ2002), the China Postdoctoral Science Foundation Funded Proj ect(No.20110491676), the National Defense Pre-research Foundation of China(No.9140A28020111BQ3401) and the National Defense Pre-research Foun-dation of China(No.A312011005).
文摘A new high-energy organic magnesium salt [Mg(H2O)6](BTATz)·2H2O[BTATz=3,6-bis(1H-1,2,3,4-tetrazol-5-yl-amino)-1,2,4,5-tetrazine] was synthesized and characterized by elemental analysis and Fourier transform infrared(FTIR) spectrometry.Its crystal structure was determined by X-ray single crystal diffraction.The crystal belongs to monoclinic system with space group C2/c and a=2.1329(7) nm,b=0.52275(16) nm,c=1.5909(5) nm,β=100.471(6)°,V=1.7443(9) nm3,Z=4,μ=0.361 mm-1,F(000)=900 and Dc=1.644 g/cm3.Meanwhile,the thermal behavior of [Mg(H2O)6](BTATz)·2H2O was studied under the non-isothermal conditions by differential scanning calorimetry(DSC) and thermalgravity-differential thermalgravity(TG-DTG) methods.The enthalpy,apparent activation energy and per-exponential factor of the main exothermic decomposition reaction are 898.88 J/g,139.2 kJ/mol and 1010.48 S-1,respectively.The values of the self-accelerating decomposition temperature(TsADT),the thermal ignition temperature(TTIT) and the critical temperature of thermal explosion(Tb) for [Mg(H2O)6](BTATz).2H2O are 515.13,532.08 and 565.99 K,respectively.
基金Supported by the National Natural Science Foundation of China(Nos.21673179,21504067) and the National Students' Innovation and Entrepreneurship Training Program, China(No.201710697038).
文摘Two energetic salts, DPHT.DNS-H20(1) and DHT.2DNS.2H20(2)[DPHT=3-(3,5-dimethyl-lH-pyrazol- 1-yl)-6-hydrazinyl-1,2,4,5-tetrazine; DHT=3,6-dihydrazinyl-l,2,4,5-tetrazine], were synthesized from S-tetrazine with 3,5-dinitrosalicylic acid(DNS). Compounds 1 and 2 were structurally characterized by elemental analysis, infrared spectroscopy, and single-crystal X-ray diffraction. The thermal behavior of the title compounds was studied by differential scanning calorimetry(DSC) and thermogravimetry(TG). The non-isothermal decomposition kinetics of compound 2 were investigated. The self-accelerating decomposition temperature, thermal ignition temperature, and critical temperatures of thermal explosion were obtained to evaluate the thermal safety of compound 2. The results show compounds 1 and 2 decompose at 150.8 and 179.2℃, respectively. The TSADT and Tb of compound 2 are higher than those of DHT, which indicates compound 2 is a potential candidate for energetic materials that have good thermal stability. Keywords Tetrazine compound; Dinitrosalicylic acid(DNS); Crystal structure; Thermal behavior; Thermal safety
基金supported by the National Natural Science Foundation of China(22179070,U1932220)the Natural Science Foundation of Jiangsu Province(BK20220073)the Fundamental Research Funds for the Central Universities(RF1028623157)。
文摘Safe batteries are the basis for next-generation application scenarios such as portable energy storage devices and electric vehicles,which are crucial to achieving carbon neutralization.Electrolytes,separators,and electrodes as main components of lithium batteries strongly affect the occurrence of safety accidents.Responsive materials,which can respond to external stimuli or environmental change,have triggered extensive attentions recently,holding great promise in facilitating safe and smart batteries.This review thoroughly discusses recent advances regarding the construction of high-safety lithium batteries based on internal thermal-responsive strategies,together with the corresponding changes in electrochemical performance under external stimulus.Furthermore,the existing challenges and outlook for the design of safe batteries are presented,creating valuable insights and proposing directions for the practical implementation of safe lithium batteries.
