Based on successive multiple-step isothermal crystallization and self-nucleation annealing methods, a novel semi-quantitative method for the characterization of segment distribution in linear low density polyethylene ...Based on successive multiple-step isothermal crystallization and self-nucleation annealing methods, a novel semi-quantitative method for the characterization of segment distribution in linear low density polyethylene (LLDPE) was established by treating the thermal analysis data using the Gibbs-Thomson equation. The method was used to describe the segment distribution of Ziegler-Natta catalyzed LLDPE (Z-N LLDPE), metallocene catalyzed LLDPE (m-LLDPE) and two commercial LLDPEs with wide molecular weight distribution. The differences of the results obtained from the two thermally treated samples were compared. The results of segment distribution of the polymers were discussed according to their microstructure data and were compared with their characteristics. It can be deduced from the results that this characterization method is effective to characterize the sequence structure of the branched ethylene copolymers.展开更多
This paper presents results from a field study of asphaltic pavement patching operations performed by three different contractors working in a total of ten sites. It forms part of an ongoing research programme towards...This paper presents results from a field study of asphaltic pavement patching operations performed by three different contractors working in a total of ten sites. It forms part of an ongoing research programme towards improving the performance of pothole repairs. Thermal imaging technology was used to record temperatures of the patching material throughout the entire exercise, from the stage of material collection, through transportation to repair site, patch forming, and compaction. Practical complications occurring during patch repairs were also identified. It was found that depending on the weather conditions, duration of the travel and poor insulation of the transported hot asphalt mix, its temperature can drop as high as 116.6 ℃ over the period that the reinstatement team travel to the site and prepare the patch. This impacting is on the durability and perfor- mance of the executed repairs. Cold spots on the asphalt mat and temperature differentials between the new hot-fill asphalt mix and existing pavement were also identified as poorly compacted areas that were prone to premature failure. For example, over the five-minute period, the temperature at one point reduced by 33% whereas the temperatures of nearby areas decreased by 65% and 71%. A return visit to the repair sites, three months later, revealed that locations where thermal segregation was noted, during the patching opera- tion, had failed prematurely.展开更多
Molecular dynamics simulations are employed to investigate the effect of thermal convection induced only by dissipative lateral walls on density segregation of the strongly driven binary granular gases under low gravi...Molecular dynamics simulations are employed to investigate the effect of thermal convection induced only by dissipative lateral walls on density segregation of the strongly driven binary granular gases under low gravity conditions. It is found that the thermal convection due to dissipative lateral walls has significant influence on the segregation intensity of the system. The dominant factor in determining the degree of segregation achieved by the system is found to be the relative convection rate between differing species. Moreover, a qualitative explanation is proposed for the relationship between the thermal convection due to dissipative lateral walls and the observed segregation intensity profiles.展开更多
基金This work was supported by the Science Foundations of State Key Laboratory of Polymer Physics and Chemisny, Chinese Academy of Sciences (00-B-15) and National Natural Science Foundation of China (No. B040504).
文摘Based on successive multiple-step isothermal crystallization and self-nucleation annealing methods, a novel semi-quantitative method for the characterization of segment distribution in linear low density polyethylene (LLDPE) was established by treating the thermal analysis data using the Gibbs-Thomson equation. The method was used to describe the segment distribution of Ziegler-Natta catalyzed LLDPE (Z-N LLDPE), metallocene catalyzed LLDPE (m-LLDPE) and two commercial LLDPEs with wide molecular weight distribution. The differences of the results obtained from the two thermally treated samples were compared. The results of segment distribution of the polymers were discussed according to their microstructure data and were compared with their characteristics. It can be deduced from the results that this characterization method is effective to characterize the sequence structure of the branched ethylene copolymers.
文摘This paper presents results from a field study of asphaltic pavement patching operations performed by three different contractors working in a total of ten sites. It forms part of an ongoing research programme towards improving the performance of pothole repairs. Thermal imaging technology was used to record temperatures of the patching material throughout the entire exercise, from the stage of material collection, through transportation to repair site, patch forming, and compaction. Practical complications occurring during patch repairs were also identified. It was found that depending on the weather conditions, duration of the travel and poor insulation of the transported hot asphalt mix, its temperature can drop as high as 116.6 ℃ over the period that the reinstatement team travel to the site and prepare the patch. This impacting is on the durability and perfor- mance of the executed repairs. Cold spots on the asphalt mat and temperature differentials between the new hot-fill asphalt mix and existing pavement were also identified as poorly compacted areas that were prone to premature failure. For example, over the five-minute period, the temperature at one point reduced by 33% whereas the temperatures of nearby areas decreased by 65% and 71%. A return visit to the repair sites, three months later, revealed that locations where thermal segregation was noted, during the patching opera- tion, had failed prematurely.
基金Supported by the National Natural Science Foundation of China under Grant No 11404104the Natural Science Foundation of Hubei Province of China under Grant No 2014CFC1127
文摘Molecular dynamics simulations are employed to investigate the effect of thermal convection induced only by dissipative lateral walls on density segregation of the strongly driven binary granular gases under low gravity conditions. It is found that the thermal convection due to dissipative lateral walls has significant influence on the segregation intensity of the system. The dominant factor in determining the degree of segregation achieved by the system is found to be the relative convection rate between differing species. Moreover, a qualitative explanation is proposed for the relationship between the thermal convection due to dissipative lateral walls and the observed segregation intensity profiles.