文摘The integration of battery energy storage systems(BESS)throughout our energy chain poses concerns regarding safety,especially since batteries have high energy density and numerous BESS failure events have occurred.Wider spread adoption will only increase the prevalence of these failure events unless there is a step change in the management and design of BESS.To understand the causes of failure,the main challenges of BESS safety are summarised.BESS consequences and failure events are discussed,including specific focus on the chain of events causing thermal runaway,and a case study of a BESS explosion in Surprise Arizona is analysed.Based on the technology and past events,a paradigm shift is required to improve BESS safety.In this review,a holistic approach is proposed.This combines currently adopted approaches including battery cell testing,lumped cell mathematical modelling,and calorimetry,alongside additional measures taken to ensure BESS safety including the requirement for computational fluid dynamics and kinetic modelling,assessment of installation level testing of the full BESS system and not simply a single cell battery test,hazard and layers of protection analysis,gas chromatography,and composition testing.The holistic approach proposed in this study aims to address challenges of BESS safety and form the basis of a paradigm shift in the safety management and design of these systems.
基金This work was supported by the National Key Research and Development Program(2016YFB0901505)the Natural Science Foundation of China(22005190,21938005)+1 种基金the Science&Technology Commission of Shanghai Municipality(19DZ1205500)Zhejiang Key Research and Development Program(2020C01128).
文摘NASICON-type Na_(3)V_(2)(PO_(4))_(3) is a promising electrode material for developing advanced sodium-ion batteries.Preparing Na_(3)V_(2)(PO_(4))_(3) with good performance by a cost-effective and large-scale method is significant for industrial applications.In this work,a porous Na_(3)V_(2)(PO_(4))_(3)/C cathode material with excellent electrochemical performance is successfully prepared by an agar-gel combined with freeze-drying method.The Na_(3)V_(2)(PO_(4))_(3)/C cathode displayed specific capacities of 113.4 mAh·g^(-1),107.0 mAh·g^(-1) and 87.1 mAh·g^(-1) at 0.1 C,1 C and 10 C,respectively.For the first time,the 500-mAh soft-packed symmetrical sodium-ion batteries based on Na_(3)V_(2)(PO_(4))_(3)/C electrodes are successfully fabricated.The 500-mAh symmetrical batteries exhibit outstanding low temperature performance with a capacity retention of 83%at 0℃ owing to the rapid sodium ion migration ability and structural stability of Na_(3)V_(2)(PO_(4))_(3)/C.Moreover,the thermal runaway features are revealed by accelerating rate calorimetry(ARC)test for the first time.Thermal stability and safety of the symmetrical batteries are demonstrated to be better than lithium-ion batteries and some reported sodium-ion batteries.Our work makes it clear that the soft-packed symmetrical sodium ion batteries based on Na_(3)V_(2)(PO_(4))_(3)/C have a prospect of practical application in high safety requirement fields.
基金the National Defense Foundation of China (3090021322001, 3090020221912, 3090021211903.) for financial support of this work。
文摘In the present study, thermal hazards of TNT and DNAN used as the molten binder in TKX-50-based meltcast explosives were comparatively studied through accelerating rate calorimeter(ARC) and Cook-off experiments. Two kinds of ARC operation modes were performed to investigate the thermal safety performance under adiabatic conditions(HWS mode) and constant heating(CHR mode). The obtained results demonstrated that at both heating modes, DNAN/TKX-50 outperformed TNT/TKX-50 from the thermal safety point of view. However, the sensitivity to heat of the samples was reverse because of the different heating modes. In addition, the results of thermal hazard assessment obtained from the cookoff experiment complied with ARC analysis which indicated the molten binder TNT replaced by DNAN would reduce the hazard of the TKX-50 melt cast explosive. Furthermore, the results of cook-off experiments also showed that DNAN/TKX-50 outperformed TNT/TKX-50 from the aspect of thermal stability, which was consistent with the result of CHR mode because of the similar heating process.
基金financially supported by the China Postdoctoral Science Foundation(2021M700396)the National Natural Science Foundation of China(52102206)the National Research Foundation of Republic of Korea(2021K2A9A2A06044652)。
文摘Cycle stability and thermal safety are critical to the commercialization of nickel-rich layered materials,yet whether there is a potential correlation between these two factors is still controversial. Herein, the relationship between the cycle stability and thermal stability of nickel-rich cathode materials have been systematically studied through five different calcination temperatures of Li[NiCoMn]O(NCM83) cathode materials. The research results confirm that the cycle stability and thermal safety of nickel-rich cathode materials do not necessarily show a positive correlation. Actually, with the calcination temperature elevated, the thermal stability of the NCM83 is enhanced, while the cycle stability is degraded. This opposite correlation is not commonly reported in previous literatures. In this work, systematical characterizations demonstrate that under the experimental conditions, the capacity retention of NCM83 is mainly determined by the Li/Ni cation disorder and H2-H3 irreversible phase transition,which is optimal at lower calcination temperature. Meanwhile, the thermal stability is mainly impacted by thermal expansion characteristics and interfacial stability of cathode material, and it is dramatically improved by the mechanical strength of the secondary particles reinforced at high calcinated temperature. This study provides some new insights on understanding and designing of the high-energy cathode materials with long cycle-life and superior safety.
基金Special project of the Science and Industry Bureau(No.1202141030882)。
文摘The risk and thermal safety characteristics of GX kerosene,HX kerosene and WX kerosene are studied.Firstly,the explosion lower limits of three kinds of kerosene steams are tested by using the self-made explosion limit measuring system.Then differential scanning calorimeter(DSC)is employed to perform linear heating experiment on kerosene to analyze its thermal decomposition characteristics.The pyrolysis kinetic parameters of three kinds of kerosene are calculated based on the thermal dynamic methods.The experimental results show that the flash point and lower explosion limit of GX kerosene are relatively low.The DSC test shows that the lowest initial decomposition temperature of HX kerosene is 116.5℃.According to pyrolysis kinetics calculation,the T_(D24) and apparent activation energy of HX kerosene are the minimum.ARC test shows that GX kerosene has the worst thermal stability under the adiabatic condition.The high temperature stabilities of the three kinds of kerosene all meet the requirements.On the whole,GX kerosene has the highest hazard,and HX kerosene has the lowest thermal safety.The accumulation of heat should be prevented during the storage and transportation of kerosene.This study provides the crucial safety characteristics data of coal-based aerospace kerosene-based,and provides technical support for engine reliability growth and performance improvement.
文摘ADVN (2,2'-Azobis (2,4-dimethyl) valeronitrile), a free radical initiator, is widely applied for the polymerization reaction of polymers in the chemical industries. When ADVN releases free radical during the decomposition process, it can accompany abundant heat and huge pressure to increase the possibility of thermal runaway and hazard, causing unacceptable thermal explosion or fire accidents. To develop an inherently safer process for ADVN, the thermal stability parameters of ADVN were obtained to investigate thermal decomposition characteristics using a DSC (differential scanning calorimetry) and TG (thermogravimetry). We used various kinetic models to completely depict the kinetic behavior and determine the thermal safety parameters for ADVN. The green thermal analysis approach could be used to substitute for complicated procedures and large-scale experiments of traditional thermal analysis methods, avoiding environmental pollution and energy depletion.
基金supported by the Natural Science Foundation of Guangdong province(2022A1515010161)the Guangdong Basic and Applied Basic Research Foundation(2021B1515130008)the National Natural Science Foundation of China(51977062).
文摘Phase change materials have attracted significant attention owing to their promising applications in many aspects.However,it is seriously restricted by some drawbacks such as obvious leakage,relatively low thermal conductivity,and easily flame properties.Herein,a novel flame retardant form-stable composite phase change material(CPCM)with polyethylene glycol/epoxy resin/expanded graphite/magnesium hydroxide/zinc hydroxide(PEG/ER/EG/MH/ZH)has been successfully prepared and utilized in the battery module.The addition of MH and ZH(MH:ZH=1:2)as flame retardant additions can not only greatly improve the flame retardant effect but also maintain the physical and mechanical properties of the polymer.Further,the EG(5%)can provide the graphitization degree of residual char which is beneficial to building a more protective barrier.This designation of CPCM can exhibit leakage-proof,high thermal conductivity(increasing 400%-500%)and prominent flammable retardant performance.Especially at 3C discharge rate,the maximum temperature is controlled below 54.2℃and the temperature difference is maintained within 2.2℃in the battery module,which presents a superior thermal management effect.This work suggests an efficient and feasible approach toward exploiting a multifunctional phase change material for thermal management systems for electric vehicles and energy storage fields.
基金financially supported by the National Natural Science Foundation of China(52104197)Hongkong Scholar Program(XJ2022022)+5 种基金National Science Foundation for Post-doctoral Scientists of China(2021M691549,2021M703082)National Natural Science Foundation of China(52272396,52306090)Jiangsu Provincial Double-Innovation Doctor Program(JSSCBS20210402)Natural Science Foundation of the Jiangsu Higher Education Institutions(21KJB620001)The Open Fund of the State Key Laboratory of Fire Science(SKLFS)Program(HZ2022-KF04)Postgraduate Research&Practice Innovation Program of Jiangsu Province(SJCX22-0457)。
文摘The unparalleled energy density has granted lithium-sulfur batteries(LSBs)with attractive usages.Unfortunately,LSBs still face some unsurpassed challenges in industrialization,with polysulfides shuttling,dendrite growth and thermal hazard as the major problems triggering the cycling instability and low safety.With the merit of convenience,the method of designing functional separator has been adapted.Concretely,the carbon aerogel confined with CoS_(2)(CoS_(2)-NCA)is constructed and coated on Celgard separator surface,acquiring CoS_(2)-NCA modified separator(CoS_(2)-NCA@C),which holds the promoted electrolyte affinity and flame retardance.As revealed,CoS_(2)-NCA@C cell gives a high discharge capacity 1536.9 mAh/g at 1st cycle,much higher than that of Celgard cell(987.1 mAh/g).Moreover,the thermal runaway triggering time is dramatically prolonged by 777.4 min,corroborating the promoted thermal safety of cell.Noticeably,the higher coulombic efficiency stability and lower overpotential jointly confirm the efficacy of CoS_(2)-NCA@C in suppressing the lithium dendrite growth.Overall,this work can provide useful inspirations for designing functional separator,coping with the vexing issues of LSBs.
基金supported by the National Natural Science Foundation of China (22275131)the Institutional Research Fund from Sichuan University (2021SCUNL201)+1 种基金the 111 Project (B20001)the Fundamental Research Funds for the Central Universities。
文摘With the increase of people’s demand,it is extremely desired for developing high-safety,widetemperature-range and high-energy-density lithium batteries,but huge challenges are remained due to shrinkage and combustion of commonly used polyolefin separators at high temperatures,as well as narrow usable temperature range and high flammability of conventionally commercialized liquid electrolytes.In this work,we report a multifunctional separator mainly consisting of Zn^(2+)-phytate coordination complex nanoparticles and bacterial cellulose nanofibers,named the BZP separator,which possesses high porosity,excellent thermotolerance,good flame retardancy,abilities of anion binding and Ni^(2+)capturing.Through cooperating with the fluoride-free wide-temperature-range electrolyte,Li//LiFePO_(4) cells not only deliver discharge capacities of 110.39 mA h g^(-1)and 113.25 mA h g^(-1)after 2200 cycles (2 C) and1600 cycles (5 C) at 25℃,with capacity retentions of 76.59%and 86.09%,respectively,but also exhibit excellent cycling performance at 80℃ and-40℃.Significantly,the Li//NCM811 cell with a loading of7.8 mg cm^(-2)delivers a discharge capacity of 146.64 mA h g^(-1)after 200 cycles at 0.5 C,with a capacity retention of 89.03%.In addition,pouch cells can work at 120℃ and have low flammability.
基金supported by the National Natural Science Foundation of China(51877203)the Science and Technology Foundation of State Grid Corporation of China(521205190014).
文摘This paper performs an experimental evaluation of thermolysis-driven gases generated by the thermal decomposition of 1 M LiPF6+EC/DMC=1/1 v/v electrolytes at various decomposition temperatures,pyrolysis durations,and oxygen concentrations.Carried out in a home-built autoclave filled with pure helium,the experiment reveals that as the decomposition temperature increases,more types and larger quantities of gases will be released.Specifically,the experimental results demonstrate trends of logistic growth in the volume concentration of CO2,C2H6O,C2H4,CO,and C2H4O2 with the increase of decomposition temperature.With a prolonged pyrolysis duration,while volume concentrations of certain gases,such as CO2,C2H6O,C2H5F,and CO would increase,the concentration of C2H4O2 actually decreases.Moreover,concentrations of both C2H4 and C2H5F will first decrease and reach their minimum values at 1%v/v oxygen concentration,and then they would quickly climb back at higher oxygen concentrations,while the concentrations of C2H6 and C2H3F would decrease monotonically.It is envisioned that the detailed experimental results and findings on the gas generation pattern of 1 M LiPF6+EC/DMC=1/1 v/v electrolytes can facilitate the development of an early warning mechanism of thermal runaway based on gas sensing technology,which can be effectively applied to monitor the potential thermal failures of lithium-ion batteries with the same type of electrolyte and thus promote the thermal safety of battery packs in safety-critical applications.
基金jointly supported by the Natural Science Foundations of China(Nos.22179020,12174057)Fujian Natural Science Foundation for Distinguished Young Scholars(Grant No.2020J06042)+2 种基金Foreign science and technology cooperation project of Fuzhou Science and Technology Bureau(No.2021-Y-086)Natural Science Foundation of Fujian Province(Grant No.2018J01660)Cultivation plan of outstanding young scientific research talents of Fujian Education Department(Grant No.J1-1323).
文摘Developing an effective method to synthesize high-performance high-voltage LiCoO_(2) is essential for its industrialization in lithium batteries(LIBs).This work proposes a simple mass-produced strategy for the first time,that is,negative temperature coefficient thermosensitive Pr_(6)O_(11) nanoparticles are uniformly modified on LiCoO_(2) to prepare LiCoO_(2)@Pr_(6)O_(11)(LCO@PrO)via a liquid-phase mixing combined with annealing method.Tested at 274 mA g−1,the modified LCO@PrO electrodes deliver excellent 4.5 V high-voltage cycling performance with capacity retention ratios of 90.8%and 80.5%at 25 and 60℃,being much larger than those of 22.8%and 63.2%for bare LCO electrodes.Several effective strategies were used to clearly unveil the performance enhancement mechanism induced by Pr_(6)O_(11) modification.It is discovered that Pr_(6)O_(11) can improve interface compatibility,exhibit improved conductivity at elevated temperature,thus enhance the Li^(+)diffusion kinetics,and suppress the phase transformation of LCO and its resulting mechanical stresses.The 450 mAh LCO@PrO‖graphite pouch cells show excellent LIB performance and improved thermal safety characteristics.Importantly,the energy density of such pouch cell was increased even by~42%at 5 C.This extremely convenient technology is feasible for producing high-energy density LIBs with negligible cost increase,undoubtedly providing important academic inspiration for industrialization.
基金supported by the National Natural Science Foundation of China (20573098)the Science and Technology Foundation of National Key Lab of Science and Technology on Combustion and Explosion in China (9140C3503030805)
文摘The properties of dissolution in different solvents,the specific heat capacity and thermal decomposition process under the non-isothermal conditions for energetic triazole ionic salts 1,2,4-triazolium nitrate(1a),1,2,3-triazolium nitrate(1b),3,4,5triamino-1,2,4-triazolium nitrate(2a),3,4,5-triamino-1,2,4-triazolium dinitramide(2b)were precisely measured using a Calvet Microcalorimeter.The thermochemical equation,differential enthalpies of dissolution(△difH m ),standard molar enthalpies of dissolution(△difH m ),apparent activation energy(E),pre-exponential constant(A),kinetic equation,linear relationship of specific heat capacity with temperature over the temperature range from 283 to 353 K,standard molar heat capacity(C p,m)and enthalpy,entropy and Gibbs free energy at 283–353 K,taking 298.15 K as the benchmark for 1a,1b,2a and 2b were obtained with treating experimental data and theoretical calculation method.The kinetic and thermodynamic parameters of thermal decomposition reaction,critical temperature of thermal explosion(Tb),self-accelerating decomposition temperature(TSADT)and adiabatic time-to-explosion(t)of 1a,1b,2a and 2b were calculated.Their heat-resistance abilities were evaluated.Information was obtained on the relation between molecular structures and properties of 1a,1b,2a and 2b.